
Data Structures and Algorithms

Sorting Techniques

Engr. Bushra Tahir
Department of Electrical Engineering
Iqra National University

Introduction

Ashim Lamichhane 2

• Sorting refers to arranging a set of data in some logical order

• For ex. A telephone directory can be considered as a list where each

record has three fields - name, address and phone number.

• Being unique, phone number can work as a key to locate any record in
the list.

Ashim Lamichhane 3

Introduction

• Sorting is among the most basic problems in algorithm design.

• We are given a sequence of items, each associated with a given key

value. And the problem is to rearrange the items so that they are in an
increasing(or decreasing) order by key.

• The methods of sorting can be divided into two categories:

• Internal Sorting

• External Sorting

Ashim Lamichhane 4

• Internal Sorting

If all the data that is to be sorted can be adjusted at a time in main memory,
then internal sorting methods are used

• External Sorting

When the data to be sorted can’t be accommodated in the memory at the
same time and some has to be kept in auxiliary memory, then external sorting
methods are used.

NOTE: We will only consider internal sorting

Stable and Not Stable Sorting

• If a sorting algorithm, after sorting the contents, does not change the
sequence of similar content in which they appear, it is called stable
sorting.

• If a sorting algorithm, after sorting the contents, changes the
sequence of similar content in which they appear, it is called unstable
sorting.

Ashim Lamichhane 5

Ashim Lamichhane 6

Efficiency of Sorting Algorithm

• The complexity of a sorting algorithm measures the running time of a
function in which n number of items are to be sorted.

• The choice of sorting method depends on efficiency considerations for
different problems.

• Three most important of these considerations are:

• The length of time spent by programmer in coding a particular sorting program

• Amount of machine time necessary for running the program

• The amount of memory necessary for running the program

Ashim Lamichhane 7

Efficiency of Sorting Algorithm

• Various sorting methods are analyzed in the cases like – best case,
worst case or average case.

• Most of the sort methods we consider have requirements that range
from 0(nlogn) to 0(n2).

• A sort should not be selected only because its sorting time is 0(nlogn);
the relation of the file size n and the other factors affecting the actual
sorting time must be considered

Ashim Lamichhane 8

Efficiency of Sorting Algorithm

• Determining the time requirement of sorting technique is to actually
run the program and measure its efficiency.

• Once a particular sorting technique is selected the need is to make the
program as efficient as possible.

• Any improvement in sorting time significantly affect the overall
efficiency and saves a great deal of computer time.

Ashim Lamichhane 9

Efficiency of Sorting Algorithm

• Space constraints are usually less important than time considerations.

• The reason for this can be, as for most sorting programs, the amount

of space needed is closer to 0(n) than to 0(n2)

• The second reason is that, if more space is required, it can almost
always be found in auxiliary storage.

Ashim Lamichhane 10

BUBBLE SORT

• In bubble sort, each element is compared with its adjacent element.

• We begin with the 0th element and compare it with the 1st element.

• If it is found to be greater than the 1st element, then they are interchanged.

• In this way all the elements are compared (excluding last) with their next

element and are interchanged if required

• On completing the first iteration, largest element gets placed at the last

position. Similarly in second iteration second largest element gets placed at
the second last position and so on.

Ashim Lamichhane 14

Algorithm

Ashim Lamichhane 15

#include <stdio.h>

void bubbleSort(int arr[], int n)
{
 int i, j, temp;
 for(i = 0; i < n; i++)
 {
 for(j = 0; j < n-i-1; j++)
 {
 if(arr[j] > arr[j+1])
 {
 // swap the elements
 temp = arr[j];
 arr[j] = arr[j+1];
 arr[j+1] = temp;
 }
 }
 }

 // print the sorted array
 printf("Sorted Array: ");
 for(i = 0; i < n; i++)
 {
 printf("%d ", arr[i]);
 }
}

Algorithm

Ashim Lamichhane 15

int main()
{
 int arr[100], i, n, step, temp;
 // ask user for number of elements to be sorted
 printf("Enter the number of elements to be sorted: ");
 scanf("%d", &n);
 // input elements if the array
 for(i = 0; i < n; i++)
 {
 printf("Enter element no. %d: ", i+1);
 scanf("%d", &arr[i]);
 }
 // call the function bubbleSort
 bubbleSort(arr, n);

 return 0;
}

Ashim Lamichhane 16

TIME COMPLEXITY

• The time complexity for bubble sort is calculated in terms of the
number of comparisons f(n) (or of number of loops)

• Here two loops(outer loop and inner loop) iterates(or repeated) the

comparison.

• The inner loop is iterated one less than the number of elements in the

list (i.e., n-1 times) and is reiterated upon every iteration of the outer
loop

f (n) = (n – 1) + (n – 2) + + 2 + 1

= n(n – 1) = O(n2).

Ashim Lamichhane 17

TIME COMPLEXITY
• Best Case

• sorting a sorted array by bubble sort algorithm
• In best case outer loop will terminate after one iteration, i.e it involves performing

one pass which requires n-1 comparison

f (n) = O(n2)

• Worst Case
• Suppose an array [5,4,3,2,1], we need to move first element to end of an array
• n-1 times the swapping procedure is to be called

f (n) = O(n2)

• Average Case
• Difficult to analyse than the other cases
• Random inputs, so in general

f (n) = O(n2)

• Space Complexity
• O(n)

Ashim Lamichhane 18

SELECTION SORT
• Find the least(or greatest) value in the array, swap it into the leftmost(or

rightmost) component, and then forget the leftmost component, Do this
repeatedly.

• Let a[n] be a linear array of n elements. The selection sort works as follows:

• Pass 1: Find the location loc of the smallest element in the list of n elements a[0],

a[1], a[2], a[3],,a[n-1] and then interchange a[loc] and a[0].

• Pass 2: Find the location loc of the smallest element int the sub-list of n-1

elements a[1], a[2], a[3],,a[n-1] and then interchange a[loc] and a[1] such
that a[0], a[1] are sorted.

• Then we will get the sorted list

a[0]<=a[2]<=a[3]…...<=a[n-1]

Ashim Lamichhane 19

Ashim Lamichhane 20

Ashim Lamichhane 21

Time Complexity
• Inner loop executes (n-1) times when i=0, (n-2) times when i=1 and so

on:

• Time complexity = (n-1) + (n-2) + (n-3) + …....... +2+1

= O(n2)

Space Complexity

• Since no extra space beside n variables is needed for sorting so

• O(n)

Ashim Lamichhane 22

Insertion Sort

• Like sorting a hand of playing cards start with an empty hand and the
cards facing down the table.

• Pick one card at a time from the table, and insert it into the correct
position in the left hand.

• Compare it with each of the cards already in the hand, from right to
left

• The cards held in the left hand are sorted.

Ashim Lamichhane 23

Ashim Lamichhane 24

Ashim Lamichhane 25

Insertion Sort

• Suppose an array a[n] with n elements. The insertion sort works as follows:

Pass 1: a[0] by itself is trivially sorted.

Pass 2: a[1] is inserted either before or after a[0] so that a[0], a[1] is sorted.

Pass 3: a[2] is inserted into its proper place in a[0],a[1] that is before a[0],

between a[0] and a[1], or after a[1] so that a[0],a[1],a[2] is sorted.

pass N: a[n-1] is inserted into its proper place in a[0],a[1],a[2],........,a[n-2] so

that a[0],a[1],a[2],............,a[n-1] is sorted with n elements.

Ashim Lamichhane 26

7 2 4 5 1 3

2 7 4 5 1 3

2 4 7 5 1 3

2 4 5 7 1 3

1 2 4 5 7 3

1 2 3 4 5 7

Algorithm

InsertionSort(){

for (i=1;i<n;i++){

value=C[i];

hole= i ;

while(hole>0 && C[hole-1]>value){

C[hole]=C[hole-1];

hole=hole-1;

}

C[hole]=value;

}

}
i value hole

1 2 1

1 2 0

7 2 4 1 5 3

7 7 4 1 5 3 1st Pass

2 7 4 1 5 3

Ashim Lamichhane 27

Ashim Lamichhane 28

Time Complexity

• Best Case:
• If the array is all but sorted then
• Inner Loop wont execute so only some constant time the statements will run
• So Time complexity= O(n)

• Worst Case:

• Array element in reverse sorted order
• Time complexity=O(n2)

• Space Complexity

• Since no extra space beside n variables is needed for sorting so
• Space Complexity = O(n)

Ashim Lamichhane 29

Divide and conquer algorithms

• The sorting algorithms we’ve seen so far have worst-case running
times of O(n2)

• When the size of the input array is large, these algorithms can take a
long time to run.

• Now we will discuss two sorting algorithms whose running times are
better

• Merge Sort

• Quick Sort

Ashim Lamichhane 31

Divide-and-conquer

• Divide-and-conquer, breaks a problem into sub problems that are
similar to the original problem, recursively solves the sub problems,
and finally combines the solutions to the sub problems to solve the
original problem.

• Think of a divide-and-conquer algorithm as having three parts:

• Divide the problem into a number of subproblems that are smaller instances of
the same problem.

• Conquer the subproblems by solving them recursively. If they are small
enough, solve the subproblems as base cases.

• Combine the solutions to the subproblems into the solution for the original
problem.

Divide-and-conquer

Ashim Lamichhane 32

Ashim Lamichhane 33

Merge Sort

• Merge sort is a sorting technique based on divide and conquer
technique.

• Merge sort first divides the array into equal halves and then combines
them in a sorted manner.

• With worst-case time complexity being Ο(n log n), it is one of the most
respected algorithms.

Ashim Lamichhane 34

Merge Sort

• Because we're using divide-and-conquer to sort, we need to decide
what our sub problems are going to be.

• Full Problem: Sort an entire Array

• Sub Problem: Sort a sub array

• Lets assume array[p..r] denotes this subarray of array.

• For an array of n elements, we say the original problem is to sort
array[0..n-1]

Ashim Lamichhane 35

Ashim Lamichhane 36

Merge Sort

• Here’s how merge sort uses divide and conquer
1. Divide by finding the number q of the position midway between p and r. Do

this step the same way we found the midpoint in binary search: add p and r,
divide by 2, and round down.

2. Conquer by recursively sorting the subarrays in each of the two sub problems

created by the divide step. That is, recursively sort the subarray array[p..q]
and recursively sort the subarray array[q+1..r].

3. Combine by merging the two sorted subarrays back into the single sorted

subarray array[p..r].

Ashim Lamichhane 37

Merge Sort

• Let’s start with array holding [14,7,3,12,9,11,6,2]

• We can say that array[0..7] where p=0 and r=7

• In the divide step we compute q=3

• The conquer step has us sort the two subarrays
• array[0..3] = [14,7,3,12]

• array[4..7]= [9,11,6,2]

• When we comeback from the conquer step, each of the two subarrays is sorted i.e.

• array[0..3] = [3,7,12,14]

• array[4..7]= [2,6,9,11]

• Finally, the combine step merges the two sorted subarrays in first half and
the second half, producing the final sorted array [2,3, 6,7,9, 11, 12,14]

Ashim Lamichhane 38

How did the subarray array[0..3] become sorted?

• It has more than two element so it’s not a base case.

• So with p=0 and r=3, compute q=1, recursively sort array[0..1] and
array[2..3], resulting in array[0..3] containing [7,14,3,12] and merge
the fist half with the second half, producing [3,7,12,14]

How did the subarray array[0..1] become sorted?

• With p=0 and r=1, compute q=0, recursively sort array[0..0] ([14]) and

array[1..1] ([7]), resulting in array[0..1] still containing [14, 7], and
merge the first half with the second half, producing [7, 14].

39

Ashim Lamichhane 40

Analysis of merge Sort

• We can view merge sort as creating a tree of calls, where each level of
recursion is a level in the tree.

• Since number of elements is divided in half each time, the tree is
balanced binary tree.

• The height of such a tree tend to be log n

Ashim Lamichhane 41

Analysis of merge Sort

• Divide and conquer

• Recursive

• Stable

• 0(n) space complexity

• 0(nlogn) time complexity

Ashim Lamichhane 45

Quick Sort

• Quick sort is one of the most popular sorting techniques.

• As the name suggests the quick sort is the fastest known sorting

algorithm in practice.

• It has the best average time performance.

• It works by partitioning the array to be sorted and each partition in

turn sorted recursively. Hence also called partition exchange sort.

Ashim Lamichhane 46

Quick Sort

• In partition one of the array elements is choses as a pivot element

• Choose an element pivot=a[n-1]. Suppose that elements of an array a

are partitioned so that pivot is placed into position I and the following
condition hold:

• Each elements in position 0 through i-1 is less than or equal to pivot
• Each of the elements in position i+1 through n-1 is greater than or equal to key

• The pivot remains at the ith position when the array is completely
sorted. Continuously repeating this process will eventually sort an
array.

6 5 1 3 8 4 7 9 2

pivot
wall current

6 5 1 3 8 4 7 9 2

pivot
wall current

6 5 1 3 8 4 7 9 2

pivot
wall current

1 5 6 3 8 4 7 9 2

pivot
wall

current

1 2 6 3 8 4 7 9 5

pivot
wall

current

Ashim Lamichhane 47

Ashim Lamichhane 49

Algorithm

• Choosing a pivot
• To partition the list we first choose a pivot element

• Partitioning

• Then we partition the elements so that all those with values less than pivot are
placed on the left side and the higher vale on the right

• Check if the current element is less than the pivot.
• If lesser replace it with the current element and move the wall up one position

• else move the pivot element to current element and vice versa

• Recur
• Repeat the same partitioning step unless all elements are sorted

Ashim Lamichhane 50

Analysis of Quick Sort

• Best case
• The best case analysis assumes that the pivot is always in the middle
• To simplify the math, we assume that the two sublists are each exactly half the

size of the original T(N)=T(N/2)+T(N/2)….+1 leads to T(N)=O(nlogn)

• Average case
• T(N)=O(nlogn)

• Worst case

• When we pick minimum or maximum as pivot then we have to go through
each and every element so

• T(N) = O(n2)

Ashim Lamichhane 63

Reference

• https://www.khanacademy.org/computing/computer-
science/algorithms/insertion-sort/a/insertion-sort

• http://www.tutorialspoint.com/data_structures_algorithms/sorting_al
gorithms.htm

• http://bigocheatsheet.com/

• http://stackoverflow.com/questions/5222730/why-is-merge-sort-
preferred-over-quick-sort-for-sorting-linked-lists

https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
http://www.tutorialspoint.com/data_structures_algorithms/sorting_algorithms.htm
http://www.tutorialspoint.com/data_structures_algorithms/sorting_algorithms.htm
http://bigocheatsheet.com/
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists
http://stackoverflow.com/questions/5222730/why-is-merge-sort-preferred-over-quick-sort-for-sorting-linked-lists

