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p-orbitals in each energy level are oriented at right angles to each other. One is oriented on
the x-axis, one on the y-axis, and one on the z-axis. For example, a view of the quantum
model of a sodium atom (Na) that has 11 electrons is shown in Figure 1–5. The three axes
are shown to give you a 3-D perspective.
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� FIGURE 1–5

Three-dimensional quantum model
of the sodium atom, showing the 
orbitals and number of electrons in
each orbital.

1. Describe the Bohr model of the atom.

2. Define electron.

3. What is the nucleus of an atom composed of? Define each component.

4. Define atomic number.

5. Discuss electron shells and orbits and their energy levels.

6. What is a valence electron?

7. What is a free electron?

8. Discuss the difference between positive and negative ionization.

9. Name two theories that distinguish the quantum model.

SECTION 1–1 
CHECKUP
Answers can be found at www.
pearsonhighered.com/floyd.

1–2 MATERIALS USED IN ELECTRONICS

In terms of their electrical properties, materials can be classified into three groups: con-
ductors, semiconductors, and insulators. When atoms combine to form a solid, crystalline
material, they arrange themselves in a symmetrical pattern. The atoms within the crystal
structure are held together by covalent bonds, which are created by the interaction of the
valence electrons of the atoms. Silicon is a crystalline material.

After completing this section, you should be able to

❏ Discuss insulators, conductors, and semiconductors and how they differ
◆ Define the core of an atom ◆ Describe the carbon atom ◆ Name two types
each of semiconductors, conductors, and insulators

❏ Explain the band gap
◆ Define valence band and conduction band ◆ Compare a semiconductor atom
to a conductor atom

❏ Discuss silicon and gemanium atoms
❏ Explain covalent bonds

◆ Define crystal

www.pearsonhighered.com/floyd
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Insulators, Conductors, and Semiconductors

All materials are made up of atoms. These atoms contribute to the electrical properties of a
material, including its ability to conduct electrical current.

For purposes of discussing electrical properties, an atom can be represented by the
valence shell and a core that consists of all the inner shells and the nucleus. This concept is
illustrated in Figure 1–6 for a carbon atom. Carbon is used in some types of electrical
resistors. Notice that the carbon atom has four electrons in the valence shell and two electrons
in the inner shell. The nucleus consists of six protons and six neutrons, so the �6 indicates
the positive charge of the six protons. The core has a net charge of �4 (�6 for the nucleus
and for the two inner-shell electrons).

Insulators An insulator is a material that does not conduct electrical current under nor-
mal conditions. Most good insulators are compounds rather than single-element materials
and have very high resistivities. Valence electrons are tightly bound to the atoms; there-
fore, there are very few free electrons in an insulator. Examples of insulators are rubber,
plastics, glass, mica, and quartz.

Conductors A conductor is a material that easily conducts electrical current. Most
metals are good conductors. The best conductors are single-element materials, such as
copper (Cu), silver (Ag), gold (Au), and aluminum (Al), which are characterized by atoms
with only one valence electron very loosely bound to the atom. These loosely bound va-
lence electrons become free electrons. Therefore, in a conductive material the free elec-
trons are valence electrons.

Semiconductors A semiconductor is a material that is between conductors and insula-
tors in its ability to conduct electrical current. A semiconductor in its pure (intrinsic) state
is neither a good conductor nor a good insulator. Single-element semiconductors are
antimony (Sb), arsenic (As), astatine (At), boron (B), polonium (Po), tellurium (Te),
silicon (Si), and germanium (Ge). Compound semiconductors such as gallium arsenide,
indium phosphide, gallium nitride, silicon carbide, and silicon germanium are also com-
monly used. The single-element semiconductors are characterized by atoms with four va-
lence electrons. Silicon is the most commonly used semiconductor.

Band Gap

Recall that the valence shell of an atom represents a band of energy levels and that the va-
lence electrons are confined to that band. When an electron acquires enough additional en-
ergy, it can leave the valence shell, become a free electron, and exist in what is known as
the conduction band.

The difference in energy between the valence band and the conduction band is called
an energy gap or band gap. This is the amount of energy that a valence electron must
have in order to jump from the valence band to the conduction band. Once in the conduc-
tion band, the electron is free to move throughout the material and is not tied to any
given atom.

Figure 1–7 shows energy diagrams for insulators, semiconductors, and conductors. The
energy gap or band gap is the difference between two energy levels and is “not allowed” in
quantum theory. It is a region in insulators and semiconductors where no electron states
exist. Although an electron may not exist in this region, it can “jump” across it under cer-
tain conditions. For insulators, the gap can be crossed only when breakdown conditions
occur—as when a very high voltage is applied across the material. The band gap is illus-
trated in Figure 1–7(a) for insulators. In semiconductors the band gap is smaller, allowing
an electron in the valence band to jump into the conduction band if it absorbs a photon. The
band gap depends on the semiconductor material. This is illustrated in Figure 1–7(b). In
conductors, the conduction band and valence band overlap, so there is no gap, as shown in
Figure 1–7(c). This means that electrons in the valence band move freely into the conduc-
tion band, so there are always electrons available as free electrons. 

-2

Core (+4)

Valence electrons

+6

� FIGURE 1–6

Diagram of a carbon atom.

Next to silicon, the second most
common semiconductive material
is gallium arsenide, GaAs. This is a
crystalline compound, not an
element. Its properties can be
controlled by varying the relative
amount of gallium and arsenic.

GaAs has the advantage of
making semiconductor devices that
respond very quickly to electrical
signals. This makes it better than
silicon for applications like
amplifying the high frequency 
(1 GHz to 10 GHz) signals from TV
satellites, etc. The main
disadvantage of GaAs is that it is
more difficult to make and the
chemicals involved are quite often
toxic!
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Comparison of a Semiconductor Atom to a Conductor Atom

Silicon is a semiconductor and copper is a conductor. Bohr diagrams of the silicon atom and
the copper atom are shown in Figure 1–8. Notice that the core of the silicon atom has a net
charge of �4 (14 protons � 10 electrons) and the core of the copper atom has a net charge of
�1 (29 protons � 28 electrons). The core includes everything except the valence electrons.
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Energy diagrams for the three types
of materials.

The valence electron in the copper atom “feels” an attractive force of �1 compared to a
valence electron in the silicon atom which “feels” an attractive force of �4. Therefore,
there is more force trying to hold a valence electron to the atom in silicon than in copper.
The copper’s valence electron is in the fourth shell, which is a greater distance from its nu-
cleus than the silicon’s valence electron in the third shell. Recall that electrons farthest
from the nucleus have the most energy. The valence electron in copper has more energy
than the valence electron in silicon. This means that it is easier for valence electrons in
copper to acquire enough additional energy to escape from their atoms and become free
electrons than it is in silicon. In fact, large numbers of valence electrons in copper already
have sufficient energy to be free electrons at normal room temperature.

Silicon and Germanium

The atomic structures of silicon and germanium are compared in Figure 1–9. Silicon is
used in diodes, transistors, integrated circuits, and other semiconductor devices. Notice
that both silicon and germanium have the characteristic four valence electrons.
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Bohr diagrams of the silicon and
copper atoms.



10 ◆ INTRODUCTION TO ELECTRONICS
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� FIGURE 1–9

Diagrams of the silicon and germa-
nium atoms.

(a) (b) Bonding diagram. The red negative signs
     represent the shared valence electrons.
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The center silicon atom shares an electron with each
of the four surrounding silicon atoms, creating a
covalent bond with each. The surrounding atoms are
in turn bonded to other atoms, and so on.
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� FIGURE 1–10

Illustration of covalent bonds in 
silicon.

The valence electrons in germanium are in the fourth shell while those in silicon are in
the third shell, closer to the nucleus. This means that the germanium valence electrons are
at higher energy levels than those in silicon and, therefore, require a smaller amount of ad-
ditional energy to escape from the atom. This property makes germanium more unstable at
high temperatures and results in excessive reverse current. This is why silicon is a more
widely used semiconductive material.

Covalent Bonds Figure 1–10 shows how each silicon atom positions itself with four
adjacent silicon atoms to form a silicon crystal. A silicon (Si) atom with its four valence
electrons shares an electron with each of its four neighbors. This effectively creates eight
shared valence electrons for each atom and produces a state of chemical stability. Also, this
sharing of valence electrons produces the covalent bonds that hold the atoms together;
each valence electron is attracted equally by the two adjacent atoms which share it.
Covalent bonding in an intrinsic silicon crystal is shown in Figure 1–11. An intrinsic crys-
tal is one that has no impurities. Covalent bonding for germanium is similar because it also
has four valence electrons.
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