

Satellite Payloads

Dr. N.M.A.E. Dewi Wirastuti

Outline

- What is a payload?
 - Functions of payload
 - Payload requirements
- Payload Types
 - Transparent and Regenerative
- Payload components
 - Antennas, amplifier and multiplexer
- Transponder Technology Development

What is a payload?

What is a payload?

"A communication satellite payload is the system on board the satellite, which provides the link for the communication signals path"

* D.R. O'Connor – in "Satellite Communication Systems". Edited by B.G. Evans, published by IEE

Functions of the payload

- Capture signals transmitted by earth stations
 At minimum carrier to noise ratio, C/No
- Amplify signals
 - With minimum distortion and noise
- Down-convert and transmit signals to earth stations
 - With appropriate power according to link budget

Payload Requirements

- Variable high-gain amplification

 To allow for variations in received signal strength
- Channelisation
 - Limit number of signals through any one amplifier, which limits inter-modulation products
 - Limits effect of non-linearity of amplifiers
- High functional reliability

- Difficult to fix components once in orbit

Payload Types

Payload Components

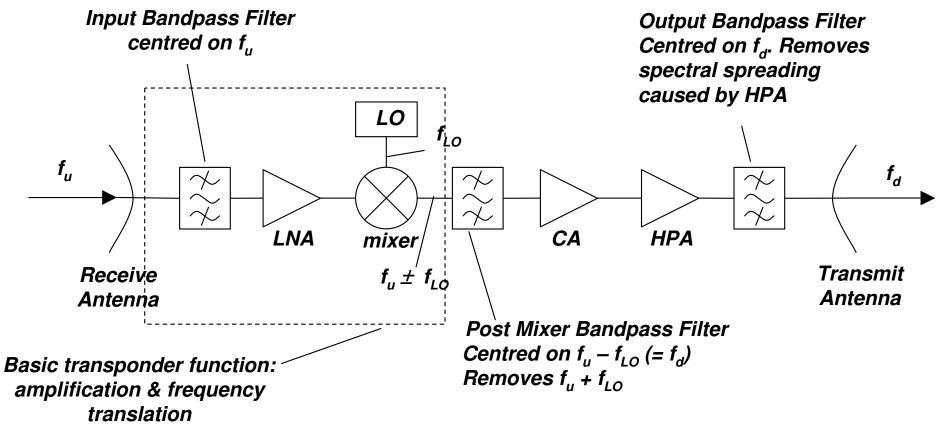
- Two basic types of transponder:
 - Transparent
 - No on-board processing
 - Also known as bent-pipe satellites
 - Regenerative
 - On-board processing

Transparent Transponders

Transparent Transponders - Overview

- Translates the uplink frequency to a suitable downlink frequency and power
- Operate irrespective of access and modulation scheme used by system
- Baseband signal is not recovered

 No digital processing can be applied to signal


Types of transparent transponder

- Two types:
 - Single Conversion
 - Direct frequency conversion between uplink and downlink frequencies
 - Double Conversion
 - Uses an intermediate frequency of lower value than downlink frequency

Single Conversion – Basic Components

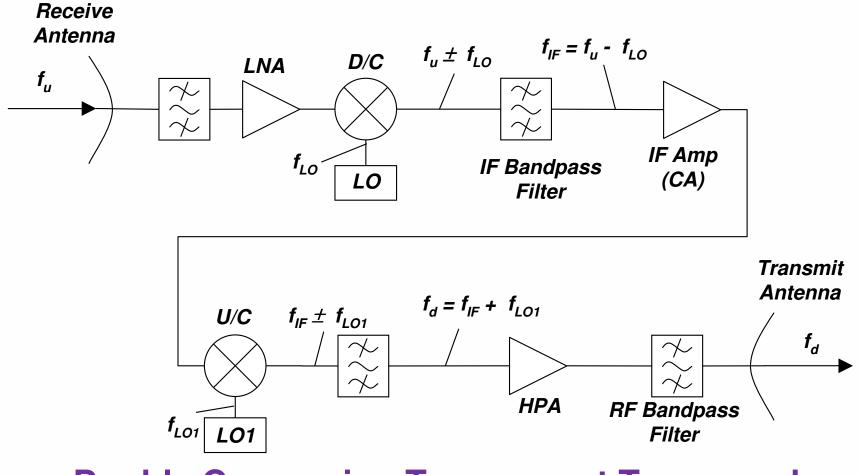
Single Conversion Transparent Transponder

Single Conversion – Basic Components (2)

- Input bandpass filter, centred on uplink transmission frequency, *fu*
- A low noise amplifier (LNA), which provides amplification before the mixer, to minimise transponder noise
 - LNA determines noise performance of transponder
- A mixer to provide frequency translation to downlink frequency, *fd*
 - This results in two products: $fu \pm fLO$, of which only one is required signal
- A post mixer bandpass filter, centred on *fd*, to remove unwanted product of mixer

Single Conversion – Basic Components (3)

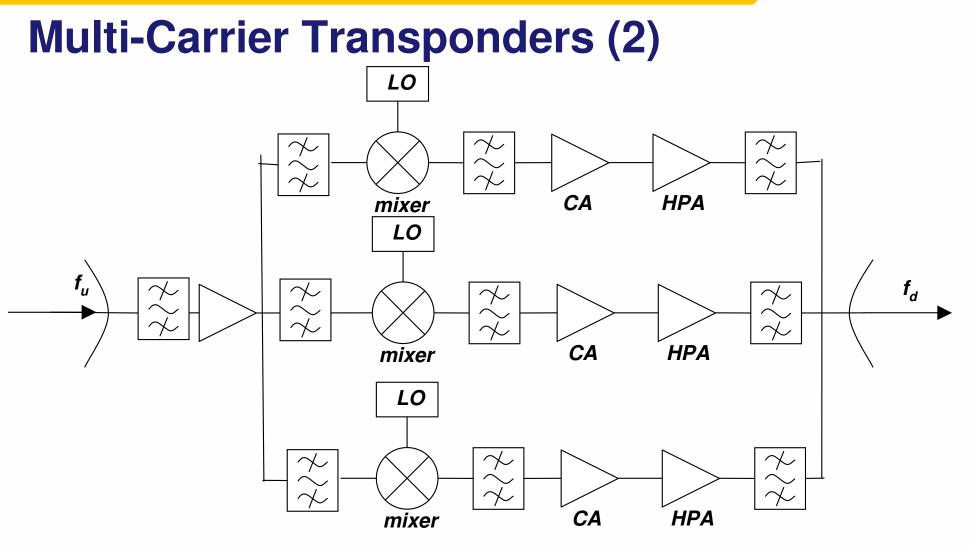
- A channel amplifer (CA) to provide initial stage of amplification
- A high power amplifier (HPA) to provide majority of required amplification
- An output bandpass filter, centred on *fd*, to ensure output signal bandwidth is equal to input signal bandwidth


Double Conversion Overview

- Used in mobile communication systems satellites to convert from one band to another
 - ACeS uses L-band (1.6/1.5 GHz) for mobile links and Cband (6/4 GHz) for feeder link
 - Convenient for interconnection of Ku-band payload (14/12 GHz) and C-band (6/4 GHz)

Double Conversion – Basic Components

Double Conversion Transparent Transponder

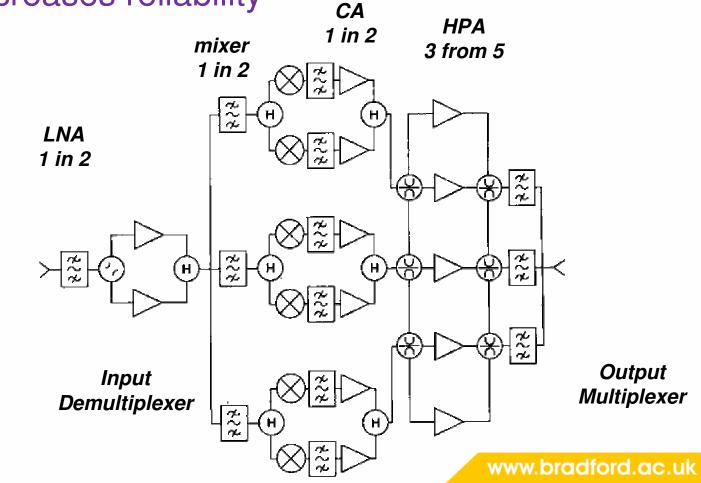


Multi-Carrier Transponders (1)

- In actual system, transponder operates on many carriers:
 - Only one carrier can be amplified in HPA due to intermodulation products
 - LNA can operate efficiently on multi-carrier signal
 - Channelisation occurs between LNA and mixer
 - Using bank of bandpass filters (input demultiplexer)
 - Another bank of bandpass filters (output multiplexer)
 recombines signals following HPA stage

Multi-Carrier Transponder

Payloads Reliability

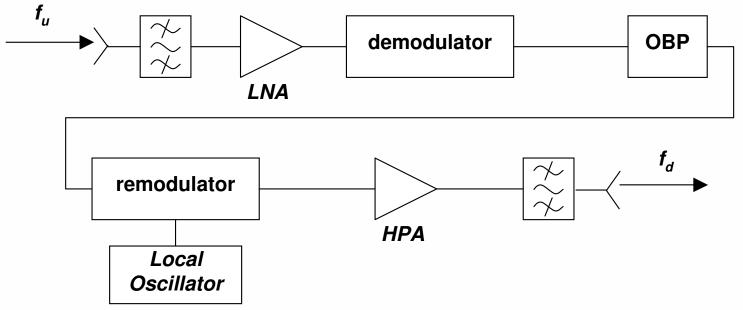

- Each part of a transponder is a single point failure
 - Malfunction of one part prevents entire transponder channel chain from operating
- Reliability of payload over satellite lifetime is very important
 - Difficult to replace broken components when satellite is in orbit

Payload Redundancy

 Introducing redundancy in amplifier and mixer components increases reliability

Regenerative Transponder

Regenerative Transponders: Overview


- Include digital on-board processing that recovers/regenerates the baseband information from the received microwave signal by demodulation
- Recovered signal processed and routed to appropriate output
 - Modulated onto downlink carrier
- Regenerative transponders only work with signals
 modulated by specified modulation scheme

Regenerative Transponders: Basic Components

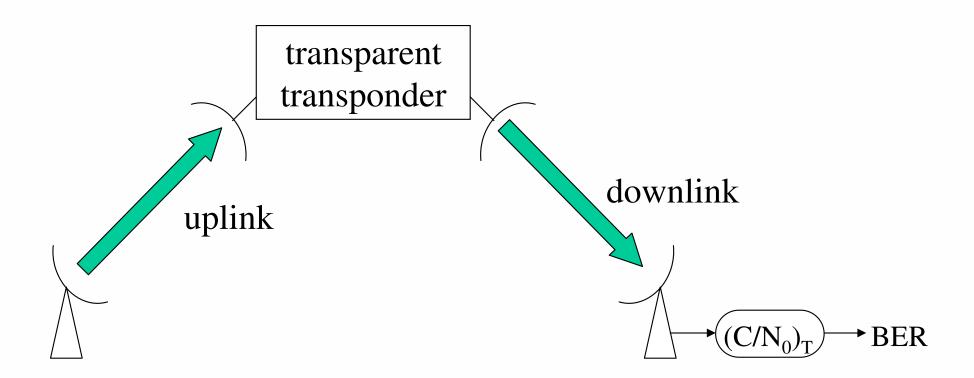
On-board processor Contains processing for beam-forming etc.

Regenerative Transponders: Basic Components (1)

- Input filter bandpass filter centred on uplink frequency, fu, to obtain required bandwidth of received signal
- Low noise amplifier (LNA) provides first amplification of signal, and low noise
- Demodulator to recover baseband signals from modulated carrier at uplink frequency, *fu*
- On-board-processor (OBP) optional component, that processes baseband signals before modulation
 - Contains processing for beam-forming (using phased-array antenna) in a multibeam satellite, for downlink coding etc.

Regenerative Transponders: Basic Components (2)

- Modulator to modulate baseband signals onto downlink carrier
- Local oscillator generates downlink carrier at downlink frequency, *fd*
- HPA high power amplifier to amplify downlink modulated signal before transmission
- Output filter bandpass centred on *fd*, with a pass band equivalent to bandwidth of transmitted signal



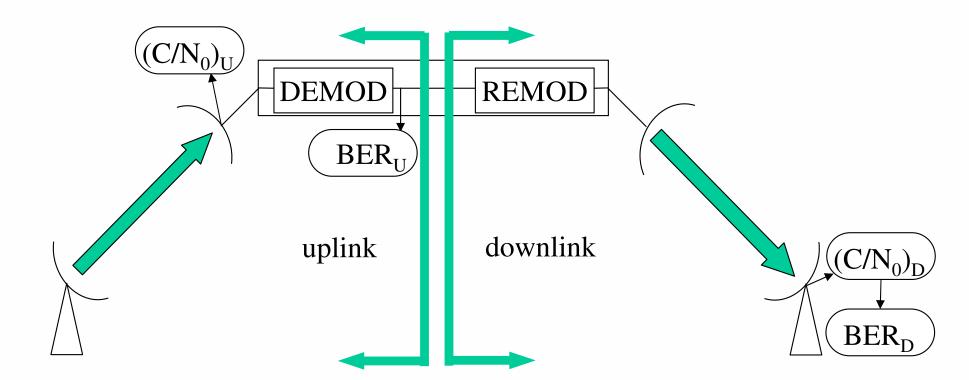
Transponder Link Budget

Transparent Transponders Link Budget (1)

Transparent Transponders Link Budget (2)

 Total carrier-to-noise ratio (C/N₀)_T depends on uplink and downlink carrier-to-noise ratios:

$$\left(\frac{C}{N_o}\right)_T^{-1} = \left(\frac{C}{N_o}\right)_U^{-1} + \left(\frac{C}{N_o}\right)_D^{-1}$$


- BER depends on ratio $(E_b/N_0) = (C/N_0)/R_c$ where R_c is carrier data rate
- Therefore:

$$\left(\frac{E_{b}}{N_{o}}\right)_{T}^{-1} = \left(\frac{E_{b}}{N_{o}}\right)_{U}^{-1} + \left(\frac{E_{b}}{N_{o}}\right)_{D}^{-1}$$

Regenerative Transponders Link Budget (1)

Regenerative Transponders Link Budget (2)

• BER is specified as probability of an error on uplink (BER_U) and no error on downlink (1 – BER_D) or probability of an error on downlink (BER_D) and no error on uplink (1 – BER_U):

 $BER = BER_U(1 - BER_D) + BER_D(1 - BER_U)$

• BER_U and BER_D small compared to 1 hence:

 $BER = BER_U + BER_D$

Payload Components

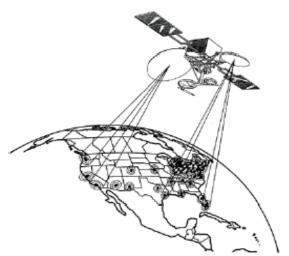
Payload Components

- Antennas
- Amplifier
- Multiplexer

Antennas

Antennas Overview

- Main functions:
 - Collect radio signals transmitted by earth stations
 - Capturing the minimum amount of noise (unwanted signals)
 - Transmit radio signals to earth stations
 - Limiting transmitted power outside specified transmit region



Antennas Beams

- Spot beams
 - Many small beams over coverage area
 - High antenna gain
 - ~39.8 dB at edge
 - Frequency reuse
 - Dynamic resource allocation => response to changing traffic density
 - · Limit coverage to specified area
- Global beams
 - Smaller antennas
 - 1.0m @ L-band compare to 11.0 m for spot beam
 - Lower antenna gain
 - ~18.5 dB at edge
 - Same traffic to all coverage areas

Typical Antennas for Satellite Communications

- Antennas used are of the radiating aperture type
 - Horn antennas
 - Reflector antennas
 - Array antennas
 - Lens antennas

Horn Antennas (1)

- Simplest types of directional antenna
- To produce wide beam coverage

 Global coverage from a satellite antenna

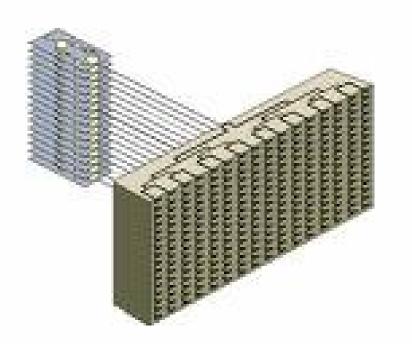
Horn Antennas (2)

- Advantages:
 - Provide significant level of directivity and gain
 - Greater level of gain, should have large aperture
- Disadvantage:
 - Small beam-width require a horn with larger aperture and greater length
 - Installation on the satellite difficult
 - Poor side lobe characteristics

Reflector Antennas (1)

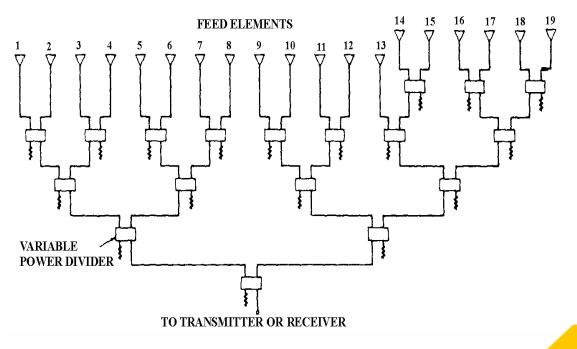
- A device that reflects electromagnetic waves
- Commonly used for spot beams
- Consist of parabolic reflector illuminated by one or more feed elements

Reflector Antennas (2)



Phased Array Antennas (1)

• Large number of radiating elements distributed over radiating aperture



Phased Array Antennas (2)

- Radiation Pattern is combination of wave amplitudes and phases from individual elements
- Used to produce multiple beams simultaneously

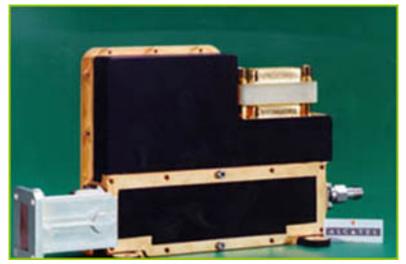
Lens Antennas

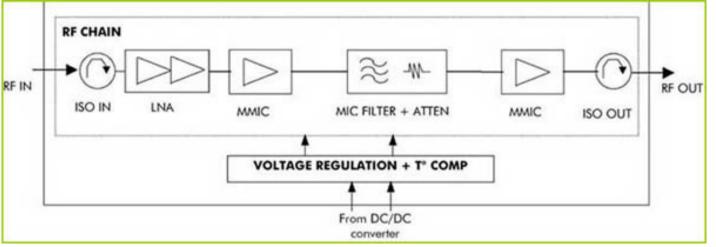
 Associate one or more radiating elements with a lens which focuses the radiated electromagnetic energy

Amplifier

Low Noise Amplifier (1)

- Amplifier across entire bandwidth of beam
- Determines noise performance of payload:
 - Recall that overall noise figure (a measure of degradation of SNR, caused by components in the RF signal chain) is given by Friis' Formula:


$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots + \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$


 Therefore first device in payload chain (LNA) is most critical for noise performance

Low Noise Amplifier (2)

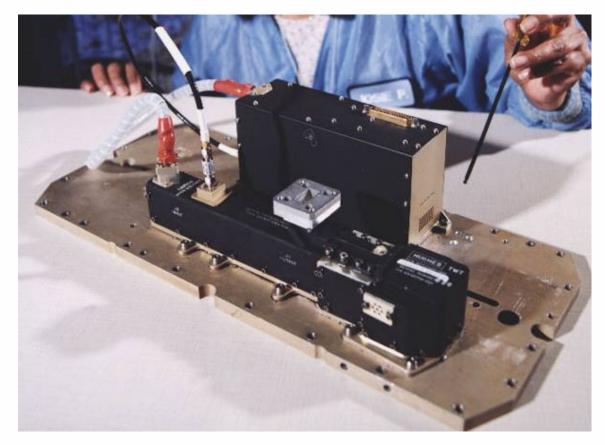
© Alcatel

High Power Amplifier (1)

- Operating Point defined by input (or output) back-off
- Value of back-off is compromise as
 - Small back-off (operation close to saturation) leads to high available output power, but high inter-modulation noise occurs as amplifier operates in highly non-linear region
 - Large back-off limits inter-modulation noise, but also reduces available output power

High Power Amplifier (2)

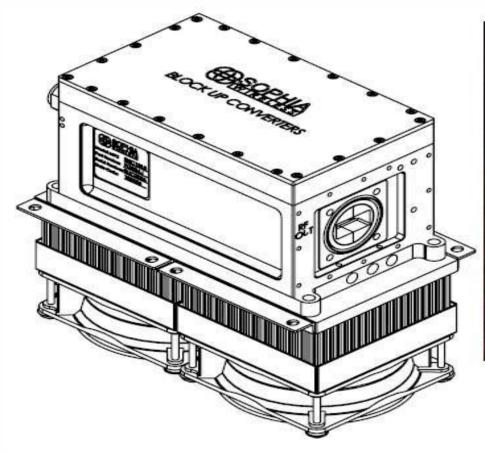
- Two types of power amplifiers used on-board satellites:
 - Travelling Wave Tube Amplifier (TWTA)
 - Transistor Solid State Power Amplifier (SSPA)


TWTA Travelling Wave Tube Amplifier (1)

- Operate by interaction between electron beam and radio wave
- At saturation, typical characteristics are:
 - Output Power : 20 200 W
 - Efficiency : 55 70%
 - Gain : around 55 dB
 - Inter-modulation $(C/N)_{IM}$: 10 12 dB (2 carriers of equal amplitude)

TWTA Travelling Wave Tube Amplifier (2)

© Boeing Satellite Systems Inc

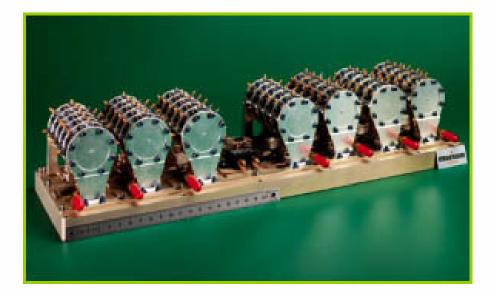

SSPA (Solid State Power Amplifier) (1)

- Use a series of FETs (Field Effect Transistor) to amplify signal
- Typical characteristics are:
 - Output power: 20 40 W
 - Efficiency: 30 45 %
 - Gain: 70 90 dB (depends on number of stages)
 - Inter-modulation $(C/N)_{IM}$: 14 18 dB (2 carriers of equal amplitude)

SSPA (Solid State Power Amplifier) (2)

© Sophia Wireless, Inc.

Multiplexer


Multiplexers

- In multi carrier system, require de-multiplexer at input of payload to separate carriers, and multiplexer at output to recombine carriers
- Both formed by a bank of bandpass filters (number of filters = number of channels)
 - Filters centred on a channel with 3dB bandwidth = bandwidth of channel

Input De-multiplexer

© Alcatel

Output Multiplexer

© Alcatel

Payload Technology

Developments in Payload Technology (1)

- Use of regenerative payloads commercially is rare:
 - Current technology locks satellite to one access scheme and one modulation scheme
 - Economic considerations
 - More expensive to develop and takes longer
 - Inherent risks from complex payload in space

Developments in Payload Technology (2)

- Reconfigurable payloads require space-hardened FPGA technology
- December 14, 2002, saw launch of Australian research satellite
 - Contains reconfigurable processor
 - Based on Xilinx FPGA chip
 - July 2003 'healed' itself of problem caused by space radiation
 - See links on Blackboard for details

Summary

Summary

- Examined two types of payload:
 - Transparent
 - Regenerative
- Investigated components of payload
 - Antenna
 - Amplifiers
 - Multiplexers

Further Reading

Further Reading

- "Satellite Communications Systems" by G. Maral & M. Bousquet:
 - Chapter 6 (Regenerative Networks)
 - Chapter 9 (Communications Payload)

Homework

Homework

- Summarise:
 - On-board Processors (OBP) Approaches
 - Narrowband approach
 - Wideband approach
 - Comparison
 - Advantages and disadvantages of OBP

