Multiple Regression Analysis (MRA)

By-Naveen Kumar Medapalli ifeed

INTRODUCTION

- Multiple regression analysis is a powerful technique used for predicting the unknown value of a variable from the known value of two or more variables.
- It also called as predictors.
- Method used for studying the relationship between a dependent variable and two or more independent variables.
- Purposes:
- Prediction
- Explanation
- Theory building
- The variable whose value is to be predicted is known as the dependent variable.
- The ones whose known values are used for prediction are known Independent (exploratory) variables.

Design Requirements:

- One dependent variable (criterion)
- Two or more independent variables (predictor variables).
- Sample size: ≤ 50 (at least 10 times as many cases as independent variables)

GENERAL EQUATION:

In general, the multiple regression equation of Y on $X_{1}, X_{2}, \ldots, X_{k}$ is given by:

Simple vs. Multiple Regression

- One dependent variable Y predicted from one independent variable X
- One regression coefficient
- \mathbf{r}^{2} : proportion of variation in dependent variable Y predictable from X
- One dependent variable Y predicted from a set of independent variables (X ı, X2Xk)
- One regression coefficient for each independent variable
- $\mathbf{R}^{\mathbf{2}}$: proportion of variation in dependent variable Y predictable by set of independent variables (X’s)

ADVANTAGE:

- Once a multiple regression equation has been constructed, one can check how good it is by examining the coefficient of determination(R2). R2 always lies between 0 and 1.
- All software provides it whenever regression procedure is run. The closer R_{2} is to 1 , the better is the model and its prediction.

ASSUMPTIONS:

- Multiple regression technique does not test whether data is linear. On the contrary, it proceeds by assuming that the relationship between the Y and each of X_{i} 's is linear. Hence as a rule, it is prudent to always look at the scatter plots of $\left(Y, X_{i}\right), i=1,2, \ldots, k$. If any plot suggests non linearity, one may use a suitable transformation to attain linearity.

$\underbrace{\text { Thank }}_{\substack{11 \\ \text { You!!! }}}$

