Quantity Survey \& Estimation

Lecture 02\&03 (final)

BAR BENDING SCHEDULE

WHAT IS BAR BENDING SCHEDULE?

Bar bending schedule commonly known as BBS is one of the most important terms in Civil Engineering. Because it plays a vital role in building construction.

Like other building materials estimation of steel is also required for constructing a building and here BBS comes with an easy solution

Bar bending schedule provides the reinforcement calculation and some other important details such as bar mark, bar diameter, bar shape, cutting length, number of bars, the weight of bar, total weight of steel etc. So that we can order the required amount of steel in advance.

HISTORY OF BAR BENDING SCHEDULE:

- Long years back when there was no• But these are now backdated (not today's bar bending schedule, certain recommendations given by Prof. BN Dutta were used for estimating steel for different components of a building.

Description	Percentage
Beam	$\mathbf{2 \%}$ of total volume of concrete
Column	$\mathbf{5 \%}$ of total volume of concrete
Slab	$\mathbf{1 \%}$ of total volume of concrete
Footing	$\mathbf{0 . 8 \%}$ of total volume of concrete

STEEL BAR SIZES

BAR SIZE DESIGNATION*	WEIGHT (LBS/FOOT)	BAR DIAMETER (INCHES)
$\# 3$	0.376	0.375
$\# 4$	0.668	0.500
$\# 5$	1.043	0.625
$\# 6$	1.502	0.750
$\# 7$	2.044	0.875
$\# 8$	2.670	1.000
$\# 9$	3.400	1.128
$\# 10$	4.303	1.270
$\# 11$	5.313	1.410
$\# 14$	7.650	1.693
$\# 18$	13.600	2.257

■®OMEEME

- The hook is the extra length left at the 4th corner of a stirrup so that the stirrup retains its shape.
- Generally, hook length is taken as 9d or 10d for one side.
- Where $\mathrm{d}=$ Diameter of the bar.

Bent length

- 3d for 135 degree bent
- 2d for 90 degree bent.

LAP LENGTH

- Lap length is the overlapping length of two bars side by side which gives required design length. In RCC structure if the length of a bar is not sufficiently available to make design length, lapping is done.

UNIT WEIGHT OF STEEL

- The weight of bar is calculated by the following formula
- $W=d^{2} L / 162$
- Where $W=$ Weight of bars.
- L = Length of bars in meter.
- $d=$ Diameter of the bar.
- The weight of bar is calculated by the following formula
- $W=d^{2} L / 52.91$
- $L=$ Length of bars in feet.

BBS OF SLAB

Solution

- Step 01 (find the No's of Main bar)
- $M B$ are in the direction of $6 m$

$$
M B=(\text { Length } / \text { spacing })+1=6 \mathrm{~m} / 0.15 \mathrm{~m}+1=\underline{41 \mathrm{No} \text { 's }}
$$

- Step 02 (find the No's of distribution bar)
- DB are in the direction of 4 m
$D B=($ length $/$ spacing $)+1=4 \mathrm{~m} / 0.15 \mathrm{~m}+1=\underline{\mathbf{2 8}} \mathbf{N o}$'s
- Step 03 (Total length of MB \& DB)

$$
\begin{aligned}
& M B=41 \times 4 \mathrm{~m}=164 \mathrm{~m} \\
& D B=28 \times 6=168 \mathrm{~m}
\end{aligned}
$$

$$
\text { Total length }=164+168=\underline{332} \mathbf{m}
$$

Solution

- Step 04 (Unit weight of the steel)
weight of steel $=d^{2} / 162$

$$
=10^{2} / 162=0.61 \mathrm{~kg} / \mathrm{m}
$$

- Step 05 (Total weight of the steel used in the slab)

Total length x unit weight

$$
332 \times 0.61
$$

$202.52 \mathbf{~ k g}$ of steel is used in slab

Sr.No	Type of bar	Diameter (mm)	No.s	Length (meter)	Total length (meter)	Unit weight (kg)	Total weight	Notes
1.	MB	10 mm	41	4 m	164 m	0.61	$100 . \mathrm{kg}$	$\mathrm{d}^{2} / 162$
2.	DB	10 mm	28	6 m	168 m	0.61	102.48 kg	$\mathrm{~d}^{2} / 162$

2\% to 5% wastage shall be added
332 m
0.61

205 kg

BBS OF COLUMN FOOTING

Solution

- Step 01 (find the Effective length)

Eff. Length (\mathbf{x}) = length - both side covers

$$
=2000-2 x 50=1900 \mathrm{~mm}
$$

Eff. Length $(y)=1500-2 \times 50=1400 \mathrm{~mm}$

- Step 02 (find the No's of bar)

No of bars $(x)=$ Eff. Length $/$ spacing +1

$$
=(1400 / 150)+1=10 \text { No.s }
$$

No of bars $(y)=$ Eff. Length $/$ spacing +1

$$
=(1900 / 150)+1=14 \text { No.s }
$$

Solution

- Step 03 (find the cutting length)

$$
\begin{aligned}
\text { Along }(\mathbf{x}) & =[\text { Eff. Length }+(\text { bends })]-\text { bent deductions } \\
& =1900+2(300-50-50)-(2(2 \times 12)) \\
& =\mathbf{2 2 5 2 m m} \text { or } 2.25 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Along }(y) & =[\text { Eff. Length }+(\text { bends })]-\text { bent deductions(2d) } \\
& =1400+2(300-50-50)-(2(2 \times 12)) \\
& =1752 \mathrm{~mm} \text { or } 1.75 \mathrm{~m}
\end{aligned}
$$

Sr . no.	Type of bar	Dia (mm)	No.	Length (m)	Total length (m)	Weight $(\mathrm{Kg} / \mathrm{m})$	Total weight (Kg)	Notes
1.	(X) direction	12	10	2.25	22.5	0.89	20	$12 / 162=0.89$
2.	(Y) direction	12	14	1.75	24.5	0.89	22	$12^{2} / 162=0.89$
TOTAL							42 Kg	
Add 5\% wastage							2 Kg	
GROSS WEIGHT							44 Kg	

