Quantity Survey \& Estimation

Lecture 02

Long wall \& short wall method and single wall estimation

Quantity Survey \& Estimation is the method for finding out the quantity of various construction item and materials which are used in construction work. The required dimensions, length, breadth and depth or height, are to be taken out from the drawings i.e. plan, elevation and sections.

Brick wall foundation section

GENERAL TERMINOLOGIES

- Ground level

it is at the same level as the ground, natural ground level.

- Plinth level

Plinth is constructed above the ground level. Plinth is line which differentiates the substructure and superstructure. In simple the Plinth is the bottom portion of superstructure and above from the ground level.

GENERAL TERMINOLOGIES

- Sub structure

The substructure is the lower part of a building which is constructed below the ground level. The function of substructure is the transfer of loads from the superstructure to the underlying soil. So, the substructure is in direct contact with supporting soil. Substructure involves footing and plinth of a building.

- Super structure

The superstructure is the portion of a building which is constructed above the ground level and it serves the purpose of structure's intended use. It includes columns, beams, slab upwards including all finishes, door and window schedules, flooring, roofing, lintels, and parapets.

METHODS

Long wall and short wall method

Centre line method

Here we are going to discuss long wall and short wall cost estimation method.

Long Wall and Short Wall Method

For finding out the length of long wall \& short wall, simply add/subtract centre length of wall to the two times half breadth on one side of the wall.

- Length of Long Wall =Length of wall + Half Breadth on One Side + Half Breadth on the Other Side= Center to Center Length of wall .

Center to Center Length of wall + One Breadth

- Length of short Wall $=$ Length of wall + Half Breadth on One Side + Half Breadth on the Other Side= Center to Center Length of wall Center to Center Length of wall -One Breadth

Calculate the given wall section with help of long wall and short wall method.

Example of long wall and short wall method

Using the above image, you can first find the length of long wall and short wall. Centre to Centre length of long wall $=5+(1 / 2 \times 0.30)+(1 / 2 \times 0.30)=5.30 \mathrm{~m}$ Centre to Centre length of short wall $=4+(1 / 2 \times 0.30)+(1 / 2 \times 0.30)=4.30 \mathrm{~m}$

- After finding out the length of the long wall and short wall, now find the quantity of the various items which are used in construction.

Details of Measurement and Calculation of Quantities							
Sr no.	Item Description	No	Length	Breadth	Height/Depth	Quantity	Note
01	Excavation in Foundation						
	Long walls	2	6.20 m	0.90 m	0.90 m	10.04	Length $=5.30+0.90=6.20 \mathrm{~m}$
	Short walls	2	3.40 m	0.90 m	0.90 m	5.51	Breadth $=4.30-0.90=3.40 \mathrm{~m}$
					Total	15.55 Cumt	
02	Concrete in Foundation						
	Long walls	2	6.20 m	0.90 m	0.30 m	3.35	Length $=5.30+0.90=6.20 \mathrm{~m}$
	Short walls	2	3.40 m	0.90 m	0.30 m	1.84	Breadth $=4.30-0.90=3.40 \mathrm{~m}$
					Total	5.18 Cumt	
03	Brickwork in Foundation and Plinth						
	Long walls						
	1 st footing	2	5.90 m	0.60 m	0.30 m	2.12	Length $=5.30+0.60=5.90 \mathrm{~m}$
	2 nd footing	2	5.80 m	0.50 m	0.30 m	1.74	Length $=5.30+0.50=5.80 \mathrm{~m}$
	Plinth walls	2	5.70 m	0.40 m	0.60 m	2.74	Length $=5.30+0.40=5.70 \mathrm{~m}$
	Short walls						
	1 st footing	2	3.70 m	0.60 m	0.30 m	1.33	Length $=4.30-0.60=3.70 \mathrm{~m}$
	2 nd footing	2	3.80 m	0.50 m	0.30 m	1.14	Length $=4.30-0.50=3.80 \mathrm{~m}$
	Plinth walls	2	3.90 m	0.40 m	0.60 m	1.87	Length $=4.30-0.40=3.90 \mathrm{~m}$
					Total	10.94 Cumt	
04	Brickwork in Superstructure						
	Long walls	2	5.60 m	0.30 m	3.50 m	11.76	Length $=5.30+0.30=5.60 \mathrm{~m}$
	Short walls	2	4.00 m	0.30 m	3.50 m	8.40	Length $=4.30-0.30=4.00 \mathrm{~m}$
					Total	20.16 Cumt	

SINGLE WALL QUANTITIES ESTIMATION

Calculate the quantities of earthwork, concrete work, brick work , damp proof course, cement plaster and white wash for the given wall as shown the length of the wall is 600 cm and height is 100 cm ? (1 meter is equal to 100 cm)

REQUIRED

We are asked to workout.

 1) Earth work. 2) Concrete work. 3) Brick work. 4) Damp proof course. 5) Cement plaster toosp pliman tectio 6) White washing.

Description	No	L	B	H/D	Q	Remarks	
Earthwork (excavation)	1	6.40	0.70	0.50 $(0.20+0.30)$	$2.24 \mathrm{~m}^{3}$	Excavation length $\begin{aligned} 6 & +(0.70-0.3) \\ & =6.40 \mathrm{~m} \end{aligned}$	
PCC (1:4:8)	1	6.40	0.70	0.30	$1.344 \mathrm{~m}^{3}$		$30 \mathrm{~cm} \left\lvert\, \begin{aligned} & H=100 \\ & L=600 \end{aligned}\right.$
Brick Work 1) foundation Step\#1 Step\#2 2) Brick Work in Super structure	1	$\begin{aligned} & 6.20 \\ & 6.10 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.62 \mathrm{~m}^{3} \\ & 1.464 \mathrm{~m}^{3} \end{aligned}$	Step\#1 length $\begin{aligned} 6 & +(0.50-0.3) \\ & =6.20 \mathrm{~m} \end{aligned}$ Step\#2 length $\begin{gathered} 6+(0.40-0.3) \\ =6.10 \mathrm{~m} \end{gathered}$	
							G.Lstep\#2
Super structure Total brick work	1	6.00	0.30	1.00	$3.884 \mathrm{~m}^{3}$		50 cm brick step\#1 20 PCC (1:4:8) 30
DPC (1:2:4)	1	6.00	0.30	****	$1.80 \mathrm{~m}^{2}$		70 cm

Description	No	L	B	H/D	Q	Remarks	
Earthwork (excavation)					$2.24 \mathrm{~m}^{3}$		
PCC (1:4:8)					$1.344 \mathrm{~m}^{3}$		\square
Brick Work					3.884 m 3		$H=100$
DPC (1:2:4)					$1.80 \mathrm{~m}^{2}$		30 cm Brick L $=600$
Plaster above P.L	2	6.00	*....	1.04	$12.48 \mathrm{~m}^{2}$	Height of plaster $\begin{aligned} & =1+0.04 \\ & =1.04 \mathrm{~m} \end{aligned}$	
White washing	As plaster work						$\begin{array}{c\|c\|c} \text { G.L } & \begin{array}{c} 40 \mathrm{~cm} \text { brick } \\ \text { step\#2 } \end{array} & 60 \\ \hline \end{array}$

Suppose we are asked to determine number of bricks, Cement and Sand from the given brick wall, if brick size is $9 \times 4.5 \times 3$ inches and mortar is 25% of wall. ???

9" thick wall

Suppose we are asked to determine number of bricks, Cement and Sand from the given brick wall, if brick size is $9 \times 4.5 \times 3$ inches and mortar is 25% of wall. ???

Solution :

Total brick work $=$ Length \times height \times thickness of the wall
Total brick work $=30 \times 15 \times 0.75$
Total brick work $=337.5 \mathrm{Cft}$
Deduction for the mortar:
Volume of mortar $=\frac{25 \%}{100} \times 337.5=84.375 \mathrm{Cft}$
Net brick work $=$ Total brick work - volume of mortar

9" thick wall

Net brick work $=337.5-84.375$
Net brick work $=253.125 \mathrm{Cft}$

Suppose we are asked to determine number of bricks, Cement and Sand from the given brick wall, if brick size is $9 \times 4.5 \times 3$ inches and mortar is 25% of wall. ???

Solution :

Net brick work $=253.125 \mathrm{Cft}$
No of bricks $=\frac{\text { Net brick work }}{\text { volume of one brick }}$
No of bricks $=\frac{253.125}{0.75 \times 0.375 \times 0.25}=3600$ No's
Let me include 10% bricks wastage.

$$
10 \% \text { wastage }=\frac{10 \%}{100} \times 3600=360 \text { No's }
$$

Net Number of bricks $=3600+360=3960$ bricks

Suppose we are asked to determine number of bricks, Cement and Sand from the given brick wall, if brick size is $9 \times 4.5 \times 3$ inches and mortar is 25% of wall. ???

Solution :
 $9 "$ thick wall

Number of bricks $=3960$ Nos
Now Cement and Sand = ?
Volume of mortar $=\frac{25 \%}{100} \times 337.5=84.375 \mathrm{Cft}$
Sum of ratio $=1+3=4$
Cement $=\frac{1 \times 84.375 \times 1.27}{4}=\frac{26.789 \mathrm{cft}}{1.25}=21.43$ bags

Sand $=26.789 \times 3=80.367 \mathrm{Cft}$

Number of bricks $=3960$ Nos
Cement $=21.5$ bags
Sand $=80.367 \mathrm{Cft}$

THE END

