State spec mated 1
i) For MIMO systems representation ii) Linear non linear time valiant.
$\{$ A poke is always an eigenvalue but not the otter way sound. In ti, a zero can cancel out a pole so that not all e. values occur in $t . f$ as poler?
Lineat.i, $\left.\left.\quad \dot{x}(t) A x^{t} t\right) \quad B_{1} / f\right)$

Cone Cation blu ti andes

$$
\begin{aligned}
s X(s)-x(0) & =A X(s)+B U(s) \rightarrow(i) \\
Y(s) & =C X(s)+D U(s) \rightarrow(i)
\end{aligned}
$$

Take

$$
\begin{gathered}
s X(s)=A X(s)+B U(s) \\
s X(s)-A X(s)=B U(s) \\
(s I-A) X(s)=B U(s) \\
X(s)=(s I-A)^{-1} B U(s)
\end{gathered}
$$

Put in (i)

$$
Y(s)=\left[C(S I-A)^{-1} B+D\right] U(s)
$$

$$
\begin{aligned}
G(s) & =Y(s) / U(s) \\
& =\frac{\left.C(s I-A)^{-1} B+D\right] U(s)}{U(s)} \\
G(s) & =C(s I-A)^{-1} B+D
\end{aligned}
$$

$$
\begin{aligned}
& Q \quad\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] u \\
& \text { Sole. } C(s)=C(S I-A)^{-1} B+D \\
& \left.=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
S & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+[0 \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+[0] \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s & -1 \\
2 & s+3
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \frac{1}{s(s+3)+2} \times\left[\begin{array}{cc}
s+3 & +1 \\
-2 & s
\end{array}\right]\left[\begin{array}{c}
0 \\
1
\end{array}\right] \\
& =\frac{1}{s^{2}+3 s+2}\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
s
\end{array}\right] \\
& =\frac{1}{s^{2}+3 s+2} \times[1] \\
& G(s)=\frac{1}{s^{2}+3 s+2} \\
& \text { [mum, den }]=\operatorname{ss} 2 t f(A, B, C, D) \\
& {[A, B, C, D]=-[2 \text { ss (mum, den) }}
\end{aligned}
$$

State val \rightarrow The smallest set of variables that Completely determine the state of system that condetitl vector having n number of set var bis that completely determine dynamic behoof system

