Lecture # 11 Discrete Structure

Ordered Pair

- An ordered pair (a, b) consists of two elements a and b
- a is the first element and b is the second element
- Ordered pairs (a, b) and (c, d) are equal iff a = c and b = d
- (a, b) and (b, a) are not equal unless a = b

Example: Find x and y given that (2x, x + y) = (6, 2)

Solution: Ordered pairs are equal iff the corresponding components are equal. Hence, we obtain the equations:

$$2x = 6$$
(1)

and x + y = 2(2)

Solving equation (1) we get x = 3

Substituted x = 3 in equation (2) we get y = -1

Cartesian Product of Two Sets

- Let A and B be sets
- The Cartesian product of A and B, denoted A × B (read "A cross B")
- A × B is the set of all ordered pairs (a, b), where a is in set A and b is in set B
- Symbolically: $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$
- If set A has m elements and set B has n elements then A ×B has m × n elements i.e. |A × B| = |A| × |B| = m × n
- Cartesian Product of Two non-empty and unequal sets A and B is not commutative: A × B ≠ B × A
- $A \times \phi = \phi \times A = \phi$

Cartesian Product of Two Sets (Cont.)

Example: Let A = $\{1, 2\}$, B = $\{a, b, c\}$ then A ×B = $\{(1,a), (1,b), (1,c), (2,a), (2, b), (2, c)\}$

 $B \times A = \{(a,1), (a,2), (b, 1), (b, 2), (c, 1), (c, 2)\}$

 $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

 $B \times B = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$

Cartesian Product of More than Two Sets

- Cartesian product of sets $A_1, A_2, ..., A_n$, denoted $A_1 \times A_2 \times ... \times A_n$
- It is the set of all ordered n-tuples (a₁, a₂, ..., a_n)
- $a_1 \in A_1$, $a_2 \in A_2$,..., $a_n \in A_n$.
- Symbolically:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i, \text{ for } I = 1, 2, ..., n\}$$

Cartesian Product of More than Two Sets (Cont.)

Example: Let $A = \{1, 2\}, B = \{a, b, c\}, C = \{x, y\}, then$

 $A \times B \times C = \{(1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y), (2, a, x), (2, a, y), (2, b, x), (2, b, y), (2, c, x), (2, c, y)\}$

Also $(A \times B) \times C = \{(u, v) \mid u \in A \times B \text{ and } v \in C\}$

Now $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

and $(A \times B) \times C = \{((1, a), x), ((1, a), y), ((1, b), x), ((1, b), y), ((1, c), x), ((1, c), y), ((2, a), x), ((2, a), y), ((2, b), x), ((2, b), y), ((2, c), x), ((2, c), y) \}$

Note that $(A \times B) \times C \neq (A \times (B \times C))$

Binary Relation

- Let A and B be sets
- A binary relation R from A to B is a subset of $A \times B$
- When $(a, b) \in R$, we write a R b, means a is related to b by R
- If $(a, b) \notin R$, we write a R b, means a is not related to b by R
- If |A| = m, |B| = n, and | A × B | = m × n then the total number of relations from A to B are 2^{m × n}

Example: Let $A = \{1, 2\}, B = \{1, 2, 3\}$

Then $A \times B = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$

Let
$$R_1 = \{(1,1), (1,3), (2,2)\}$$
 $R_2 = \{(1,2), (2,1), (2,2), (2,3)\}$
 $R_3 = \{(1,1)\}$ $R_4 = A \times B$
 $R_5 = \emptyset$

All above relations are subsets of $\mathsf{A}\times\mathsf{B}$

Binary Relation (Cont.)

- Domain of a relation R from A to B is the set of all 1st elements of the ordered pairs which belong to R
- It is denoted by Dom(R)
- Symbolically: Dom (R) = $\{a \in A \mid (a, b) \in R\}$
- Range of A relation R from A to B is the set of all 2nd elements of the ordered pairs which belong to R
- It is denoted by Ran(R)
- Symbolically: $Ran(R) = \{b \in B | (a, b) \in R\}$
- Domain of a relation from A to B is a subset of A
- Range of a relation from A to B is a subset of B

Binary Relation (Cont.)

Example: Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$

Define a binary relation R from A to B as follows:

 $R = \{(a, b) \in A \times B \mid a < b\}$

Then

- a. Find the ordered pairs in R.
- b. Find the Domain and Range of R.
- c. Is 1R3, 2R2?

Solution: As A × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

- a. $R = \{(a, b) \in A \times B \mid a < b\}$ or $R = \{(1, 2), (1, 3), (2, 3)\}$
- b. $Dom(R) = \{1, 2\} and Ran(R) = \{2, 3\}$
- c. Since $(1, 3) \in \mathbb{R}$ so 1R3 but $(2, 2) \notin \mathbb{R}$ so 2R2

Binary Relation (Cont.)

Example: Find all binary relations from $A = \{0, 1\}$ to $B = \{1\}$

Solution: A × B = {(0, 1), (1, 1)}

All binary relations from A to B are:

 $R_{1} = \emptyset$ $R_{2} = \{(0, 1)\}$ $R_{3} = \{(1, 1)\}$ $R_{4} = \{(0, 1), (1, 1)\} = A \times B$

As |A| = 2 and |B| = 1 then $|A \times B| = 2 \times 1 = 2$ and the total number of relations from A to B are $2^{2 \times 1} = 4$

Relation on a Set

- A relation on a set A is a relation from A to A
- A relation on a set A is a subset of $A \times A$
- A × A is known as the universal relation
- \varnothing is known as the empty relation

Example: Let A = {1, 2, 3, 4}

Define a relation R on A as

 $(a, b) \in R$ iff a divides b {written as a | b}

Then $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$

Relation on a Set (Cont.)

Example: Define a binary relation E on the set of the integers Z, as follows: for all m, $n \in Z$, mEn \Leftrightarrow m – n is even

- a. (i) Is 0E0? (ii) Is 5E2? (iii) Is (6, 6) \in E? (iv) Is (-1, 7) \in E?
- b. Prove that for any even integer n, nEO.

Solution: $E = \{(m, n) \in Z \times Z \mid m - n \text{ is even}\}$

- a. (i) $(0, 0) \in Z \times Z$ and 0 0 = 0 is even so 0E0
 - (ii) $(5, 2) \in Z \times Z$ but 5 2 = 3 is not even so $5 \notin 2$
 - (iii) $(6, 6) \in E$ and 6 6 = 0 is an even integer
 - (iv) $(-1,7) \in E$ and (-1) 7 = -8 is an even integer
- b. For any even integer, n, we have

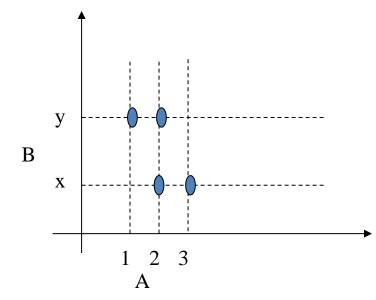
n - 0 = n, an even integer so $(n, 0) \in E$ or equivalently nE0

Graph of a Relation

- Let A = {1, 2, 3} and B = {x, y}
- Let R be a relation from A to B defined as

 $R = \{(1, y), (2, x), (2, y), (3, x)\}$

• The relation may be represented in a coordinate diagram as follows:



Graph of a Relation (Cont.)

Example: Draw the graph of the binary relation C from R to R defined as follows:

for all $(x, y) \in \mathbb{R} \times \mathbb{R}$, $(x, y) \in \mathbb{C} \Leftrightarrow x^2 + y^2 = 1$

Solution: All ordered pairs (x, y) in relation C satisfies the equation $x^2 + y^2 = 1$, which when solved for y gives

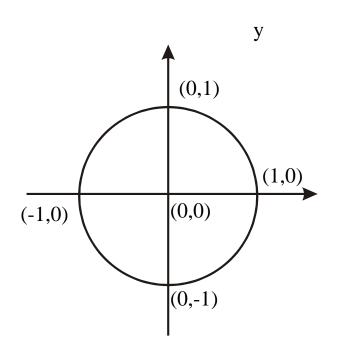
$$v = \pm \sqrt{1 - x^2}$$

Clearly y is real, whenever $-1 \le x \le 1$

Similarly x is real, whenever $-1 \le y \le 1$

Hence the graph is limited in the range $-1 \le x \le 1$ and $-1 \le y \le 1$

The graph of relation is a circle with center at (0,0) & radius 1.



Arrow Diagram of a Relation

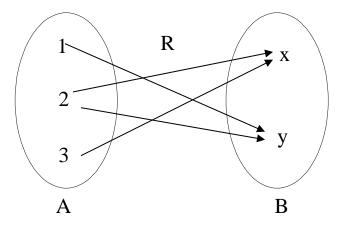
Example: Let A = $\{1, 2, 3\}$ and B = $\{x, y\}$

Let $R = \{1, y\}, (2, x), (2, y), (3, x)\}$ be a relation from A to B

The arrow diagram for above relation is given below.

We simply extend an arrow corresponding to each order pair in the relation R from the first element to the second.

For example we have an arrow from 1 to y because we have order pair (1, y) in R.



Directed Graph of a Relation

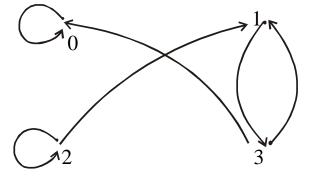
Example: Let A = {0, 1, 2, 3}

Let R = {(0, 0), (1, 3), (2, 1), (2, 2), (3, 0), (3, 1)} be a binary relation on A

The directed graph of R is obtained by representing points of A only once, and drawing an arrow from each point of A to each related point.

If a point is related to itself, a loop is drawn that extends out from the point and goes back to it.

The graph for above relation R is shown below.



Matrix Representation of a Relation

- Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$
- Let R be a relation from A to B
- Define the n × m order matrix M by

$$m(i,j) = \begin{cases} 1 \text{ if } (a_i,b_i) \in R\\ 0 \text{ if } (a_i,b_i) \notin R \end{cases}$$

for I = 1, 2,..., n and j = 1, 2,..., m

Matrix Representation of a Relation (Cont.)

Example: Let A = $\{1, 2, 3\}$ and B = $\{x, y\}$

Let $R = \{(1, y), (2, x), (2, y), (3, x)\}$ be a relation from A to B

As |A| = 3 elements and |B| = 2 elements, so it's a 3 \times 2 matrix

Write the elements of A corresponding to the 3 rows and elements of B corresponding to the 2 columns of the matrix

If the *ith* element of A is related to *jth* element of B then place 1 on *ijth* position other wise place 0.

Hence we have the following matrix representation for above relation R. r = v

$$M = 2 \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 3 \begin{bmatrix} 1 & 0 \end{bmatrix}_{3 \times 2}$$

Directed Graph and Matrix Representation

Example: For the given relation matrix M given below:

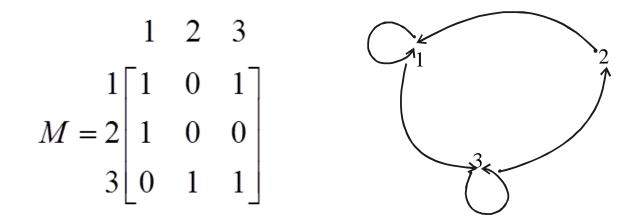
- 1. List the set of ordered pairs represented by M.
- 2. Draw the directed graph of the relation.

Solution:

1. The relation corresponding to the given Matrix is

 $\mathsf{R} = \{(1, 1), (1, 3), (2, 1), (3, 2), (3, 3)\}$

2. The directed graph is given below.



Directed Graph and Matrix Representation (Cont.)

Example: Let $A = \{2, 3, 5, 6, 8\}$

The congruence modulo 3 relation T is defined on A as follows:

for all integers m, $n \in A$, m T n $\Leftrightarrow 3 \mid (m - n)$

It means T is set ordered pairs which satisfies:

 $m \equiv n \pmod{a}$ m - n is a multiple of a or a divides m - n

- 1. Write T as a set of ordered pairs.
- 2. The directed graph representation.
- 3. The matrix representation.

Directed Graph and Matrix Representation (Cont.) Solution:

1. 2T2: 2 - 2 = 0, which is devisable by 3 i.e. 3 | 0

2T5: 2 - 5 = -3, which is divisible by 3

2T8: 2 - 8 = -6, which is divisible by 3

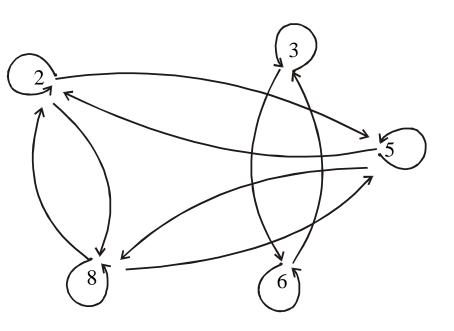
And similarly, 3T3, 3T6, 5T2, 5T5, 5T8, 6T3, 6T6, 8T2, 8T5 and 8T8

Hence

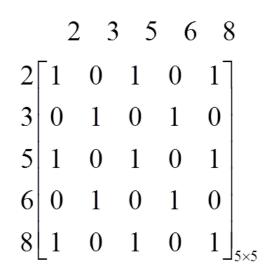
 $T = \{(2, 2), (2, 5), (2, 8), (3, 3), (3, 6), (5, 2), (5, 5), (5, 8), (6, 3), (6, 6), (8, 2), (8, 5), (8, 8)\}$

Directed Graph and Matrix Representation (Cont.)

2. Directed graph:



3. Matrix representation:



Relations and Graphs

Example: Define a binary relation S from R to R as follows:

for all $(x, y) \in \mathbb{R} \times \mathbb{R}$, $xSy \Leftrightarrow x \ge y$

- a. Is $(2, 1) \in S$? Is $(2, 2) \in S$? Is 2S3? Is (-1)S(-2)?
- b. Draw the graph of S in the Cartesian plane

Solution:

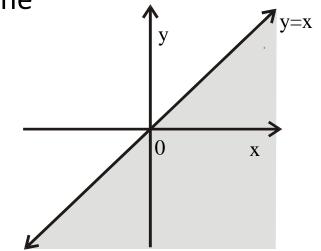
- a. $(2, 1) \in S \text{ as } 2 \ge 1$
 - (2, 2) \in S as 2 \geq 2
 - $2 S 3 as 2 \ge 3$

(-1)S(-2) as -1≥ -2

b. The graph of this relation is given in figure

 $S = \{(x, y) \in R \times R \mid \{x \ge y\}$

S consists of all points on and below the line y = x



Relations and Graphs (Cont.)

Example: Let A = {2, 4} and B = {6, 8, 10}

Let define a relations R and S from A to B as follows:

```
for all (x, y) \in A \times B, x R y \Leftrightarrow x | y
```

for all $(x, y) \in A \times B$, $x S y \Leftrightarrow y - 4 = x$

State which ordered pairs are in A \times B, R, S, R \cup S and R \cap S.

Solution:

$$A \times B = \{(2, 6), (2, 8), (2, 10), (4, 6), (4, 8), (4, 10)\}$$

$$R = \{(2, 6), (2, 8), (2, 10), (4, 8)\}$$

$$S = \{(2, 6), (4, 8)\}$$

$$R \cup S = \{(2, 6), (2, 8), (2, 10), (4, 8)\} = R$$

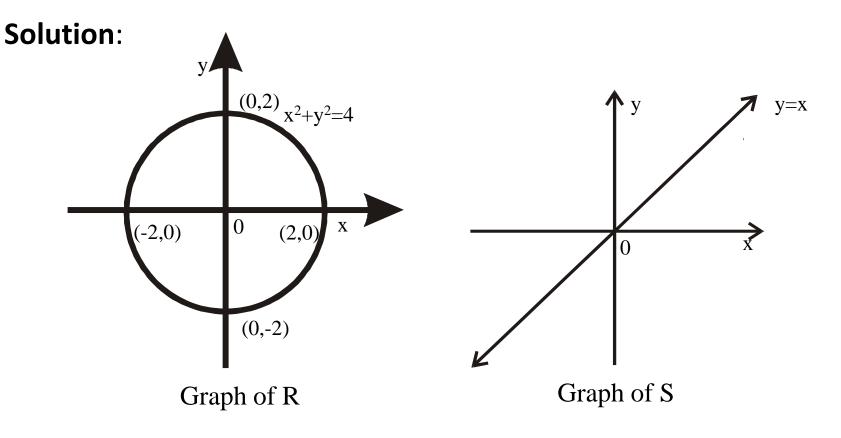
$$R \cap S = \{(2, 6), (4, 8)\} = S$$

Relations and Graphs (Cont.)

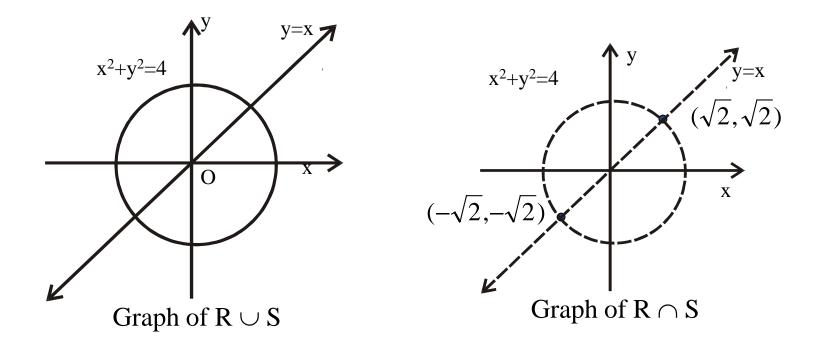
Example: Define binary relations R and S from R to R as follows:

R = {(x, y)
$$\in$$
 R × R | x² + y² = 4}and
S = {(x, y) \in R × R | x = y}

Graph R, S, R \cup S, and R \cap S in Cartesian plane.



Relations and Graphs (Cont.)



The points $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2}, -\sqrt{2})$ are common to $x^2+y^2 = 4$ & y = x