Lecture \# 11

Discrete Structure

Ordered Pair

- An ordered pair (a, b) consists of two elements a and b
- a is the first element and b is the second element
- Ordered pairs (a, b) and (c, d) are equal iff $a=c$ and $b=d$
- (a, b) and (b, a) are not equal unless $a=b$

Example: Find x and y given that $(2 x, x+y)=(6,2)$
Solution: Ordered pairs are equal iff the corresponding components are equal. Hence, we obtain the equations:
and

$$
\begin{equation*}
x+y=2 \tag{2}
\end{equation*}
$$

Solving equation (1) we get $x=3$
Substituted $x=3$ in equation (2) we get $y=-1$

Cartesian Product of Two Sets

- Let A and B be sets
- The Cartesian product of A and B, denoted $A \times B$ (read " A cross B")
- $A \times B$ is the set of all ordered pairs (a, b), where a is in set A and b is in set B
- Symbolically: $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$
- If set A has m elements and set B has n elements then $A \times B$ has $m \times n$ elements i.e. $|A \times B|=|A| \times|B|=m \times n$
- Cartesian Product of Two non-empty and unequal sets A and B is not commutative: $A \times B \neq B \times A$
- $\mathrm{A} \times \phi=\phi \times \mathrm{A}=\phi$

Cartesian Product of Two Sets (Cont.)

Example: Let $A=\{1,2\}, B=\{a, b, c\}$ then

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\} \\
& B \times A=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\} \\
& A \times A=\{(1,1),(1,2),(2,1),(2,2)\} \\
& B \times B=\{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c)\}
\end{aligned}
$$

Cartesian Product of More than Two Sets

- Cartesian product of sets $A_{1}, A_{2}, \ldots, A_{n}$, denoted $A_{1} \times A_{2} \times \ldots \times A_{n}$
- It is the set of all ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- $a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}$.
- Symbolically:

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}, \text { for } I=1,2, \ldots, n\right\}
$$

Cartesian Product of More than Two Sets (Cont.)

Example: Let $A=\{1,2\}, B=\{a, b, c\}, C=\{x, y\}$, then
$A \times B \times C=\{(1, a, x),(1, a, y),(1, b, x),(1, b, y),(1, c, x),(1, c, y)$, $(2, a, x),(2, a, y),(2, b, x),(2, b, y),(2, c, x),(2, c, y)\}$

Also $(A \times B) \times C=\{(u, v) \mid u \in A \times B$ and $v \in C\}$
Now $A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$
and $(A \times B) \times C=\{((1, a), x),((1, a), y),((1, b), x),((1, b), y)$, $((1, c), x),((1, c), y),((2, a), x),((2, a), y),((2, b), x),((2, b), y)$, $((2, c), x),((2, c), y)\}$

Note that $(A \times B) \times C \neq(A \times(B \times C)$

Binary Relation

- Let A and B be sets
- A binary relation R from A to B is a subset of $A \times B$
- When $(a, b) \in R$, we write a $R b$, means a is related to b by R
- If $(a, b) \notin R$, we write $a \mid R b$, means a is not related to b by R
- If $|\mathrm{A}|=m,|\mathrm{~B}|=n$, and $|\mathrm{A} \times \mathrm{B}|=m \times n$ then the total number of relations from A to B are $2^{m \times n}$

Example: Let $A=\{1,2\}, \quad B=\{1,2,3\}$
Then $A \times B=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$
Let $\quad R_{1}=\{(1,1),(1,3),(2,2)\} \quad R_{2}=\{(1,2),(2,1),(2,2),(2,3)\}$

$$
R_{3}=\{(1,1)\} \quad R_{4}=A \times B
$$

$$
R_{5}=\varnothing
$$

All above relations are subsets of $A \times B$

Binary Relation (Cont.)

- Domain of a relation R from A to B is the set of all 1st elements of the ordered pairs which belong to R
- It is denoted by $\operatorname{Dom}(\mathrm{R})$
- Symbolically: $\quad \operatorname{Dom}(R)=\{a \in A \mid(a, b) \in R\}$
- Range of A relation R from A to B is the set of all 2 nd elements of the ordered pairs which belong to R
- It is denoted by $\operatorname{Ran}(\mathrm{R})$
- Symbolically:

$$
\operatorname{Ran}(R)=\{b \in B \mid(a, b) \in R\}
$$

- Domain of a relation from A to B is a subset of A
- Range of a relation from A to B is a subset of B

Binary Relation (Cont.)

Example: Let $A=\{1,2\}$ and $B=\{1,2,3\}$
Define a binary relation R from A to B as follows:

$$
R=\{(a, b) \in A \times B \mid a<b\}
$$

Then
a. Find the ordered pairs in R.
b. Find the Domain and Range of R.
c. Is $1 \mathrm{R} 3,2 \mathrm{R} 2$?

Solution: As $A \times B=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$
a. $R=\{(a, b) \in A \times B \mid a<b\} \quad$ or $R=\{(1,2),(1,3),(2,3)\}$
b. $\operatorname{Dom}(R)=\{1,2\}$ and $\operatorname{Ran}(R)=\{2,3\}$
c. Since $(1,3) \in R$ so $1 R 3$ but $(2,2) \notin R$ so $2 R 2$

Binary Relation (Cont.)

Example: Find all binary relations from $A=\{0,1\}$ to $B=\{1\}$
Solution: $A \times B=\{(0,1),(1,1)\}$
All binary relations from A to B are:
$\mathrm{R}_{1}=\varnothing$
$R_{2}=\{(0,1)\}$
$R_{3}=\{(1,1)\}$
$\mathrm{R}_{4}=\{(0,1),(1,1)\}=\mathrm{A} \times \mathrm{B}$
As $|A|=2$ and $|B|=1$ then $|A \times B|=2 \times 1=2$ and the total number of relations from A to B are $2^{2 \times 1}=4$

Relation on a Set

- A relation on a set A is a relation from A to A
- A relation on a set A is a subset of $A \times A$
- $A \times A$ is known as the universal relation
- \varnothing is known as the empty relation

Example: Let $A=\{1,2,3,4\}$
Define a relation R on A as
$(a, b) \in R$ iff a divides $b\{$ written as $a \mid b\}$
Then $R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Relation on a Set (Cont.)

Example: Define a binary relation E on the set of the integers Z, as follows: for all $m, n \in Z, m E n \Leftrightarrow m-n$ is even
a. (i) Is OEO?
(ii) Is 5E2?
(iii) Is $(6,6) \in E$?
(iv) Is $(-1,7) \in E$?
b. Prove that for any even integer $n, n E O$.

Solution: $E=\{(m, n) \in Z \times Z \mid m-n$ is even $\}$
a. (i) $(0,0) \in Z \times Z$ and $0-0=0$ is even so $0 E O$
(ii) $(5,2) \in Z \times Z$ but $5-2=3$ is not even so $5 \notin 2$
(iii) $(6,6) \in E$ and $6-6=0$ is an even integer
(iv) $(-1,7) \in E$ and $(-1)-7=-8$ is an even integer
b. For any even integer, n, we have

$$
\begin{array}{ll}
n-0=n, & \text { an even integer } \\
\text { so }(n, 0) \in E & \text { or equivalently } n E 0
\end{array}
$$

Graph of a Relation

- Let $A=\{1,2,3\}$ and $B=\{x, y\}$
- Let R be a relation from A to B defined as

$$
R=\{(1, y),(2, x),(2, y),(3, x)\}
$$

- The relation may be represented in a coordinate diagram as follows:

Graph of a Relation (Cont.)

Example: Draw the graph of the binary relation C from R to R defined as follows:

$$
\text { for all }(x, y) \in R \times R, \quad(x, y) \in C \Leftrightarrow x^{2}+y^{2}=1
$$

Solution: All ordered pairs (x, y) in relation C satisfies the equation x^{2} $+y^{2}=1$, which when solved for y gives

$$
y= \pm \sqrt{1-x^{2}}
$$

Clearly y is real, whenever $-1 \leq \mathrm{x} \leq 1$
Similarly x is real, whenever $-1 \leq \mathrm{y} \leq 1$ Hence the graph is limited in the range $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$

The graph of relation is a circle with center at $(0,0) \&$ radius 1.

Arrow Diagram of a Relation

Example: Let $A=\{1,2,3\}$ and $B=\{x, y\}$

$$
\text { Let } R=\{1, y),(2, x),(2, y),(3, x)\} \text { be a relation from } A \text { to } B
$$

The arrow diagram for above relation is given below.
We simply extend an arrow corresponding to each order pair in the relation R from the first element to the second.

For example we have an arrow from 1 to y because we have order pair $(1, y)$ in R.

Directed Graph of a Relation

Example: Let $A=\{0,1,2,3\}$
Let $R=\{(0,0),(1,3),(2,1),(2,2),(3,0),(3,1)\}$ be a binary relation on A

The directed graph of R is obtained by representing points of A only once, and drawing an arrow from each point of A to each related point.

If a point is related to itself, a loop is drawn that extends out from the point and goes back to it.

The graph for above relation R is shown below.

Matrix Representation of a Relation

- Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$
- Let R be a relation from A to B
- Define the $\mathrm{n} \times \mathrm{m}$ order matrix M by

$$
m(i, j)=\left\{\begin{array}{l}
1 \text { if }\left(a_{i}, b_{i}\right) \in R \\
0 \text { if }\left(a_{i}, b_{i}\right) \notin R
\end{array}\right.
$$

for $\quad l=1,2, \ldots, n \quad$ and $\quad j=1,2, \ldots, m$

Matrix Representation of a Relation (Cont.)

Example: Let $A=\{1,2,3\}$ and $B=\{x, y\}$
Let $R=\{(1, y),(2, x),(2, y),(3, x)\}$ be a relation from A to B
As $|A|=3$ elements and $|B|=2$ elements, so it's a 3×2 matrix
Write the elements of A corresponding to the 3 rows and elements of B corresponding to the 2 columns of the matrix

If the ith element of A is related to j th element of B then place 1 on ijth position other wise place 0.

Hence we have the following matrix representation for above relation R .

$$
\left.\left.M=\begin{array}{cc}
x & y \\
1 \\
2 \\
3
\end{array} \begin{array}{c}
0 \\
1 \\
1
\end{array}\right]\right]_{3 \times 2}
$$

Directed Graph and Matrix Representation

Example: For the given relation matrix M given below:

1. List the set of ordered pairs represented by M .
2. Draw the directed graph of the relation.

Solution:

1. The relation corresponding to the given Matrix is

$$
R=\{(1,1),(1,3),(2,1),(3,2),(3,3)\}
$$

2. The directed graph is given below.

$$
\left.M=\begin{array}{c}
1 \\
1 \\
1
\end{array} \begin{array}{lll}
1 & 2 & 3 \\
3 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Directed Graph and Matrix Representation (Cont.)

Example: Let A = $\{2,3,5,6,8\}$
The congruence modulo 3 relation T is defined on A as follows:
for all integers $\mathrm{m}, \mathrm{n} \in \mathrm{A}, \mathrm{mTn} \Leftrightarrow 3 \mid(\mathrm{m}-\mathrm{n})$
It means T is set ordered pairs which satisfies:
$m \equiv n$ (modulo a) $\quad m-n$ is a multiple of a or a divides $m-n$

1. Write T as a set of ordered pairs.
2. The directed graph representation.
3. The matrix representation.

Directed Graph and Matrix Representation (Cont.)

Solution:

1. 2T2: $2-2=0$, which is devisable by 3 i.e. $3 \mid 0$

2T5: $2-5=-3$, which is divisible by 3
2T8: $2-8=-6$, which is divisible by 3
And similarly, 3T3, 3T6, 5T2, 5T5, 5T8, 6T3, 6T6, 8T2, $8 T 5$ and $8 T 8$ Hence
$T=\{(2,2),(2,5),(2,8),(3,3),(3,6),(5,2),(5,5),(5,8),(6,3),(6,6)$, $(8,2),(8,5),(8,8)\}$

Directed Graph and Matrix Representation (Cont.)

2. Directed graph:

3. Matrix representation:

$$
\begin{aligned}
& \begin{array}{lllll}
2 & 3 & 5 & 6 & 8
\end{array} \\
& \begin{array}{c}
2 \\
3 \\
5 \\
5 \\
8
\end{array}\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]_{5 \times 5}
\end{aligned}
$$

Relations and Graphs

Example: Define a binary relation S from R to R as follows:

$$
\text { for all }(x, y) \in R \times R, x S y \Leftrightarrow x \geq y
$$

a. Is $(2,1) \in S$? Is $(2,2) \in S$? Is $2 S 3$? Is $(-1) S(-2)$?
b. Draw the graph of S in the Cartesian plane

Solution:
a. $(2,1) \in S$ as $2 \geq 1$
$(2,2) \in S$ as $2 \geq 2$
2 S 3 as $2 \geq 3$
$(-1) S(-2)$ as $-1 \geq-2$

b. The graph of this relation is given in figure

$$
S=\{(x, y) \in R \times R \mid\{x \geq y\}
$$

S consists of all points on and below the line $y=x$

Relations and Graphs (Cont.)

Example: Let $A=\{2,4\}$ and $B=\{6,8,10\}$
Let define a relations R and S from A to B as follows:
for all $(x, y) \in A \times B, \quad x R y \Leftrightarrow x \mid y$
for all $(x, y) \in A \times B, \quad x S y \Leftrightarrow y-4=x$
State which ordered pairs are in $A \times B, R, S, R \cup S$ and $R \cap S$.
Solution:

$$
\begin{aligned}
A \times B & =\{(2,6),(2,8),(2,10),(4,6),(4,8),(4,10)\} \\
R & =\{(2,6),(2,8),(2,10),(4,8)\} \\
S & =\{(2,6),(4,8)\} \\
R \cup S & =\{(2,6),(2,8),(2,10),(4,8)\}=R \\
R \cap S & =\{(2,6),(4,8)\}=S
\end{aligned}
$$

Relations and Graphs (Cont.)

Example: Define binary relations R and S from R to R as follows:

$$
\begin{aligned}
& R=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}=4\right\} \text { and } \\
& S=\{(x, y) \in R \times R \mid x=y\}
\end{aligned}
$$

Graph $R, S, R \cup S$, and $R \cap S$ in Cartesian plane.
Solution:

Graph of R

Graph of S

Relations and Graphs (Cont.)

Graph of $\mathrm{R} \cup \mathrm{S}$

Graph of $\mathrm{R} \cap \mathrm{S}$

The points $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2},-\sqrt{2})$ are common to $x^{2}+y^{2}=4 \& y=x$

