
 
 

Lecture # 11 
Discrete Structure 



Ordered Pair 
• An ordered pair (a, b) consists of two elements a and b  

• a is the first element and b is the second element 

• Ordered pairs (a, b) and (c, d) are equal iff a = c and b = d 

• (a, b) and (b, a) are not equal unless a = b 

Example: Find x and y given that (2x, x + y) = (6, 2) 

Solution: Ordered pairs are equal iff the corresponding components 
are equal. Hence, we obtain the equations: 

      2x = 6 ………………(1) 

and  x + y = 2 ….…………..(2) 

Solving equation (1) we get x = 3 

Substituted x = 3 in equation (2) we get y = -1 

 



Cartesian Product of Two Sets 

• Let A and B be sets 

• The Cartesian product of A and B, denoted A × B (read “A cross 
B”)  

• A × B is the set of all ordered pairs (a, b), where a is in set A and b 
is in set B 

• Symbolically: A ×B = {(a, b)| a ∈ A and b ∈ B} 

• If set A has m elements and set B has n elements then A ×B has  
m × n elements i.e. |A × B| = |A| × |B| = m × n 

• Cartesian Product of Two non-empty and unequal sets A and B is 
not commutative: A × B ≠ B × A 

• A × φ = φ × A = φ 

 

 



Cartesian Product of Two Sets (Cont.) 

Example: Let A = {1, 2}, B = {a, b, c} then 

 A ×B = {(1,a), (1,b), (1,c), (2,a), (2, b), (2, c)} 

 B ×A = {(a,1), (a,2), (b, 1), (b, 2), (c, 1), (c, 2)} 

 A ×A = {(1, 1), (1,2), (2, 1), (2, 2)} 

 B ×B = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b),(c, c)} 

 



Cartesian Product of More than Two Sets 

• Cartesian product of sets A1, A2, …, An, denoted A1× A2 × … ×An 

• It is the set of all ordered n-tuples (a1, a2, …, an)  

• a1 ∈ A1, a2 ∈ A2,…, an ∈ An. 

• Symbolically: 

 A1× A2 × … × An = {(a1, a2, …, an) | ai ∈ Ai, for I = 1, 2, …, n} 

 



Cartesian Product of More than Two Sets (Cont.) 

Example: Let A = {1, 2}, B = {a, b, c}, C = {x, y}, then 

A × B × C = {(1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y),        
   (2, a, x), (2, a, y), (2, b, x), (2, b, y), (2, c, x), (2, c, y) }   

Also (A × B) × C = {(u, v) | u ∈ A × B and v ∈ C} 

Now A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)} 

and (A × B) × C ={((1, a), x), ((1, a), y), ((1, b), x) ,((1, b), y),  
 ((1, c), x), ((1, c), y), ((2, a), x),((2, a), y), ((2, b), x), ((2, b), y),              
 ((2, c), x), ((2, c), y) } 

Note that (A × B) × C ≠  (A × ( B × C)  

 



Binary Relation 
• Let A and B be sets 

• A binary relation R from A to B is a subset of A × B 

• When (a, b) ∈R, we write a R b, means a is related to b by R 

• If (a, b) ∉ R, we write a R b, means a is not related to b by R 

• If |A| = m, |B| = n, and | A × B | = m × n then the total number of 
relations from A to B are 2m × n 

Example: Let A = {1, 2}, B = {1, 2, 3} 

Then A × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} 

Let R1={(1,1), (1, 3), (2, 2)} R2={(1, 2), (2, 1), (2, 2), (2, 3)} 

 R3={(1, 1)}   R4= A × B   

 R5= ∅    

All above relations are subsets of A × B 

 



Binary Relation (Cont.) 

• Domain of a relation R from A to B is the set of all 1st elements of 
the ordered pairs which belong to R  

• It is denoted by Dom(R) 

• Symbolically: Dom (R) = {a ∈A| (a, b) ∈ R} 

• Range of A relation R from A to B is the set of all 2nd elements of 
the ordered pairs which belong to R  

• It is denoted by Ran(R) 

• Symbolically:  Ran(R) = {b ∈B|(a, b) ∈ R} 

• Domain of a relation from A to B is a subset of A 

• Range of a relation from A to B is a subset of B 

 



Binary Relation (Cont.) 
Example: Let A = {1, 2} and B = {1, 2, 3} 

Define a binary relation R from A to B as follows: 

  R = {(a, b) ∈A × B | a < b} 

Then 

a. Find the ordered pairs in R. 

b. Find the Domain and Range of R. 

c. Is 1R3, 2R2? 

Solution: As A × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} 

a. R = {(a, b) ∈A × B | a < b}  or R = {(1, 2), (1, 3), (2, 3)} 

b.   Dom(R) = {1, 2} and Ran(R) = {2, 3} 

c. Since (1, 3) ∈R so 1R3 but (2, 2) ∉R so 2R2 



Binary Relation (Cont.) 
Example: Find all binary relations from A = {0, 1} to B = {1} 

Solution: A × B = {(0, 1), (1, 1)} 

All binary relations from A to B are: 

R1 = ∅ 

R2 = {(0, 1)} 

R3 = {(1, 1)} 

R4 = {(0, 1), (1, 1)} = A × B 

As |A| = 2 and |B| = 1 then | A × B | = 2 × 1 = 2 and the total 
number of relations from A to B are 22 × 1 = 4 



Relation on a Set 

• A relation on a set A is a relation from A to A 

• A relation on a set A is a subset of A × A 

• A × A is known as the universal relation 

• ∅ is known as the empty relation 

Example: Let A = {1, 2, 3, 4} 

Define a relation R on A as 

(a, b) ∈ R iff a divides b {written as a | b}  

Then R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 



Relation on a Set (Cont.) 
Example: Define a binary relation E on the set of the integers Z, as 
follows: for all m, n ∈ Z, mEn ⇔ m – n is even 

a. (i) Is 0E0? (ii) Is 5E2? (iii) Is (6, 6) ∈ E? (iv) Is (-1, 7) ∈ E? 

b. Prove that for any even integer n, nE0. 

Solution: E = {(m, n) ∈ Z × Z | m – n is even} 

a. (i)   (0, 0) ∈ Z × Z and 0 – 0 = 0  is even so 0E0 

 (ii) (5, 2) ∈ Z × Z but 5 – 2 = 3 is not even so 5 E 2 

 (iii) (6, 6) ∈ E and 6 – 6 = 0  is an even integer 

 (iv) (-1,7) ∈E and (-1) – 7 = -8 is an even integer 

b. For any even integer, n, we have 

 n – 0 = n, an even integer 

 so (n, 0) ∈ E  or equivalently nE0 



Graph of a Relation 

• Let A = {1, 2, 3} and B = {x, y} 

• Let R be a relation from A to B defined as  

 R = {(1, y), (2, x), (2, y), (3, x)} 

• The relation may be represented in a coordinate diagram as 
follows: 

 

x 

y 

B 

1 2 3 
A 



Graph of a Relation (Cont.) 
Example: Draw the graph of the binary relation C from R to R 
defined as follows:  

 for all (x, y) ∈R × R, (x, y) ∈C ⇔ x2 + y2 = 1 

Solution: All ordered pairs (x, y) in relation C satisfies the equation x2 

+ y2 = 1, which when solved for y gives  

 

Clearly y is real, whenever –1 ≤ x ≤ 1 

Similarly x is real, whenever –1 ≤ y ≤ 1 

Hence the graph is limited in the                                                         
range –1 ≤ x ≤ 1 and –1 ≤ y ≤ 1 

The graph of relation is a circle                                                             
with center at (0,0) & radius 1. 
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Arrow Diagram of a Relation 

Example: Let A = {1, 2, 3} and B = {x, y}  

 Let R = {1, y), (2, x), (2, y), (3, x)} be a relation from A to B  

The arrow diagram for above relation is given below. 

We simply extend an arrow corresponding to each order pair in the 
relation R from the first element to the second.  

For example we have an arrow from  1 to y because we have order 
pair (1, y) in R. 

 1 
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3 

x 
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A B 

R 



Directed Graph of a Relation 
Example: Let A = {0, 1, 2, 3}  

Let R = {(0, 0), (1, 3), (2, 1), (2, 2), (3, 0), (3, 1)}  be a binary relation 
on A 

The directed graph of R is obtained by representing points of A only 
once, and drawing an arrow from each point of A to each related 
point.  

If a point is related to itself, a loop is drawn that extends out from 
the point and goes back to it. 

The graph for above relation R is shown below. 
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Matrix Representation of a Relation 

• Let A = {a1, a2, …, an} and B = {b1, b2, …, bm} 

• Let R be a relation from A to B 

• Define the n × m order matrix M by 

 

 

 for I = 1, 2,…, n and  j = 1, 2,…, m 

 

 



Matrix Representation of a Relation (Cont.) 

Example: Let A = {1, 2, 3} and B = {x, y} 

Let R ={(1, y), (2, x), (2, y), (3, x)} be a relation from A to B  

 As |A| = 3 elements and |B| = 2 elements, so it’s a 3 ×2 matrix  

Write the elements of  A corresponding to the 3 rows and elements 
of B corresponding to the 2 columns of the matrix 

If the ith element of A is related to jth element of B then place 1 on 
ijth position other wise place 0.  

Hence we have the following matrix representation for above 
relation R. 



Directed Graph and Matrix Representation 
Example: For the given relation matrix M given below: 

1. List the set of ordered pairs represented by M. 

2. Draw the directed graph of the relation. 

Solution: 

1.  The relation corresponding to the given Matrix is 

 R = {(1, 1), (1, 3), (2, 1), (3, 2), (3, 3)} 

2. The directed graph is given below. 
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3 



Directed Graph and Matrix Representation (Cont.) 
 

 

 

 

 

 

 



Directed Graph and Matrix Representation (Cont.) 
Solution:  

1. 2T2: 2 ‒ 2 = 0, which is devisable by 3 i.e. 3|0 

 2T5: 2 ‒ 5 = -3, which is divisible by 3 

 2T8: 2 ‒ 8 = -6, which is divisible by 3 

And similarly, 3T3, 3T6, 5T2, 5T5, 5T8, 6T3, 6T6, 8T2, 8T5 and 8T8 

Hence  

T = {(2, 2), (2, 5), (2, 8), (3, 3), (3, 6), (5, 2), (5, 5), (5, 8), (6, 3),  (6, 6), 
(8, 2), (8, 5), (8, 8)} 

 



Directed Graph and Matrix Representation (Cont.) 
2. Directed graph: 

 

 

 

 

 

3. Matrix representation: 
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Relations and Graphs 
Example: Define a binary relation S from R to R as follows: 

  for all (x, y) ∈ R × R, xSy ⇔ x ≥ y 

a. Is (2, 1) ∈ S? Is (2, 2) ∈ S? Is 2S3? Is (-1)S(-2)? 

b. Draw the graph of S in the Cartesian plane 

Solution: 

a. (2, 1) ∈ S as  2 ≥ 1 

  (2, 2) ∈ S as 2 ≥ 2 

  2 S 3 as 2 ≥ 3 

  (-1)S(-2) as -1≥ -2 

b. The graph of  this relation is given in figure 

 S = {(x, y) ∈R × R | {x ≥ y} 

 S consists of all points on and below the line y = x 

x 

y=x y 

0 



Relations and Graphs (Cont.) 
Example: Let A = {2, 4} and B = {6, 8, 10}  

Let define a relations R and S from A to B as follows: 

for all (x, y) ∈A × B, x R y ⇔ x | y 

for all (x, y) ∈A × B, x S y ⇔ y – 4 = x 

State which ordered pairs are in A × B, R, S, R ∪ S and R ∩ S. 

Solution:  

A × B = {(2, 6), (2, 8), (2, 10), (4, 6), (4, 8), (4, 10)} 

        R = {(2, 6), (2, 8), (2, 10), (4, 8)} 

        S = {(2, 6), (4, 8)} 

R ∪ S = {(2, 6), (2, 8), (2, 10), (4, 8)} = R 

R ∩ S = {(2, 6), (4, 8)} = S 

 



Relations and Graphs (Cont.) 
Example: Define binary relations R and S from R to R as follows: 

 R = {(x, y) ∈R × R | x2 + y2 = 4} and 

 S = {(x, y) ∈R × R | x = y} 

Graph R, S, R ∪ S, and R ∩ S in Cartesian plane. 

Solution: 

(0,2) x2+y2=4 

x (2,0) 0 (-2,0) 

(0,-2) 

y y=x 

x 0 

Graph of R Graph of S 

y 



Relations and Graphs (Cont.) 
 

 

 

 

 

 

 

 
  
 
The points                 and                       are common to x2+y2 = 4 & y = x  
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