Iqra National University, Peshawar Department of Electrical Engineering

Final - Term Examination Summer 2020

Date:22/09/2020

Course Code:					Course Title:		Probability Methods in Engineering	
Prerequisite:					Instru	ctor	Engr. Pir Meher	Shah
Module:	3	Program:	BEE		Marks:	50	Time Allowed:	120 min

Note: Attempt all questions.
PLO: program learning outcome
C: Cognitive

Q1.	(a)	In a certain "junior" Olympics, javelin throw distances are well approximated by a gaussian distribution for which $a_{x}=30 \mathrm{~m}$, and $\sigma_{x}=5 \mathrm{~m}$. In a qualifying round, contestant must throw farther than 26 m to qualify. In the main even the record throw is 42 m . a. What is the probability of being disqualified in the qualifying round? b. In the main event what is the probability the record will be broken?	$\begin{aligned} & \text { Marks } \\ & \mathbf{6} \end{aligned}$
	(b)	The radial distance to the impact points for the shells fired over land by a cannon is well approximated as a gaussian Random Variable with $\mathrm{a}_{\mathrm{x}}=1800 \mathrm{~m}$ and $\sigma_{\mathrm{X}}=80 \mathrm{~m}$ when the cannon is aimed at a target located at 1980 m distance. a) Find the probability that the shells will fall within $\pm 68 \mathrm{~m}$ of the target. b) Find the probability that the shells will fall at distances of 2050 m or more	$\begin{aligned} & \text { Marks } \\ & \mathbf{6} \end{aligned}$
	(c)	Find a constant $\mathrm{b}>0$ so that the function $f_{x}(x)=\left\{\begin{array}{lc} \frac{e^{5 x}}{8} & 0 \leq x \leq b \\ 0 & \text { elsewhere } \end{array}\right.$ Is a valid probability density?	$\begin{aligned} & \text { Marks } \\ & \hline \mathbf{6} \\ & \hline \text { COO } \end{aligned}$
Q2	(a)	A certain large city averages 3 murders per week and their occurrence follow a Poisson Distribution. i. What is the probability that there will be 5 or more murders in a given week? ii. On average, how many weeks a year can this city expect to have no murders iii. How many weeks/year (average) can the city expect the number of murders per week equal to or exceed the average number per week	$\begin{aligned} & \hline \begin{array}{c} \text { Marks } \\ \mathbf{8} \end{array} \\ & \hline \text { CLO } \end{aligned}$
	(b)	A random variable X has the distribution function $F_{x}(x)=\sum_{n=1}^{N} \frac{n^{3}}{650} u(x-n)$ Find the following probabilities. a. $\mathrm{P}\{-\infty<\mathrm{X} \leq 6.5\}$ b. $P\{X>4\}$ c. P $\{6<\mathrm{X} \leq 9\}$	$\begin{gathered} \hline \text { Marks } \\ \mathbf{8} \end{gathered}$

	(c)	Find the Binomial Density and Distribution Function for $\mathrm{N}=5$ and $\mathrm{p}=0.25$. Also Plot their Densities and Distribution Functions.	Marks $\mathbf{6}$
Q3		CLO 2 (a) Find the Expected value of the function $\mathbf{g}(\mathbf{X})=\mathbf{X}^{\mathbf{3}}$ where X is a random $\boldsymbol{f}_{\boldsymbol{X}}(\boldsymbol{x})=\left(\frac{\mathbf{1}}{\mathbf{2}}\right) \boldsymbol{u}(\boldsymbol{x}) \boldsymbol{e}^{-\boldsymbol{x} / \mathbf{2}}$	Marks $\mathbf{6}$
(b)CLO 2 Person A, B and C each toss a fair coin in a two-step gambling game. In step 1 the person whose toss is not a match to either of the other two is "odd man out". Only the remaining two whose coins match go on to step 2 to resolve the ultimate winner. i. What is the probability you will advance to step 2 after the first toss? ii. What is the probability that person A will be out after the first toss?	Marks	CLO 2	

