

Note: Attempt all questions.

PLO: program learning outcome C: Cognitive

	r		
	(a)	In a certain "junior" Olympics, javelin throw distances are well approximated by a	Marks
		gaussian distribution for which $a_x = 30m$, and $\sigma_x = 5m$. In a qualifying round,	6
		contestant must throw farther than 26m to qualify. In the main even the record throw is	CLO 2
		42m.	
		a. What is the probability of being disqualified in the qualifying round?	
		b. In the main event what is the probability the record will be broken?	
Q1.		b. In the main event what is the producinty the record will be broken.	
	(b)	The radial distance to the impact points for the shells fired over land by a cannon is well	Marks
	(0)	approximated as a gaussian Random Variable with $a_x = 1800m$ and $\sigma_x = 80m$ when the	6
		cannon is aimed at a target located at 1980m distance.	CLO 2
		cannon is anneu at a target located at 1980in distance.	010 2
		a) Find the purchasility that the shalle will fall within ± 60 m of the torest	
		a) Find the probability that the shells will fall within ± 68 m of the target.	
		b) Find the probability that the shells will fall at distances of 2050m or more	
	(c)	Find a constant $b > 0$ so that the function	N 7 1
		$\int \frac{e^{-x}}{2} 0 < x < b$	Marks
		$f_{x}(x) = \begin{cases} \frac{e^{5x}}{8} & 0 \le x \le b\\ 0 & elsewhere \end{cases}$	6 CLO 2
		Is a valid probability density?	CLO 2
	(a)	A certain large city averages 3 murders per week and their occurrence follow a Poisson	Marks
	(u)	Distribution.	8
		i. What is the probability that there will be 5 or more murders in a given	CLO 2
		week?	
		murders	
		iii. How many weeks/year (average) can the city expect the number of	
		murders per week equal to or exceed the average number per week	
Q2	(1)		
	(b)	A random variable X has the distribution function	Marks 8
		Ν	o CLO 2
		$\sum_{n=1}^{N} n^3$	CLO 2
		$F_x(x) = \sum_{n=1}^{N} \frac{n^3}{650} u(x-n)$	
		n=1	
		Find the following probabilities.	
		a. $P\{-\infty < X \le 6.5\}$	
		b. $P\{X > 4\}$	
1	1	c. P $\{6 \le X \le 9\}$	

	(c)	Find the Binomial Density and Distribution Function for N=5 and $p = 0.25$. Also Plot their Densities and Distribution Functions.	Marks 6 CLO 2
	(a)	Find the Expected value of the function $g(X) = X^3$ where X is a random variable defined by the following density function	Marks 6 CLO 2
Q 3		$f_X(x) = \left(\frac{1}{2}\right) u(x) e^{-x/2}$	
	(b)	 Person A, B and C each toss a fair coin in a two-step gambling game. In step 1 the person whose toss is not a match to either of the other two is "odd man out". Only the remaining two whose coins match go on to step 2 to resolve the ultimate winner. i. What is the probability you will advance to step 2 after the first toss? 	Marks 4 CLO 2
		ii. What is the probability that person A will be out after the first toss?	