Department of Electrical Engineering Assignment Date: 07/05/2020

Course Details

Course Title:	Computer Communication Network	Module:	
Instructor:		Total Marks:	20

Student Details

Name:

Student ID:

Q1.	(a)	Draw a hybrid topology with a star backbone and three ring networks also simulate the topology	Marks 4
		in Opnet.	CLO 1
Q2.	(a)	Suppose a computer sends a frame to another computer on a bus topology LAN. The physical	Marks 4
		destination address of the frame is corrupted during the transmission. What happens to the frame?	CLO 1
		How can the sender be informed about the situation?	
Q3.	(a)	Suppose a computer sends a packet at the transport layer to another computer somewhere in the	Marks 4
		Internet. There is no process with the destination port address running at the destination	CLO 1
		computer. What will happen?	
Q4.	(a)	Match the following to one or more layers of the OSI model:	Marks 4
		a. Reliable process-to-process message delivery	CLO 1
		b. Route selection	
		c. Defines frames	
		d. Provides user services such as e-mail and file transfer	
Q5.	(a)	Draw the graph of the NRZ-L, NRZ-I and Manchester scheme using each of the following data	Marks 4
		streams, assuming that the last signal level has been positive. From the graphs, guess the	CLO 2
		bandwidth for this scheme using the average number of changes in the signal level.	CLO 2
		a. 00000000	
		b. 1111111	
		c. 01010101	
		d. 00110011	