

Program: BC (SE) Subject: Digital Logic Design (Theory) Assignment Number: 03 Course Code: SEC-201 EDP Code: 102002015 Spring Semester 2020

- Q.1 Using Boolean notation, write an expression that is a 0 only when all of its variables (*A*, *B*, *C*, and *D*) are 0s.
- **Q.2** Write an expression that is a 1 when one or more of its variables (*A*, *B*, *C*, *D*, and *E*) are 0s.
- Q.3 Write an expression that is a 0 when one or more of its variables (*A*, *B*, and *C*) are 0s.
- Q.4 Evaluate the following operations:

(a)
$$0 + 0 + 0 + 1$$
 (b) $1 \cdot 0 \cdot 1 \cdot 0$ (c) $1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 1$

Q.5 Find the values of the variables that make each product term 1 and each sum term 0.

(a) $\overline{A} \overline{B} C$ (b) $\overline{A} + \overline{B} + C$

Q.6 Apply DeMorgan's theorems to the following:

(a)
$$\overline{(\overline{ABC})(\overline{EFG})} + \overline{(\overline{HIJ})(\overline{KLM})}$$
 (b) $\overline{(\overline{A+B})(\overline{C+D})(\overline{E+F})(\overline{G+H})}$

FIGURE 01

- **Q.8** Draw the logic circuit represented by the following expression: $AB + \overline{AB}$
- Q.9 (a) Draw a logic circuit for the case where the output, ENABLE, is HIGH only if the inputs, ASSERT and READY, are both LOW.
 - (b) Draw a logic circuit for the case where the output, HOLD, is HIGH only if the input, LOAD, is LOW and the input, READY, is HIGH.
- Q.10 Develop the truth table for each of the circuits in Figure 02.

FIGURE 02

Q.11 Construct a truth table for each of the following Boolean expressions:

(a) (A + B)(B + C)(C + A) (b) $\overline{AB} + \overline{BC} + \overline{CA}$

Q.12 Using Boolean algebra techniques, simplify the following expressions as much as possible:

- (a) A(A + B)(b) $A(A + \overline{AB})$ (c) $BC + \overline{B}C$ (d) $A(A + \overline{AB})$ (e) $A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C$ (f) $BC + (\overline{B} + C)D + BC$ (g) $BCD[BC + \overline{D}(CD + BD)]$ (h) $A\overline{B} + A\overline{B}C + A\overline{B}CD + A\overline{B}CDE$
- Q.13 Determine which of the logic circuits in Figure 03 are equivalent.

(a)

FIGURE 03

Q.14	Convert the following expressions to sum-of-product (SOP) forms:								
	(a) $(C + D)(A + \overline{D})$	(b) $(A + C)(CD + AC)$	(c) $B + C[BD + (C + \overline{D})E]$						
	(d) $A(A\overline{D} + C)$	(e) $BC + DE(B\overline{C} + DE)$	(f) $BC(\overline{C}\overline{D} + CE)$						

Q.15 Convert each SOP expression obtained in Q.14 to standard SOP form.

Q.16 Convert each standard SOP expression obtained in Q.15 to standard POS form.

Q.17 Develop a truth table for each standard SOP expression obtained in Q.15.

- Q.18 Develop a truth table for each standard POS expression obtained in Q.16.
- Q.19 Derive a standard SOP and a standard POS expression form truth table in Table 01.

O.20 Use a Karnaugh map to find the minimum SOP form for each expression:

(a) $\overline{ABC} + \overline{ABC} + A\overline{BC}$ (b) $AC(\overline{B} + C)$ (c) $\overline{A}(BC + B\overline{C}) + A(BC + B\overline{C})$ (d) $\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC}$ (e) $A + B\overline{C} + CD$ (f) $\overline{ABCD} + \overline{ABCD} + ABCD + ABC\overline{D}$ (g) $\overline{AB} + A\overline{B} + \overline{CD} + C\overline{D}$ (h) $\overline{AB(\overline{CD} + \overline{CD})} + AB(\overline{CD} + \overline{CD}) + A\overline{BCD}$

- Q.21 Reduce the function specified in truth Table 02 to its minimum SOP form by using a Karnaugh map.
- Q.22 Use the Karnaugh map method to implement the minimum SOP expression for the logic function specified in truth Table 03.

Inputs	Output				Inputs			Output
ABCD	X			A	B	С	D	X
0 0 0 0	1				0	0	0	0
0 0 0 1	1			0	0	0	1	1
0 0 1 0	0			0	0	1	0	1
0 0 1 1	1			(0	1	1	0
0 1 0 0	0			0	1	0	0	0
0 1 0 1	1			0	1	0	1	0
0 1 1 0	1	Inputs	Output	C	1	1	0	1
0 1 1 1	0	A B C	X	. (1	1	1	1
1 0 0 0	0	0 0 0	1	1	0	0	0	1
$1 \ 0 \ 0 \ 1$	1	0 0 1	1	1	0	0	1	0
1 0 1 0	0	0 1 0	0	1	0	1	0	1
$1 \ 0 \ 1 \ 1$	0	0 1 1	1	1	0	1	1	0
1 1 0 0	1	1 0 0	1	1	1	0	0	1
$1 \ 1 \ 0 \ 1$	0	1 0 1	1	1	1	0	1	1
1 1 1 0	0	1 1 0	0	1	1	1	0	0
1 1 1 1	0	1 1 1	1	1	1	1	1	1
Table	01	Table 02			Table 03			

Q.23 Use a Karnaugh map to find the minimum POS for each expression:

(a) $(A + B + C)(\overline{A} + \overline{B} + \overline{C})(A + \overline{B} + C)$ (b) $(X + \overline{Y})(\overline{X} + Z)(X + \overline{Y} + \overline{Z})(\overline{X} + \overline{Y} + Z)$ (c) $A(B + \overline{C})(\overline{A} + C)(A + \overline{B} + C)(\overline{A} + B + \overline{C})$

- Q.24 For the function specified in Table 02, determine the minimum POS expression using a Karnaugh map.
- Q.25 Determine the minimum POS expression for the function in Table 03.
- Q.26 Convert each of the following POS expressions to minimum SOP expressions using a Karnaugh map:

(a) $(A + \overline{B})(A + \overline{C})(\overline{A} + \overline{B} + C)$ (b) $(\overline{A} + B)(\overline{A} + \overline{B} + \overline{C})(B + \overline{C} + D)(A + \overline{B} + C + \overline{D})$