
IQRA NATIONAL UNIVERSITY
[image: C:\Users\xia\Desktop\Inu Official logo.jpg]

DEPARTMENT OF ELECTRICAL ENGINEERING

DIGITAL LOGIC DESIGN

LAB MANUAL

	
NAME : ___

ROLL NO. __

 SECTION:____________________ GROUP: _______________________

Course Outline

	Course title
	Course code

	Digital Logic Design (LAB)
	EEE211

	Course Catalog Description

	This course provides a modern introduction to logic design and the basic building blocks used in digital systems, in particular digital computers. It starts with the design combinational circuits including Boolean function implementation using basic logic gates, Adders/Subtractors, Mux/Demux, Encoders/Decoders, comparator, registers and clock generation using 555 timer IC. Further the course deals with sequential circuits including latches and flip flops.

	Course detail

	Credit Hours
	1

	Core
	BE.EE

	Elective
	

	Pre Requisite
	NA

	Course offering Detail

	Lecture Hall
	No of lecture per week
	Duration of lecture
	Lecture day
	Semester

	EMI Lab
	1
	3 Hours
	
	

	Instructor Detail

	Name
	Engr. Bushra Tahir

	Office
	EMI lab

	Email
	Bushra.tahir@inu.edu.pk

	Counseling hours
	

	Course assistant
	

	Recommended Books

	Text Book

	Title
	Edition
	Web link
	Others/tutorial

	Lab Manual
	
	
	

	Reference Books

	Digital Computer Electronics by Albert Paul
	Latest
	
	

	Digitals fundamentals by Thomas Floyd,
	8th
	
	

	CLO
	Statement
	Weightage

	1
	 Demonstrate the skills to design and analyze both combinational and sequential circuits using modern tools .[P4 , PLO 5]
	70%

	2
	 Apply basic knowledge of logic operations, Boolean expressions, laws of Boolean algebra, karnaugh Map, combinational and sequential logic circuits. [C3, PLO 1]
	20%

	3
	Contribute to solve problem through logical reasoning both in individual capacity and team work. [A2, PLO 9]
	5%

	Course Plan

	CLO 1:

	Lect No:
	Contents
	Exam
	Lab Reports

	
	
	Mid
	 Final

	1
	To analyze the operation of basic logic gates.

	·
	
	·

	2
	Implementation of XOR and X-NOR gate using AND, OR and NOT gates
	·
	
	·

	3
	Implementation of Boolean function using AND and OR gates
	·
	
	·

	4
	Implementation of Boolean function using K-map into SOP, POS forms and using NAND and NOR gates
	·
	
	·

	5
	Implementation of Adders and Subtractors
	·
	
	·

	6
	Implementation of 2 bit comparator
	·
	
	·

	7
	Implementation of Decoders (2 to 4 and 3 to 8) and Encoder (4 to 2 and 8 to 3)
	·
	
	·

	8
	Open ended lab (Project Proposal)
	
	·
	·

	Midterm Examination

	9
	Implementation of Multiplexer/Demultiplexers
	
	·
	·

	10
	BCD to 7- Segment Code Converter
	
	·
	·

	11
	Implementation of Latches (NOR, NAND) and DQ-Flip flop
	
	·
	·

	12
	Implementation of JK and T-Flip flop
	
	·
	·

	13
	Clock generation using 555 Timer IC
	
	·
	·

	14
	Register and its types
	
	·
	·

	15
	Practice Lab
	
	·
	·

	16
	Open ended lab(Hardware Demonstration)
	
	·
	·

	Final term Examination

Mapping CLOs to Standard PLOs

	 PLOs

CLOs
	PLO 1
	PLO 2
	PLO 3
	PLO 4
	PLO 5
	PLO 6
	PLO 7
	PLO 8
	PLO 9
	PLO 10
	PLO 11
	PLO 12

	CLO1
	
	
	
	
	·
	
	
	
	
	
	
	

	CLO 2
	·
	
	
	
	
	
	
	
	
	
	
	

	CLO 3
	
	
	
	
	
	
	
	
	·
	
	
	

EXPERIMENT 01

TO ANALYZE THE OPERATION OF BASIC LOGIC GATES

Objectives:

Equipment Required:

Background Theory
Logic deals with only two normal conditions: logic TURE or logic FALSE. In Boolean logic, TRUE is often represented by the term HIGH or the number 1 and FALSE is represented by the term LOW or the number 0. HIGH and LOW (1 or 0) are logic terms; they do not indicate whether the voltage is higher or lower. In positive logic the more positive voltage is TRUE and the less positive voltage is FALSE i.e +2.5V = HIGH and +0.5V = LOW. With the negative logic this definition is reversed.
The basic logic gates and their symbols are summarized in the following pages. The truth table with all possible input combination is given and the output is left empty to you as an exercise. All possible combination of inputs involve counting in binary from 0 to 2n – 1 where n is the number of inputs.
In this experiment you will look at the truth tables for several arrangements of simple gates.

GATES, THEIR IC PIN CONFIGURATION & TRUTH TABLES:

NOT Gate				

Truth Table
	
	Input (x)
	Output (y)

	
	

	
	

2-Input AND Gate	

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

2-Input NAND Gate

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

 2-Input OR Gate
					

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

2-Input NOR Gate

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

2-Input X-OR Gate
	

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

2-Input X-NOR Gate

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

Procedure

__
__
__
__
__
__
__
__
__
__
__
__
__

Observations and Conclusion

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: ___________________

EXPERIMENT 02

IMPLEMENTATION OF XOR AND XNOR GATE USING AND, OR & NOT GATES

Objectives:

Equipment Required:

Implementation of X-OR gate using X-OR IC:

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

Boolean Representation for X-OR Gate is:

	
	

Gate Diagram of the above Boolean function:

Truth Table

	A
	B
	A
	B
	A.B
	A.B
	A.B + A.B = Zout

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Implementation of X-NOR gate using X-NOR IC:

Truth Table

	Input
	Output

	X
	Y
	Z

	
	
	

	
	
	

	
	
	

	
	
	

Boolean Representation for X-NOR Gate is:

	

Gate Diagram of the above Boolean function:

Truth Table

	A
	B
	A
	B
	A.B
	A.B
	A.B + A.B = Q

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Implement the following Boolean function and fill the truth table.

F=XY+X’Y+XY’

Gate Diagram of the above Boolean function:

Truth Table:

	X
	Y
	XY
	X’Y
	XY’
	F

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Procedure

__
__
__
__
__
__
__
__
__
__
__
__

Observations and Conclusion:

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: __________________

EXPERIMENT 03

IMPLEMENTATION OF BOOLEAN FUNCTION USING AND OR GATES

								

Objectives:

Equipment Required:

Background Theory
When a Boolean expression is implemented with logic gates, each term requires a gate, and each variable within the term designates an input to the gate. We define a literal as a single variable within the term that may or may not be complemented. By reducing the number of terms, the number of literals, or both in a Boolean expression, it is often possible to obtain a simpler circuit. Boolean algebra or K-map is applied to reduce an expression for the purpose of obtaining a simpler circuit.
A Boolean function can be written in a variety of ways when expressed algebraically. There are, however, a few ways of writing algebraic expressions that are considered to be standard forms. The standard forms facilitate the simplification procedures for Boolean expressions and frequently result in more desirable logic circuits.
The standard forms contain product terms and sum terms. An example of a product term is XYZ. This is a logical product consisting of an AND operation among three literals. An example of a sum term is X+Y+Z. This is a logical sum consisting of OR operation among the literals.
In the sum of minterms canonical form, every product term includes a literal of every variable of the function. Product terms of the SOP form which do not include a literal of a variable, say variable B, should be augmented by,
· AND-ing the product term which misses a literal of B with (B+B’),
· Subsequently applying the distributive property to eliminate the parenthesis.
In the product of maxterms canonical form, every sum term includes a literal of every variable of the function. Sum terms of the POS form which do not include a literal of a variable, say variable B, ought to be augmented by,
· OR-ing the sum term with B·B’,
·
Subsequently applying postulate a+b·c=(a+b) · (a+c) to distribute the product B·.

Function
A function F is defined by

 F (A,B)= ∑m(0,1,3)

		

Truth Table:

	Input
	Output

	A
	B
	F

	
	
	

	
	
	

	
	
	

	
	
	

K-Map

	

	

	
	

Boolean Expression
F =

Circuit Diagram

Procedure

__
__
__
__
__
__
__
__
__
__
__

Observations and Conclusions:

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: ____________________

EXPERIMENT 04

IMPLEMENTATION OF BOOLEAN FUNCTION USING K-MAP INTO SOP, POS FORMS AND USING NAND & NOR GATES

Objectives:

Equipment Required:

1- Simplification of 3 variable Boolean function using K-map
In this lab there are 2 ACs and a door. There is a monitoring room as well. If any of the AC is on , AND the door is open (i.e. logic one for the door) , then an output signal (i.e. logic 1) is issued to the monitoring room , otherwise output remains zero .
Make a truth table corresponding to the above scenario, use A1 and A2 for ACs and D for door and S for output signal, and simplify the Boolean function into
 (a) sum-of-products form and (b) product-of-sums form

Truth Table

	A
	B
	C
	Y

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Karnauph Map: (for SOP)

	
	
	
	

	
	
	
	

Boolean equation in SOP:

Circuit Diagram:

	Using AND, OR, NOT Gates
	Using NAND Gates

	
	

	Using AND, OR, NOT Gates
	Using NOR Gates

	
	

Karnauph Map (for POS)

	
	
	
	

	
	
	
	

Boolean equation in POS:

Circuit Diagram:

	Using AND, OR, NOT Gates
	Using NAND Gates

	
	

	Using AND, OR, NOT Gates
	Using NOR Gates

	
	

Procedure:

__
__
__
__
__
__
__
__
__
__

Observations and Conclusion:

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: ___________________

EXPERIMENT 05

BCD TO 7-SEGMENT CODE CONVERTER

Objective:

Equipment Required:

Seven Segment LED Display:
Decimal digits from 0 to 9 can be shown using a 7–segment LED display unit. This unit shows one decimal digit using 7 LED segments to form the numbers from 0 to 9. These 7-segments are, a, b, c, d, e, f, g
[image:]
7-Segment Display

A BCD-to-seven-segment decoder (7448) is a combinational circuit that converts a decimal digit in BCD to an appropriate code for the selection of segments in an indicator used to display the decimal digit in a familiar form. The seven outputs of the decoder (a, b, c, d, e, f, g) select the corresponding segments in the display, as shown in Fig.(a) . The numeric display chosen to represent the decimal digit is shown in Fig.(b) .

Two types of 7 Segment Displays

Segment Designation:

Numerical Designation:

[image:] [image:]

[image:]

Different decoder IC with different display

	

Pin configuration

[image:]

7448-IC Pin Configuratio

Procedure:

__
__
__
__
__
__
__
__
__
__

Design of BCD to seven segment code converter

Using truth tables and Karnaugh maps, design the BCD-to-seven-segment decoder using minimum number of gates.

	i3
	i2
	i1
	i0
	Decimal
Digit
	Display
	a
	b
	c
	d
	e
	f
	g

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Rest of the combinations
	x
	x
	x
	x
	x
	x
	x

K-map

[image:] [image:]

[image:]

[image:]

[image:]

Observation and conclusions:

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: ___________________

EXPERIMENT 06

IMPLEMENTATION OF ADDERS AND SUBTRACTORS

Objective:

Equipment Required:

Description:
In this lab, we will learn the functionality of adders and subtractors through implementation. First of all we have to design a half adder, and then using two half adders implement a full adder.
Half adders have two binary inputs and two binary outputs. The Input variables designate the augends and addend bits; the output variables produce the sum and carry. Let suppose we assign symbols A and B to the two inputs and S (for sum) and C (for carry) to the outputs, the block diagram of half adder is shown in the figure below:

[image:]

 The addition and subtraction operations can be combined into one circuit with XOR gate for each full adder. The mode input M controls the operation. When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor. Each XOR gate receives input M and one of the inputs of B. when M = 0, we have B⊕0 = B. the full adder receive the value of B, the input carry is 0, and the circuit performs A plus B. when M = 1, we have B⊕1= B’ and C0 = 1. The B inputs are complemented and a 1 is added through the input carry

Half adder:
Truth Table:

	Input
	Output

	A
	B
	Sum
	Carry

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Boolean Functions of Output:
	
Sum =

	Carry =

Half Adder logic Diagram:

Full Adder:

Truth Table:

	Input
	
	Output

	A
	B
	Cin
	Sum
	Carry

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Boolean Functions of Output:
	
Sum =

	
	Carry =

Logic Diagram:

HALF SUBTRACTOR:
Description:
\Similar to half and full adder implementation we will design a half subtaractor, and then using two half subtractor implement a full subtarctor.

Truth Table:

	Input
	Output

	A
	B
	Diff
	Borrow

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Boolean Functions of Output:
	
Diff =

	
	Borrow =

Half Subtractor logic Diagram:

Full Subtractor:

Truth Table:

	Input
	
	Output

	A
	B
	Cin
	Diff
	Borrow

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Boolean Functions of Output:
	
Diff =

	
	Borrow =

Logic Diagram:

Procedure

__
__
__
__
__
__
__
__
__

Observations and Conclusions:

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: __________________

EXPERIMENT 07
IMPLEMENTATION OF DECODERS (2 TO 4 AND 3 TO 8) AND ENCODER (4 TO 2 AND 8 TO 3)

Objectives:

Equipment Required:

Background Theory
Decoder is used to convert code in to set of signals. Decoder is a multiple input, multiple output logic circuit that converts coded input into decoded output, where the input and output codes are different. The input code generally has fewer bits than the output, and there is one-to-one mapping, each input code word produces a different output signal. The most commonly used input code is an n-bit binary code, where an n-bit word represents one of 2n different coded values, i.e. n-to-2n decoder or binary decoder.
Encoder is a logic circuit that has fewer output bits than the input code. The encoder takes 2n inputs bits and generates n-bit output. Only one of the inputs can be 1, and the corresponding binary will display on the output bits. But when more than one input bits become 1 at the same time then what should be the output then? So we give priority to inputs and the input with high priority will freeze the output with its binary value. Such an encoder is called priority encoder.

Truth table for 2 to 4 decoder:

	A
	B
	D0
	D1
	D2
	D3

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Boolean Equations:

Logic Diagram of 2-to-4 Decoder

	

Exercise #2:
Truth table for 3 to 8 decoder:

	A0
	A1
	A2
	D0
	D1
	D2
	D3
	D4
	D5
	D6
	D7

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Boolean Equations:

Logic Diagram of 3-to-8 Decoder

	

ENCODER (4-to-2):

Truth Table:

	E0
	E1
	E2
	E3
	A0
	A1

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Boolean Equation:

Logic diagram:

	

ENCODER (8-to-8):

Truth Table:

	E0
	E1
	E2
	E3
	E4
	E5
	E6
	E7
	A0
	A1
	A2

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Boolean Equation:

Logic diagram:

	

Procedure
__
__
__
__
__
__
__
__

Observations and Conclusions:

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: __________________

EXPERIMENT 08

IMPLEMENTATION OF MULTIPLEXERS AND DEMULTIPLEXERS

Objectives:
.

Equipment Required:

Background Theory
A multiplexer is a combinational circuit that selects binary information from one of many input lines and directs the information to a single output line. The selection of a particular input line is controlled by a set of input variables, called selection input. Normally, there are 2n input lines and n selection inputs whose bit combination determines which input is selected.
A de multiplexer is doing the opposite function of multiplexer. It takes input on a single input line and the select lines determines one of the 2n output lines and the input contents is visible on that particular output.

Symbol used for multiplexer:

Multiplexer (4-to-1)

Truth Table:
	S0
	S1
	Y

	
	
	

	
	
	

	
	
	

	
	
	

Boolean Equations:

Logic Diagram

Multiplexer (8-to-1)

Truth Table:
	S0
	S1
	S2
	Y

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Boolean Equation:

Logic Diagram

DeMultiplexer (1-to-4)

Truth Table:
	S0
	S1
	Y0
	Y1
	Y2
	Y3

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Boolean Equation:

Logic Diagram

DeMultiplexer (1-to-8)

Truth Table:
	S0
	S1
	S2
	Y0
	Y1
	Y2
	Y3
	Y4
	Y5
	Y6
	Y7

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Boolean Equation:

Logic Diagram

Procedure:

__
__
__
__
__
__
__

Observations and Conclusions:

Date: ________________________________

Marks Obtained: _______________________

Instructor’s Signature: _____________________

EXPERIMENT 09

IMPLEMENTATION OF 2-BIT COMPARATOR

Objective:

Equipment Required:

Background Theory
A 2-bit comparator compares two binary numbers, each of two bits and produces their relation such as one number is equal or greater than or less than the other. The figure below shows the block diagram of a two-bit comparator which has four inputs and three outputs.
The first number A is designated as A = A1A0 and the second number is designated as B = B1B0. This comparator produces three outputs as G (G = 1 if A>B), E (E = 1, if A = B) and L (L = 1 if A<B).
[image:]

Truth Table:
	A0
	A1
	B0
	B1
	Y1(A>B)
	Y2(A=B)
	Y3(A<B)

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

K-MAP

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Boolean Equations:

Logic Diagram

Procedure:

__
__
__
__
__
__
__

Observations and Conclusion:

[bookmark: OLE_LINK2]

Date: ___________________________

Marks Obtained:___________________

Instructor’s Signature:________________

EXPERIMENT 10

IMPLEMENTATION OF LATCHES (NOR, NAND) AND DQ-FLIP FLOP

Objective:

Equipment Required:

Background Theory
The elements used to store binary information in sequential circuits are called latches and flip-flops. A storage element can maintain a binary state as long as power is delivered to the circuit until directed by an input signal to switch states. The major differences among the various types of latches and flip-flops are the number of inputs they possess and the manner inputs affect the binary state. The most basic storage elements are latches, which uses feedback to lock onto and hold data, from which flip-flops are usually constructed. Although latches are most often used within flip-flops, they can also be used with more complex clocking methods to implement sequential circuits directly.

NOR LATCHE
Truth table
	A
	B
	Y

	
	
	

	
	
	

	
	
	

	
	
	

Logic Diagram

NOR LATCHE
Truth table
	A
	B
	Y

	
	
	

	
	
	

	
	
	

	
	
	

Logic Diagram

Flip Flops
A flip-flop is usually constructed by combining two same or different types of latches. Flip-flop circuits are constructed in such a way as to make them operate properly when they are a part of a sequential circuit that employs a single clock. Note that the problem with the latch is that as soon as an input changes, shortly thereafter the corresponding output changes to match it. This is what allows a change on a latch output to produce additional changes at other latch outputs while the clock pulse is at logic 1. The key to the proper operation of flip-flops is to prevent them from being transparent. In a flip-flop, before an output can change, the path from its inputs to its outputs is broken. So a flip-flop cannot “see” the change of its output or of the outputs of other, like flip-flops at its input during the same clock pulse. Thus, the new state of a flip-flop depends only on the immediately preceding state, and the flip-flops do not go through multiple changes of state. The edge triggered D flip flop avoids the problem of the RS invalid output states by not allowing the invalid states. The JK flip flop is a clocked RS flip flop with additional logic to replace the RS invalid output states with a new mode called toggle. Toggle causes the flip flop to change to the state opposite to its present state.

D-Flip Flop
Truth table
	C
	D
	Q

	
	
	

	
	
	

	
	
	

	
	
	

Logic Diagram

Procedure

__
__
__
__
__
__
__

Observations and Conclusions:

Date: ___________________________

Marks Obtained:___________________

Instructor’s Signature:_______________

EXPERIMENT 11

IMPLEMENTATION OF JK AND T-FLIP FLOP

Objectives:

Equipment Required:

Description:
Flip Flops
A flip-flop is usually constructed by combining two same or different types of latches. Flip-flop circuits are constructed in such a way as to make them operate properly when they are a part of a sequential circuit that employs a single clock. Note that the problem with the latch is that as soon as an input changes, shortly thereafter the corresponding output changes to match it. This is what allows a change on a latch output to produce additional changes at other latch outputs while the clock pulse is at logic 1. The key to the proper operation of flip-flops is to prevent them from being transparent. In a flip-flop, before an output can change, the path from its inputs to its outputs is broken. So a flip-flop cannot “see” the change of its output or of the outputs of other, like flip-flops at its input during the same clock pulse. Thus, the new state of a flip-flop depends only on the immediately preceding state, and the flip-flops do not go through multiple changes of state. The edge triggered D flip flop avoids the problem of the RS invalid output states by not allowing the invalid states. The JK flip flop is a clocked RS flip flop with additional logic to replace the RS invalid output states with a new mode called toggle. Toggle causes the flip flop to change to the state opposite to its present state.

JK- FLIP FLOP
Truth table

	C
	J
	K
	Q
	Q+

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Logic Diagram

T- FLIP FLOP
Truth table

	C
	T
	Q
	Q+

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Logic Diagram

Procedure
__
__
__
__
__
__

Observations and Conclusions:

Date: ___________________________

Marks Obtained:___________________

Instructor’s Signature:_______________

EXPERIMENT 12

Clock Generation Using 555 Timer

Objectives:

Equipment Required:

Introduction to 555 Timer IC

The 8-pin 555 timer must be one of the most useful chips ever made and it is used in many projects. With just a few external components it can be used to build many circuits, not all of them involve timing.
[image:][image:]

Figure 12.5 Pin Configurations of 555

Pin Description

Trigger input: when < 1/3 Vs ('active low') this makes the output high (+Vs). It monitors the discharging of the timing capacitor in an astable circuit. It has a high input impedance > 2M

.

Threshold input: when > 2/3 Vs ('active high') this makes the output low (0V)*. It monitors the charging of the timing capacitor in astable and monostable circuits. It has a high input impedance > 10M .

* providing the trigger input is > 1/3 Vs, otherwise the trigger input will override the threshold input and hold the output high (+Vs).
	
Reset input: when less than about 0.7V ('active low') this makes the output low

(0V), overriding other inputs. When not required it should be connected to +Vs. It has an input impedance of about 10K.

66

[bookmark: page181]

Control input: this can be used to adjust the threshold voltage which is set internally to be 2/3 Vs. Usually this function is not required and the control input is connected to 0V with a

0.01μF capacitor to eliminate electrical noise. It can be left unconnected if noise is not a problem.

The discharge pin is not an input, but it is listed here for convenience. It is connected to 0V when the timer output is low and is used to discharge the timing capacitor in astable and monostable circuits.

555 Astable

An astable circuit produces a 'square wave', this is a digital waveform with sharp transitions between low (0V) and high (+Vs). Note that the durations of the low and high states may be different. The circuit is called an astable because it is not stable in any state: the output is continually changing between 'low' and 'high’. The time period (T) of the square wave is the time for one complete cycle, but it is usually better to consider frequency (f) which is the number of cycles per second

Circuit Diagram:

Equation:

Procedure:

__
__
__
__
__
__

Frequency Calculations of Generated Clock:

	C1
	R2=
R1=
	R2=
R1=

	
	
	

	
	
	

	
	
	

Observations and Conclusions:

Date: ___________________________

Marks Obtained:___________________

Instructor’s Signature:_______________

[bookmark: page183][bookmark: _GoBack]EXPERIMENT 14

MINI PROJECT

Project Title:

Project Description:

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
Circuit Diagram:

Results and Conclusion:

Date: ___________________________

Marks Obtained:___________________

Instructor’s Signature:_______________
67

image2.png

image3.png
Common Cathode

image4.png
!

o b & d & f

Common Anode

image5.png
Common Cathode Common Anode

a f Gnd a b g f Ve a B
o ofoopon ngfon

mc
5

)

image6.png
BI/RBO

=
scEl

GND

Vee

image7.png

image8.png

image9.png
1 bit
half adder

image10.png
A[’

gl

20—
Bi——p]

2-bit
Comparator

image11.jpeg

image12.jpeg

image1.jpeg

oleObject1.bin

