

Program: BC (SE) Subject: Digital Logic Design (Theory) Assignment Number: 02 Course Code: SEC-201 EDP Code: 102002015 Spring Semester 2020

Q.1 The input waveform shown in Figure 01 is applied to a system of two inverters connected in a series. Draw the output waveform across each inverter in proper relation to the input.

 $V_{\rm IN}$

Q.2 A combination of inverters is shown in Figure 02. If a LOW is applied to point A, determine the net output at points E and F.

- **Q.3** If the waveform in Figure 01 is applied to point A in Figure 02, determine the waveforms at points B through F.
- Q.4 Determine the output, X, for a 2-input AND gate with the input waveforms shown in Figure 03.

Q.5 The waveforms in Figure 04 are applied to points *A* and *B* of a 2-input AND gate followed by an inverter. Draw the output waveform.

Q.6 The input waveforms applied to a 3-input AND gate are as indicated in Figure 05. Show the output waveform in proper relation to the inputs with a timing diagram.

Q.7 The input waveforms applied to a 4-input AND gate are as indicated in Figure 06. The output of the AND gate is fed to an inverter. Draw the net output waveform of this system.

- **Q.8** Determine the output for a 2-input OR gate when the input waveforms are as in Figure 04 and draw a timing diagram.
- Q.9 Repeat Q.6 for a 3-input OR gate.
- Q.10 Repeat Q.7 for a 4-input OR gate.
- Q.11 For the waveforms given in Figure 07, *A* and *B* are ANDed with output *F*, *D* and *E* are ANDed with output *G*, and *C*, *F*, and *G* are ORed. Draw the net output waveform.

- Q.12 Show the truth table for a system of a 3-input OR gate followed by an inverter.
- Q.13 For the set of input waveforms in Figure 08, determine the output for the gate shown and draw the timing diagram.

FIGURE 08

Q.14 Determine the gate output for the input waveforms in Figure 09 and draw the timing diagram.

Q.15 Determine the output waveform in Figure 10.

Q.16 The two logic symbols shown in Figure 11 represent equivalent operations. The difference between the two is strictly from a functional viewpoint. For the NAND symbol, look for two HIGHs on the inputs to give a LOW output. For the negative- OR, look for at least one LOW on the inputs to give a HIGH on the output. Using these two functional viewpoints, show that each gate will produce the same output for the given inputs.

- Q.17 Repeat Q.13 for a 2-input NOR gate.
- Q.18 Determine the output waveform in Figure 12 and draw the timing diagram.

- Q.19 Repeat Q.15 for a 4-input NOR gate.
- **Q.20** The NAND and the negative-OR symbols represent equivalent operations, but they are functionally different. For the NOR symbol, look for at least one HIGH on the inputs to give a LOW on the output. For the negative-AND, look for two LOWs on the inputs to give a HIGH output. Using these two functional points of view, show that both gates in Figure 12 will produce the same output for the given inputs.

- Q.21 Repeat Q.5 for an exclusive-OR gate.
- Q.22 Repeat Q.5 for an exclusive-NOR gate.