Digital Logic \& Design(Theory)
 Program: BS(CS)
 Course Codes: CSC-201
 EDP Codes: 102002077
 Instructor: Muhammad Amin
 Mid-Term Assignment
 Semester: Spring 2020
 Duration: 3th April to 18th April
 Date: Apr. 13, 2020
 Upload Time: 09:00am

Q. 1 Convert each of the following:
a. $\quad 45.25_{10}=(?)_{2}$
b. $\quad 10000000.1010_{2}=(?)_{10}$
c. $4 \mathrm{D} 7 \mathrm{~F}_{16}=(?)_{10}$
d. $128_{10}=(?)_{16}$
e. $3 \mathrm{~A}^{6} \mathrm{~F}_{16}=(?)_{2}$
f. $1100001111100101_{2}=(?)_{16}$
g. $\quad 6173_{8}=(?)_{10}$
h. $\quad 169_{10}=(?)_{8}$
i. $\quad 2 \mathrm{~A} 7 \mathrm{D}_{16}=(?)_{8}$
j. $11111111_{2}= \pm(?)_{10} \quad$ hint: [use 2's complement form]
k. $-12_{10}=(?)_{2}$
l. $198=(?)_{B C D}$
m. ${\left.100001110000_{B C D}=(?)_{10}\right)}$
n. $\quad 1001010_{2}=(?)_{\text {Gray }}$
o. 10101111 Gray $=(?)_{2}$
p. $01000001=(?)_{\text {ASCII }}$
q. $111000=(? 111000)_{\text {Even parity }}$
Q. 2 Calculate each of the following:
a. $01111111_{2}-00000111_{2}$
b. $01101010_{2} \times 11110001_{2}$
c. $10001000_{2} \div 00100010_{2}$
d. $6 \mathrm{D}_{16}-3 \mathrm{~F}_{16}$
hint: [use 2's complement form]
e. $00010110_{\mathrm{BCD}}+00010101_{\mathrm{BCD}}=(?)_{10}$
hint: [use 2's complement form]
hint: [use 2's complement form]
hint: [use 2's complement form]
hint: [take care of invalid BCD code]
Q. 3 Apply CRC to the data bits 11010011_{2} using the generator code 1010_{2} to produce the transmitted CRC code.
Q. 4 Assume that the code produced in problem Q. 3 incurs an error in the most significant bit during transmission. Apply CRC to detect the error.
Q. 5 The input waveforms in Figure 1 is applied to a 3-input AND gate. Show the output waveform in proper relation to the inputs with a timing diagram.

Q. 6 Repeat Q. 5 for a 3-input OR gate.
Q. 7 Repeat Q. 5 for a 3-input NAND gate.
Q. 8 Repeat Q. 5 for a 3-input NOR gate.
Q. 9 The input waveforms in Figure 2 is applied to a XOR gate. Show the output waveform in proper relation to the inputs with a timing diagram.

FIGURE 2
Q. 10 Repeat Q. 9 for XNOR gate.
Q. 11 Using Boolean algebra techniques, simplify the following expressions as much as possible:

$$
A \bar{B}+A \bar{B} C+A \bar{B} C D+A \bar{B} C D E
$$

Q. 12 Convert the following expressions to satndard SOP forms: $(C+D)(\bar{A}+D)$
Q. 13 Write the standard POS expression using the standard SOP expression obtained in Q. 12.
Q. 14 Draw a single truth for both the standard POS and standard SOP expression obtained in Q. 12 and Q.13.
Q. 15 Use a Karnaugh map to simplify the following expression to a minimum SOP form:
$\bar{A} \bar{B} \bar{C}+\bar{A} B C+A \bar{B} C+A B \bar{C}$
Q. 16 Obtain the minimum POS expression form the Karnaugh map used in Q.15.
Q. 17 Write the output expression for circuit in Figure 3.

FIGURE 3
Q. 18 Implement the logic circuits in Figure 3 using only NOR gates.
Q. 19 Implement the logic circuits in Figure 3 using only NOR gates.
Q. 20

Implement a logic circuit for the truth table in Table 1.

TABLE 1	Inputs			Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{X}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

