

UNIVERSITY OF BRADFORD

Coding

Prof R.E. Sheriff

Contents

- Fundamentals of Coding
- Forward Error Correction
 - Block Codes
 - Convolutional Codes
 - Interleavers
- ARQ

• Error correcting techniques are used to improve the bit error rate performance of a digital signal

Channel Capacity

• Shannon-Hartley Law

$$R = \log_2 \left(1 + \frac{P}{N_0 B} \right) \quad bit \, / \, s$$

- P = Received Carrier Power, Watts
- B = Bandwidth of channel, Hz
- R = Capacity, bit/s
- $N_0 =$ Single sided noise power spectral density, W/Hz

- If R < B, link is said to be power limited
 Inefficient use of bandwidth
- If R > B, link is said to be bandwidth limited
 - Could increase capacity by using available transmit power in wider bandwidth

- Shannon limit defines E_b/N_0 below which link cannot operate at capacity
- This is equal to -1.6 dB
- This is a theoretical link as E_b/N_0 is dependent upon modulation and coding scheme

- Techniques can be divided into two broad categories
- Forward Error Correction (FEC)
 - Errors are detected and corrected for at the receiver
- Automatic Repeat Request (ARQ)
 - Used when high degree of integrity is required and latency is not a problem

- Involves adding *r* redundancy bits to source information
- Two mechanisms employed in satellite communications
 - Block Coding
 - Convolutional Coding

Block Codes

- Information is divided into blocks of *k* symbols
- These are then coded into blocks of *n* symbols (n > k)
 - This is known as a (n, k) block code
- Coding of one block is entirely independent of another
- Convenient method of coding information that is naturally divided into blocks

- 2^K possible message blocks to which are added (n-k) redundant check bits
- The redundant check bits are generated from the *k* message bits by a pre-determined rule

Code Generation

 $\mathbf{c} = \mathbf{m} \mathbf{G}$

where:

- c = code sequence
 - $-[c_1, c_2, c_3 \dots c_n]$
- m = message sequence
 - $-[m_1, m_2, m_3 ..., m_n]$
- **G** = Generator Matrix

Example

This is a (3, 2) code. Note modulo-2 arithmetic used.

- First *k* bits of codeword are the message and the remaining *(n-k)* bits are the check bits
- General form of G

$$G = \begin{bmatrix} I_k & P_k \end{bmatrix}_{k \times n}$$

- $-I_k =$ Identity matrix of order k
- -P = arbitrary k x (n-k) matrix

• Parity check matrix is used to detect errors

$$H = \begin{bmatrix} P^T : & I_{n-k} \end{bmatrix}_{(n-k) \times n}$$

P^T = Transpose of matrix P

 (Interchange of Rows and Columns of matrix P)

Implementation of Error Correction

- Error detection achieved by multiplying received codeword *R* by the *transpose* of the parity check matrix H^T
- If received correctly
 - -R = C
 - $-C \times H^{T} = 0$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- If codeword *R* is in error
 - $-\mathbf{R}=\mathbf{C}+\mathbf{E}$
 - -E = Error vector
- Errors are detected by finding the *error syndrome S*
- $\mathbf{S} = \mathbf{R}\mathbf{H}^{\mathrm{T}}$
 - of length (n-k), where (n-k) is the number of parity check bits in a codeword

• $\mathbf{c} = \mathbf{m}\mathbf{G}$

= 101001 0

• Syndrome $S = cH^T = 0$

Implies error free transmission

• If an error is introduced into the 2nd bit

R = 1110010

Then $S = RH^T = 110$

Non-zero implies an error

- Hamming distance, d, between two code vectors C₁ and C₂ is the number of components by which they differ,
- For a block code, this corresponds to the smallest distance between any pairs of codeword in the entire code

Error Detection and Correction

- Number of errors that can be detected $- = d_{min} - 1$
- No of errors that can be corrected $- = 1/2(d_{min} - 1)$
- Let
 - $-C_1 = [1, 0, 0, 1, 0, 1]$
 - $-C_2 = [1, 0, 1, 0, 1, 1]$
 - d = 3, therefore 2 errors can be detected and 1 error can be corrected.

- To detect 4 errors and correct 2 of them requires a code with a minimum distance of 5
- Syndrome points to position of error when 1 error detected
- Syndrome is used to suggest most likely codeword when more than 1 error detected

Cyclic Codes

- These are of the form (n, k)
- If

$$-(v_0, v_1, v_2, v_3, \dots, V_{n-1})$$

• is a codeword, then so is

 $-(v_{n-1}, v_0, v_1, v_2 \dots v_{n-2})$

• Can be thought of as a shift to the right register with feedback

Popular Forms of Block Codes

- Hamming Codes
 - Minimum distance of 3
- BCH
 - Most powerful of all codes
- Reed-Solomon (RS)
 - Used for correcting bursty errors in mobile satellite communications
- Golay M
 - Minimum distance of 7
- Code selection is dependent generally on channel characteristics

- Information is presented to the coder in frames of k_0 bits
- Encoder output consists of frames of n_0 bits $(n_0 > k_0)$
- Encoder retains some memory of previous frames and this is used in the coding process
- The memory order of the code, *m*, is the number of previous frames remembered
- Code can be termed as either (n_0, k_0, m) code or a (n, k)where $n = (m+1)n_0$ and $k = (m+1)k_0$
- The larger *m*, the more powerful the code

- Generated by a tapped shift register and two or more modulo-2 adders
- Can be represented pictorially as for example:

• If ρ = Code Rate

– Where

• The encoded output rate is increased to R_c according to

$$R_c = \frac{R_b}{\rho} \qquad \rho = \frac{\eta}{\eta + r_b}$$

 η = No of Source bits $r_{\rm b}$ = added redundancy bits

• Typically $\rho = 1/2, 3/4, 7/8, etc$

Decoder

- Viterbi Decoding is generally used to decode receive bits
- Works on the principle of trellis decoding

Code Gain

- Difference in dB between E_b/N_0 for a given BER in the case of ideal transmission and that of a particular coding scheme
- Coding allows improvement in BER performance for the same transmit power
- The improvement is measured in terms of the coding gain
- Coding gain is typically 3 6 dB

Code Gain

Interleaving

- Used to reduce the effect of bursty errors
- Interleaver re-orders sequence of transmission bits to minimise effect of error burst
- De-interleaving is performed at the receiver to re-order into original sequence

Example Interleaver

- FEC Schemes cannot always correct for errors at the receiver
- ARQ schemes operate based on a retransmission protocol, whereby an ACK is used to acknowledge correctly received data

- Stop and Wait
- Continuous ARQ with repeat
- Continuous ARQ with selected repeat

Stop and Wait

Continuous ARQ with repeat

- Chapter 5, Mobile Satellite Communication Networks, Sheriff & Hu
- Blackboard multiple choice revision questions