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Model Specification: Choosing the Right Variables for the Right Hand Side 

 

Even if you have only a handful of predictor variables to choose from, there are infinitely 

many ways to specify the right hand side of a regression.  How do you decide what variables to 

include?   The most important consideration when selecting a variable is its theoretical 

relevance.  A lot of things can go wrong when you add variables willy-nilly without a reasonably 

sound theoretical foundation (also known as “regressing faster than you think.”)   Of course, the 

definition of “reasonably sound” is a bit murky, and you can do just as much harm by excluding 

too many variables.   This note spells out the tradeoffs involved in model specification.   

 

The Kitchen Sink 

You will undoubtedly come across "kitchen sink" regressions that include dozens of 

variables.  This is often an indication that the researcher was brain dead, throwing in every 

available predictor variable, rather than thinking about what actually belongs.  You can imagine 

that if completely different predictors had been available, the researcher would have used those 

instead.   And who knows what the researcher would have done if there were thousands of 

predictors in the data set? (Not to mention the possibilities for exponents and interactions!) 

A little trial and error is perfectly okay.  After all, sometimes a problem is so new that we 

don’t have any theory to go on.  Or sometimes we know we want a certain category of variables 

(e.g., some measure of education) but we do not know the best way to measure it (E.g., “percent 

of population with a college education” versus “percent of population with an advanced degree”.)  

Even so, do try to resist the temptation to include every variable at your disposal.  Kitchen sink 

regressions can reduce regression precision and even give misleading results.   
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I use the term junk variable to describe a variable that is included in the regression only 

because you have it in your data set, not because of its theoretical relevance.  You already know 

one practical reason to keep junk variables out of your regressions: adding arbitrary variables 

uses up valuable degrees of freedom (df's).  This reduces the precision (i.e., increases the 

standard errors) of the estimates of all the valid predictor variables.  This “unwanted 

imprecision” effect is especially pronounced when you do not have a lot of observations.   

Here are some valuable rules of thumb: 

1) Use no more than one predictor for every 5 observations if you have a good predictive model 

(most predictors significant). 

2) You no more than one predictor for every 10 observations if you have a weaker model (few 

predictors significant) or you are experimenting with a lot of junk variables. 

3)  You can cut yourself some slack if you have categorical variables.  Treat each included 

category as a half of a normal predictor. 

More Reasons to Keep Out the Junk  

There are at least three other potential problems that may arise when you introduce junk 

variables even when you have sufficient df's to get significant findings: 

1) Junk variables may be statistically significant due to random chance.  Suppose your acceptable 

significance level is .05.  If you introduce ten junk variables, there is about a 40 percent chance 

that at least one will be significant, just due to random chance.
1
  If you don’t know what is junk 

and what is not, you will often find yourself claiming that junk variables really matter.  If 

someone tries to reproduce your findings using different data, they will usually be unable to 

reproduce your junk result.  Your shoddy methods are then exposed for all to see.   

                                                           
1
 The odds of all ten randomly constructed variables failing to achieve the .05 significance threshold is 1-.95

10
 = .40 
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2)  A junk variable that is correlated with another valid predictor may, by sheer luck, also have a 

strong correlation with the LHS variable.  This could make the valid predictor appear 

insignificant, and you may toss it out of the model.  (This is related to multicollinearity, which I 

will discuss later in this note.)   The bigger the kitchen sink, the better the chance that this 

happens.  The bottom line: when you add junk variables, “stuff” happens.  “Stuff” is not good. 

3) Adding some variables to your model can affect how you interpret the coefficients on others.  

This occurs when one RHS variable is, itself, a function of another.  This is not as serious a 

problem as (1) and (2), but does require you to be careful when you describe your findings.  The 

next section shows you how the interpretation of one variable can change as you add others.   

 

When RHS Variables are Functions of Each Other 

Suppose you want to know if firm size affects costs.  (We will flesh out this example in 

class.)  You have firm-level data.  The dependent variable is unit cost.  The predictors are size 

and wages.  Here is the regression result (I will run this regression in class): 

 

The results seem to show that once we control for wages, there are economies of scale – larger 

firms have lower average costs.  Surprisingly, this does not imply that larger firms in this data set 

have a cost advantage.  The reason is that wages are a potential function of size. In other words, 

our control variable is a candidate to be a LHS variable.  As a result, it is difficult to fully 

interpret the regression without doing further analysis.    
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If we want to more fully understand the determinants of costs, we should run a simpler 

regression that is stripped of any predictors that might themselves be used as dependent 

variables.  In this case, we run: 

regress cost size  

I will run a regression like this in the classroom.   Here is the output: 

 

The coefficient on size is close to zero – i.e., there do not appear to be scale economies in this 

simple regression.   

We have now run two regressions and obtained two seemingly conflicting results.  Are 

there scale economies?  Which equation should you use?    

 

…Pause for you to take in the drama… 

 

This is a good time for a little story telling.  Size may affect costs for many reasons.  One 

effect, which we might call the direct effect, is simple economies of scale.  For example, larger 

firms may have lower average fixed costs.  Another effect, which we can call the indirect effect, 

is through the potential effect of size on wages and the resulting effect of wages on costs.  (The 

following regression shows that size affects wages): 
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If you regress cost size, then the coefficient on size picks up both the direct and indirect 

effect of size on costs.  In our data, the overall direct plus indirect effect is estimated to be -.089 

and not statistically different from 0.  This occurs because the direct and indirect effects of size 

observed in the initial regression offset each other.   

So here is a story that is consistent with all of our regressions: 

1)  Larger firms in our data pay higher wages. 

2) Larger firms have some other offsetting cost advantages 

3) Overall, larger firms have comparable costs to smaller firms. 

We might have missed these nuances if we had examined only the model that included both 

variables. 

We can also see how this works mathematically.  (Note:  I will omit the error terms from 

these equations for simplicity.  The conclusions are almost exactly correct, close enough to make 

the point.)  Suppose that the following equations are correct: 

(1)  Cost = B0 + B1Wage + B2Size             

(2)  Wage = C0 + C1Size                            

In other words, wages and size affect costs, and size affects wages.   

By plugging equation (2) into equation (1), we get: 

Cost = B0 + B1(C0 + C1Size) + B2Size,  or 

     (3) Cost = (B0 + B1C0) + (B1C1 + B2)Size        
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Let’s think about these equations as regression equations. 

- Equation (1) corresponds to the regression: regress cost wage size.  This regression will 

report the coefficient on size to be B2.  This is the direct effect of size on cost.    

- Equation (3) roughly corresponds to the regression regress cost size.  This regression 

reports the coefficient on size to be B1C1 + B2.  This includes the direct (B2) and indirect 

(B1C1) effects.   

It is valid to estimate both equations.  Just be careful how you interpret the results.  If you could 

only choose one regression to relate size and cost, use the simpler one (without wages).  Your 

interpretation will be correct, if somewhat incomplete.    

 

Action 

When you perform a regression, you hope there is enough information in the data to 

precisely figure out how changes in X affect Y.  To get an intuitive grasp of how much 

information is in your data, think of each observation of X and Y as an experiment.  If X does not 

vary much from one experiment to the next, then there is not much information in the data and it 

will be difficult to determine with any precision how changes in X affect Y.   

It follows that good predictors have action – they move around a lot from observation to 

observation.  You should always examine each key predictor for action, for example by 

computing the range and the standard error.  You should also plot your dependent variable 

against each key predictor.  The extreme values of the predictors are likely to drive the 

regression.  Does Y vary much as the predictor moves from its lowest to highest value?   This 

plot should foreshadow the regression results (bearing in mind that simple two-way plots mask 

the effects of control variables.)    
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Action and Multicollinearity 

It is time to address the over-hyped problem of multicollinearity.  Suppose you have two 

predictors, X and Z, and a dependent variable Y.  When you examine the data, you see that X, Y, 

and Z all move together.  (I.e., they have high correlations.)   You are now quite certain that 

either X or Z affects Y.  Perhaps both do.  But you cannot be sure which one matters more.  

Unfortunately, the computer may also be unable to sort this out.  This is multicollinearity.  

Let us use the concept of action to better understand multicollinearity.  If X and Z are 

highly correlated, then their “experiments” are not independent.  This makes it difficult to 

determine which one is causing the associated movements in Y.  As a result, if you include both 

in the regression, the computer will report large standard errors around their estimated 

coefficients because it cannot with confidence figure out which predictor really matters.   

An immediate implication is that it is possible to get a high R
2
 without having any 

significant predictors!   Taken together X and Z give good predictions of Y, but the computer 

can’t be sure which one is really responsible, so R
2
 is high even though significance levels are 

poor.   In other cases, the computer may report a large positive coefficient on one of the 

correlated predictors and a large negative coefficient on the other.  This “sign flipping” often 

arises when the two variables are essentially identical and the computer uses slight differences 

between them to fit a few outliers.    

There is no test statistic for multicollinearity.  There is no particular level of correlation or 

any other measure that indicates that you have a definite problem.  In fact, very high correlations 

between predictors are not necessarily indicative of multicollinearity and should not 

automatically deter you from adding both to a model.  Consider a model with 1000 observations 

in which predictor variables X and Z have a correlation of .90.  Roughly speaking, X and Z move 
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together 90 percent of the time and move independently 100 times.  These 100 “independent 

experiments” could be enough for your computer to determine with some precision the effects of 

each predictor on Y.  (Of course, a smaller correlation would mean more “independent 

experiments” and even more precise estimates.)  The more observations you have, the more 

experiments you have.  This means that you can tolerate higher correlations among predictors as 

your sample size increases.   

By construction, categorical dummy variables (e.g., indicators for Winter, Spring, and 

Summer) are negatively correlated, but they do not normally introduce multicollinearity.  They 

are merely a convenient way to break down the action in the predictor (seasonality).  There is 

usually ample action for the computer to estimate their independent effects (provided there are 

enough observations for each category.) 

Finally, note that multicollinearity can be hidden among 3 or more predictors.  But the 

symptoms will be the same.   

  

Signs of multicollinearity  

Although there is no definitive test for multicollinearity, there are some symptoms to watch for:  

1) You find that the two or more correlated variables have insignificant coefficients when 

entered jointly in the regression, but each has a significant coefficient when entered one at 

a time.   

2) An F-test shows that two correlated variables add to the predictive power of the model, 

even though neither has a significant coefficient.   

3)  Variables have the same sign when entered independently, but have opposite signs 

when entered together.   
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4) You might ask Stata to compute the “variance inflation factor” or VIF.
2
   After running 

your regression, type vif.   There is no threshold vif score, but you may have a problem if 

a predictor variable has a vif in excess of about 20 or the average vif is “substantially 

higher” than 1 (perhaps 5 or higher).  Note: the VIF test is invalid when applied to 

exponents, fixed effect dummies, or interactions.  These types of variables inflate the VIF 

statistic but do not normally introduce multicollinearity.     

If you have problematic multicollinearity, you have several options: 

1) Keep all the variables; remember that your coefficients are unbiased but not precise. 

Your model can still be highly predictive.  This is not recommended when you have sign-

flipping coefficients on key predictors; the predictive benefits are likely to be miniscule. 

2) Throw out one of the offending variables.  Acknowledge that you may experience 

omitted variable bias (see below) that limits the interpretation of the included variable.  If 

the offending variables are merely control variables (rather than the main RHS variables 

of interest), this is a safe approach.   

3) Create a composite score – a single measure that captures the information in the 

correlated variables.  For example, if both variables are measured on the same scale, you 

could simply compute the average of the two variables.  I am a big fan of composite 

scores.  They help you avoid problems with interpretation while adding more information 

to the RHS than you would have with just a single predictor.    

 

A final word:  Most, but not all, diagnoses of multicollinearity are false positives.  Remember 

that as long as you have more than 100 or 200 observations, predictor variables can have 

                                                           
2
 For what it is worth, I know of no economics research paper that reports the VIF.  This is probably because there 
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correlations of as much as .7 or .8 without causing problems.  To minimize the risk of 

multicollinearity, avoid including predictors that are nearly identical, or capture nearly identical 

concepts, regardless of sample size.  As an alternative, try them one at a time or create a 

composite variable.
3
  Multicollinearity is the result of the researcher indiscriminately throwing 

variables onto the RHS.  A bit of prevention should avoid the problem. 

 

Omitted variable bias 

There are so many reasons to be parsimonious when choosing RHS variables that you 

may be tempted to run regressions with just one predictor variable.  It is time to put things in 

perspective and remember why we add control variables.  Adding theoretically sound control 

variables to the RHS has two virtues: 

1)  It improves the predictive power of the model, and, in the process, improves the 

precision of your estimates. 

2)  Excluding relevant variables can bias the coefficients on the included variables.  In 

other words, the computer reports values that are systematically higher or lower than the 

actual values, due to an omitted variable bias. 

It is useful to examine the mathematics that underlies the omitted variable bias.  This will look 

familiar – it is quite similar to the math showing what happens when one predictor is a function 

of another.   

Suppose that the true economic relationship that determines the dependent variable Y is  

(4)  Y = B0 + BxX + BzZ +  

(In our in-class example, Y = income, X = schooling, and Z = health status.)   

                                                                                                                                                                                           

are other, more intuitive ways to detect multicollinearity and the VIF test is itself not definitive. 
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We may or may not realize that this is the true relationship.  In any event, suppose we only have 

data on Y and X.  We regress Y on X:  

regress Y X 

The computer will spit out a coefficient on X.  But is this an unbiased estimate of Bx?  We can 

answer this question after a bit of math.: 

Let us suppose that the statistical relationship between X and Z is: 

(5)   Z = C0 + CxX +  z.
4
 

(This is a very general statement and allows for any degree of correlation between X and Z.)   

Substitute equation (5) into equation (4) to obtain: 

(6)  Y = B0 + BxX + Bz(C0 + CxX +  z) +  y. 

Gathering terms together gives us: 

(7)  Y = [B0 + BzC0] + [Bx + BzCx]X + [ y + Bz z] 

Equation (7) looks exactly like a regression equation of Y on X.: 

 The first term in braces [B0 + BzC0] is the intercept 

 The second term [Bx + BzCx] is the slope 

 The third term [ y + Bz z] is the error.     

In fact, this is the regression equation that the computer estimates when we run regress Y X.   

We clearly have a problem.  The intercept and slope coefficients that the computer reports 

are not estimates of B0 and Bx.  Instead, they are estimates of B0 + BzC0 and Bx + BzCx.   

                                                                                                                                                                                           
3
 I will discuss composite variables in class. 

4
 Note that no causality is necessary here.  A simple statistical correlation will suffice to cause the problem.  
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The problem of omitted variable bias is summarized in the following table
5
. 

Parameter of interest You want to estimate The computer reports 

Intercept B0 B0 + BzC0 

Coefficient on X Bx Bx + BzCx 

 

We want an estimate of Bx.  Unfortunately, the coefficient reported by the computer is Bx + BzCx.  

The term  BzCx represents the bias.   

 

Omitted variable bias appears when a variable on the RHS must do “double duty”.  The 

coefficient on the included variable includes its direct effect on Y, as well as the indirect effect of 

the omitted variable that happens to be correlated with it.     

 

It is sometimes helpful if you can determine the direction of the bias.  For example, suppose:  

 You believe that X and Z are positively correlated (Cx > 0), and  

 You believe that Z is positively related to Y (Bz > 0). 

Then you should conclude that the estimate that the computer reports for Bx will be more positive 

than the correct value (because BzCx > 0).   Continuing our example, if schooling and health 

status are positively correlated and health status has an independent effect on earnings, then a 

regression that omits health status will overstate the effect of schooling on earnings.    

 

                                                           
5
Here is a more precise statement of the bias.  Suppose that you want to estimate Bx but omit data on Z.  The 

coefficient on X will equal Bx +BzCov(X,Z)/Var(X), where Cov(X,Z) is the covariance between X and Z and Var(X) 

is the variance of X.  This follows from the formula for the parameter Cx.  
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Coping with Omitted Variable Bias 

It might seem that omitted variable bias plagues every regression.  After all, it is 

impossible to get data on all the factors that affect the dependent variable.  To some extent this is 

true and this is why we always think about possible biases in our regressions.   Fortunately, 

omitted variable bias is usually a manageable problem, for three reasons. 

1)  Omitting variables results in biased coefficients only if the omitted variables are 

correlated with included variables and are important in their own right. If either of these 

conditions fails to hold, there is no bias. 

2) Even if there is omitted variable bias, it may be possible to determine the direction of 

the bias.  This will allow us to state that the reported coefficients are either upper or lower 

bounds on the actual effects.   

3) Thinking about the omitted variable bias forces us to carefully identify the correct 

economic model and do a better job of variable selection in the first place.   
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Endogeneity bias 

 A RHS variable is said to be endogenous if it is correlated with the error in the original 

model.
6
  In general, one can not readily interpret the coefficients on endogenous predictors.  They 

may be biased and/or it may be impossible to draw conclusions about causality.   

We have already encountered an important example of endogeneity bias – omitted 

variables.  Any omitted variable is, by definition, part of the error term (or, in econometrician’s 

parlance, part of the unobservables.)   If that omitted variable is correlated with a predictor 

variable, it follows that the error term is correlated with the predictor variable.   We will soon 

learn an important technique for dealing with this type of endogeneity bias – fixed effects models.   

 There are two other ways that endogeneity often arises.  First, the RHS variable may be a 

function of Y (as opposed to being a cause of Y).  For example, recall the sales and advertising 

model from the previous note.  We normally assume that advertising affects sales.  But suppose 

that firms increase their advertising in anticipation of changes in demand.   In this case, sales 

affects advertising; advertising is therefore endogenous.  In general, if you are unsure whether X 

causes Y or Y causes X, your regression suffers from simultaneity bias.  It is impossible to 

determine the direction of causality from OLS regression.   We will discuss a possible solution to 

simultaneity bias called instrumental variables regression in a later lecture.   

A third source of endogeneity is measurement error.  This occurs when a RHS variable is 

imprecisely measured.  Some of the measurement error necessarily becomes part of the 

regression residual, causing the measured X to be correlated with the residual.  We will discuss 

measurement error in a later lecture as well. 

                                                           
6
 RHS variables are uncorrelated with the residual of the regression, by construction. 
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All forms of endogeneity -- omitted variable bias, simultaneity bias, and measurement 

error -- will bias the coefficient on the affected RHS variable and any other variables that are 

correlated with the affected variable.  This is why it is crucial to determine whether your model 

may suffer from endogeneity bias. 

 

A sensible approach to regression modeling 

 The following approach balances concerns about kitchen sink modeling and omitted 

variable bias.  You could do worse than to follow these steps: 

1) Always begin with a “core” set of predictors that have theoretical relevance, as well as any 

predictors whose effects you are specifically interested in.  You may estimate a “quick and dirty” 

OLS model at this time. 

2)  Finalize model specification issues (e.g., log vs. linear – to be discussed in a later note) 

3) Add additional predictors that you think might be relevant.  You can add them one at a time or 

one “category” at a time (see next section).  Check for the robustness of your initial findings. 

4)  When adding predictors, you should keep all the original predictors in the model, even if they 

were not significant.  Remember, omitted variable bias can cause significant predictors to appear 

to be insignificant.  By adding more variables, your key predictors may become significant.   

5)  At this point, you should know your robust findings.  That is the main goal of your research. 

6) If you insist on producing a “final model”, then you should remove those additional predictors 

that were not remotely significant. 

7) You can also remove core predictors if they remain insignificant and you need degrees of 

freedom.  If you are not taxed for degrees of freedom, you may want to keep your core variables, 

if only to paint the entire picture for your audience. 
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Coping with “Groups” of Variables 

Many predictor variables can be neatly categorized into groups: seasons, competitors’ 

prices, consumer demographics, the 50 states.  You will often want to determine whether a group 

of predictors belongs in the regression.  (“Does seasonality matter?”  “Do competitors’ prices 

matter?”)   Analysts often examine the coefficients of each predictor in a group individually and 

keep those that are significant.  This is a mistake, as I will now explain.   

Suppose you are studying the demand for automobiles and you want to know whether 

there are differences in the level of demand across the 50 states.   You include 49 dummy 

variables.  Even if state location really does not matter, you can expect coefficients on 2 or 3 state 

dummies to be statistically significant just due to random chance.  Upon observing those 2 or 3 

significant dummies, you have two choices: 

1) Conclude that those two states really are different from the omitted state; 

2) Determine whether the results are consistent with the null hypothesis that there are 

really are no differences among the states 

The latter approach is correct.  After all, some state has to have the highest sales, even if the 

difference is totally random.  The fact that some state really does have the highest sales is no 

reason to reject the null hypothesis that states don’t matter. 

The correct way to examine a group of variables is to perform a partial F-test, also called 

called a Chow test, which compares the predictive power of the model with and without all the 

variables under consideration.  If the group of variables does not collectively add predictive 

power, then you cannot reject the null that the group is irrelevant.   
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The Chow (or partial-F) Test 

Recall the formula for R
2
: 

R
2
 = 1-SSE/SST.   

The value of adding another predictor variable is that it reduces SSE.  Adding any predictor 

variable, even one chosen at random, will decrease the SSE.  A Chow/partial-F test determines 

whether adding a group of variables decreases the SSE by more than would be expected if you 

added a group of randomly constructed variables.   

Here is how it works.  Suppose you start with a model that excludes one or more 

variables from the right hand side.  You then add some additional variables to the model.  

Naturally, the SSE will decrease.  The Chow test is an F-test that determines whether the 

decrease in the SSE is larger than would have been expected due to random chance, given the 

number of added predictors and the degrees of freedom.   

Stata performs the F-test for us.  Suppose you want to know whether the variables X2 

and X3 should be added to a model that includes variable X1.  Simply type: 

regress Y X1 X2 X3 

test X2 X3 

Stata will test to determine if the simultaneous inclusion of X2 and X3 in the regression 

generates a statistically significant decrease in the SSE.   
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Working with the Results of the Chow Test 

1) Make sure you perform the test on the entire theoretically-linked group.  Do not do ex post 

data picking and choose from among that group.   (But do think carefully ex ante about whether 

variables really belong in the same group.) 

2) If the test is insignificant, throw out the entire group.  There is no reason to reject the null 

hypothesis that the group of variables were, in effect, no better than randomly constructed 

variables. 

3) If the test is significant, you have a choice.  You can keep the entire group, or if you are 

starved for degrees of freedom, you may throw out the insignificant members of the group.  Be 

careful when using dummy variables – significance is only based on comparisons with the 

omitted category!   If you throw out a specific category, then that category will be lumped in with 

the omitted category. 

Some students worry about how to define a group of variables.   In the yogurt project, 

should you lump together all prices or just competitor prices?  The answer is that you should 

come to the analyses with specific hypotheses.  Each hypothesis pertains to one or more 

variables.  This will guide your groupings.   For example, you are probably willing to claim that 

your yogurt’s own price will have an effect on your own sales.  Thus, it is okay to examine this 

coefficient in isolation.  On the other hand, you may wish to test whether “competitors’ prices” 

matter.  If this is your hypothesis, then the set of three competitors’ prices is a group. 

My advice is simple – try to identify one group of variables for each theoretical concept.  

If you are testing whether there is seasonality, test your season variables as a group.  If you are 

testing whether demographics affect Internet demand, test the demographic variables as a group.  

But try as best as you can to develop your theories before you look at your results. 


