Department of Electrical Engineering Assignment Date: 13/04/2020 <u>Course Details</u>				
	Student Details			
Name:		Student ID:		
Student Signature:		_		

01		Answer the following questions	Marks 15	
			CLO 01	
	(a)	Explain why some satellites employ cylindrical solar arrays, whereas others employ	Marks 05	
	Ì,	solar-sail arrays for the production of primary power. State the typical power output to be		
		expected from each type. Why is it necessary for satellites to carry batteries in addition to		
		solar-cell arrays?		
	(b)	Explain why an omnidirectional antenna must be used aboard a satellite for telemetry	Marks 05	
		and command during the launch phase. How is the satellite powered during this phase?		
	(c)	Explain what is meant by frequency reuse, and describe briefly two methods by which	Marks 05	
		this can be achieved in a satellite communication system.		
Q2		A LEO satellite is in a circular orbit 550 km above the earth. Assume the average	Marks 05	
		radius of the earth is 6378 km. Assume the earth eccentricity is 0.	CLO 02	
		a) Determine the orbital velocity of the satellite in m/sec		
		b) What is the orbital period, in minutes, for the LEO satellite?		
		c) From the above, determine the orbital angular velocity for the satellite, in		
		radians/sec.		
Q3		The orbit for an earth-orbiting satellite orbit has an eccentricity of 0.15 and a	Marks 05	
•		semimajor axis of 9000 km. Determine	CLO 02	
		a) its periodic time		
		b) the apogee height		
		c) the perigee height.		
		Assume a mean value of 6371 km for the earth's radius.		
Q4		A communications satellite is located in geostationary orbit at 90°W longitude.	Marks 05	
•		Calculate the range, azimuth, and elevation angle to the satellite as seen from	CLO 02	
		ground stations located in altitude 35°N and longitude 100°W.		