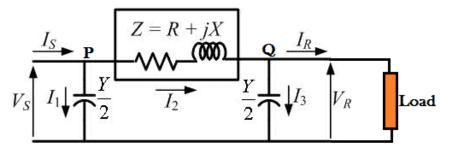
Lab#11 Line Performance of a Loaded System at Receiving End


Aim:

To determine line performance when loaded at receiving end

Theory:

Nominal π Representation of a Medium Transmission Line:

In case of a nominal π representation, the lumped series impedance is placed at the middle of the circuit whereas the shunt admittances are at the ends. As we can see from the diagram of the π network below, the total lumped shunt admittance is divided into 2 equal halves, and each half with value Y/2 is placed at both the sending and the receiving end while the entire circuit impedance is between the two. The shape of the circuit so formed resembles that of a symbol π , and for this reason it is known as the nominal π representation of a medium transmission line. It is mainly used for determining the general circuit parameters and performing load flow analysis.

Nominal T network of medium transmission line.

As we can see here, V_s and V_R is the supply and receiving end voltages respectively, and I_s is the current flowing through the supply end.

 I_R is the current flowing through the receiving end of the circuit.

 I_1 and I_3 are the values of currents flowing through the admittances. And

 I_2 is the current through the impedance Z.

Now applying KCL, at node P, we get.

 $\mathbf{I}_{s} = \mathbf{I}_{1} + \mathbf{I}_{2}....(1)$

Similarly applying KCL, to node Q

Now substituting equation (2) to equation (1)

 $I_{S} = I_{1} + I_{3} + I_{R}$

 $= Y/2V_{S} + Y/2V_{R} + I_{R}$ (3)

Now by applying KVL to the circuit,

$$V_{S} = V_{R} + ZI_{2}$$

= $V_{R} + Z (V_{R}Y/2 + I_{R})$
= $(Z Y/2 + 1) V_{R} + ZI_{R}$(4)

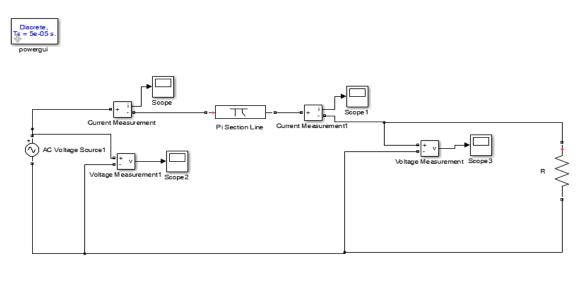
Now substituting equation (4) to equation (3), we get

$$I_{S} = Y/2[(Y/2 Z + 1) V_{R} + ZI_{R}] + Y/2V_{R} + I$$

= Y (Y/4 Z + 1) V_R + (Y/2Z + 1) I_R.....(5)

Comparing equation (4) and (5) with the standard ABCD parameter equations

$$V_{S} = AV_{R} + BI_{R}$$
$$I_{S} = CV_{R} + DI_{R}$$

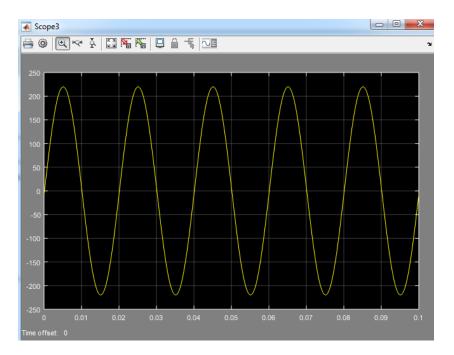

We derive the parameters of a medium transmission line as:

A =
$$(Y/2 Z + 1)$$

B = Z Ω
C = Y(Y/4 Z + 1)
D = $(Y/2Z + 1)$

Voltage regulation of transmission line is measure of change of receiving end voltage from no-load to full load condition.

% regulation = no load receiving end voltage – full load receiving end voltage/full load voltagex100%


Circuit Diagram:

Procedure:

- 1. Open Matlab-->Simulink--> File ---> New---> Model
- 2. Open Simulink Library and browse the components
- 3. Connect the components as per circuit diagram
- 4. Set the desired voltage and required frequency
- 5. Simulate the circuit using MATLAB
- 6. Obtain the line performance of a line.

Output:

So by clicking on the scope of voltage measurement we get the voltage and from this we determine the line performance of the system.

Lab Task:

- a) Explain the following:
- 1. Nominal π representation.
- 2. Nominal **T** representation.
- 3. End Condenser Method.

b) In which case does nominal "T" and nominal " π " are used and which one is superior for which kind of analysis?

c) Simulate the transmission line in Matlab Simulink.

Marks Obtained:

Remarks: