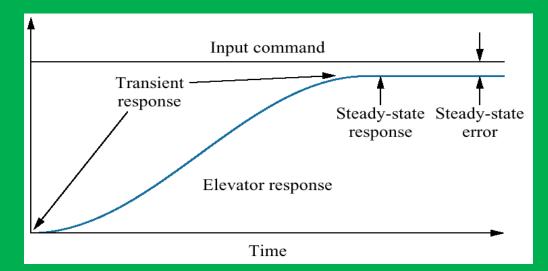


Design Aspects (Performance)

- Transient response
- Steady-state response
- Stability
- Robustness
 - Disturbance rejection
 - Sensitivity

System Responses

Transient responseSteady-state response



A distinct advantage of f/back control system is the ability to adjust transient and steady-state response

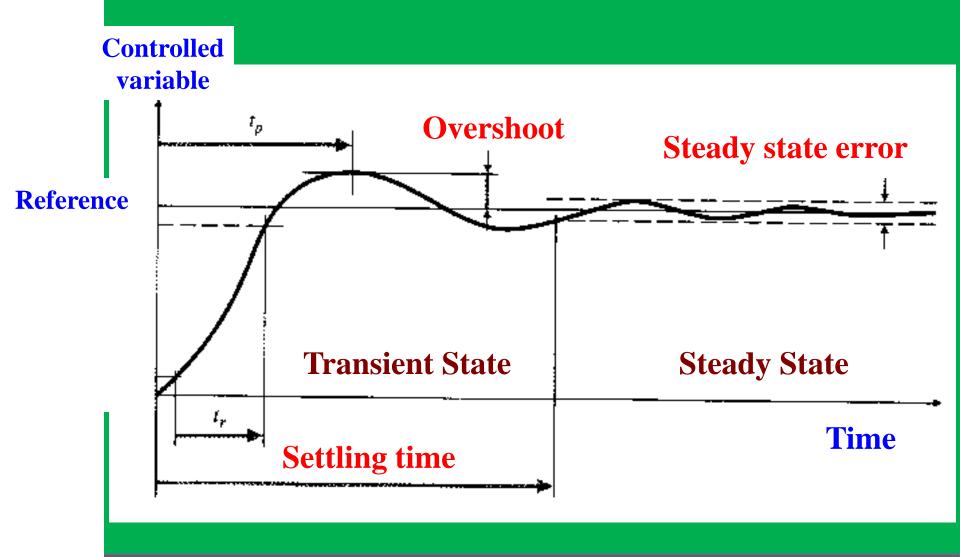
Laplace Transforms of Test Inputs $R(s) = \frac{n!}{s^{n+1}}$ $r(t) = t^n$ **Time domain** Input **Frequency domain** 1 Step: $1(t), \quad t \ge 0$ S $\frac{1}{s^2}$ Ramp: $t, t \ge 0$ $\frac{1}{s^3}$ Parabolic: $\frac{1}{2}t^2 \quad t \ge 0$ Sinusoidal: Aω $A\sin\omega t$ $s^2 + \omega^2$

Performance Indices

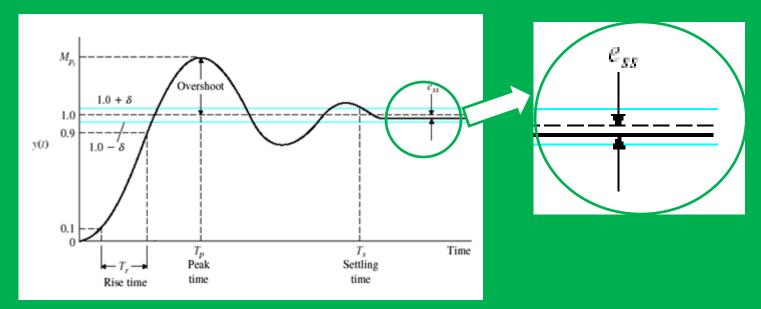
➤Transient Performance:

- Time delay (t_d)
- Rise time (t_r)
- Peak time (t_p)
- Settling time (t s)
- Percent overshoot (σ%)
 Stoody, state Performance
- Steady-state Performance:
 - Steady-state error

Transient Response Specifications



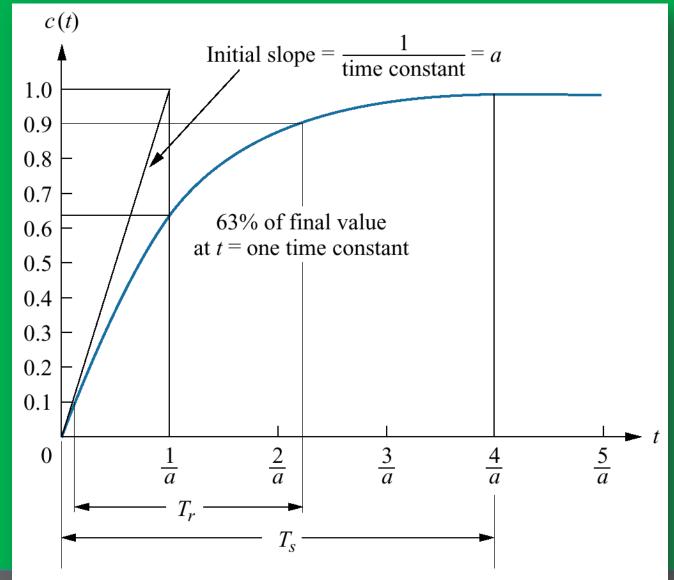
Steady State Error



Steady State Error (e_{ss}) : The difference b/w the steady state output value and the reference input value at steady state

Reflects the accuracy of the system

Transient Performance



Transient Performance

- Time Constant (т)
 - The time for the waveform to go 63% of its final value $\tau = \frac{1}{\tau}$

Rise Time (t_r)

The time for the waveform to go from 0.1 to 0.9 of its final value

$$t_r = \frac{2.2}{a}$$

a

> Settling Time (t_s)

The time for the response to reach and stay within 2% of its final value

$$t_s = \frac{4}{a}$$

Solved Example

For a system with the transfer function shown below, find the relevant response specifications

$$G(s) = \frac{50}{s+50}$$

i. Time constant (τ)
ii. Settling time (t_s)
iii. Rise time (t_r)

Time Response of 2nd Order System

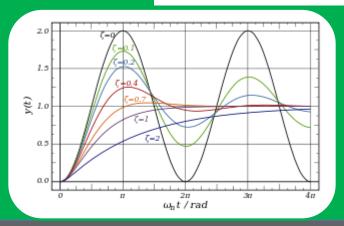
Preliminaries - Terminologies ➢ Natural frequency (ω_n)

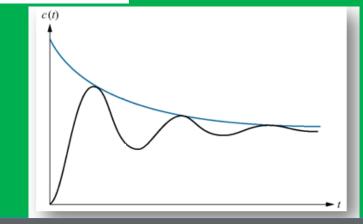
Freq. of oscillation of the system without damping

Damping ratio Quantity that compares the exponential decay frequency of the envelope to the natural frequency

_ Exponential decay frequency

Natural frequency (rad/s)





Response of 2nd Order System➤The model of a second-order system

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

Where, K: Gain ζ : Damping ratio ω_n : Undamped natural frequency

PROOF: See any Control Book

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

Roots of characteristic equation (Poles)

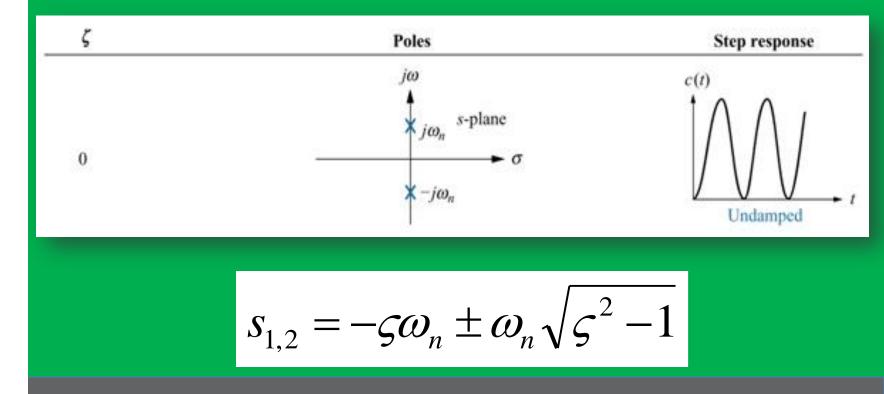
$$s^2 + 2\varsigma \omega_n s + \omega_n^2 = 0$$

$$s_{1,2} = -\varsigma \omega_n \pm \omega_n \sqrt{\varsigma^2 - 1}$$

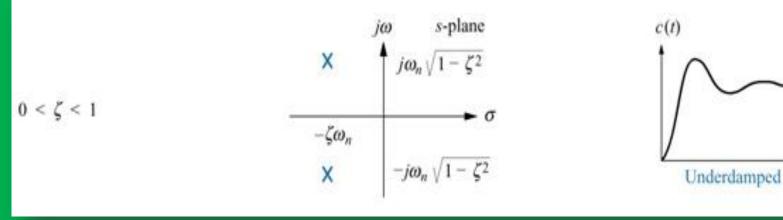
 \succ The response depends on ζ and ω_n

Unit Step Response

lf	Roots	Response
ζ=0	two complex conjugate	Undamped



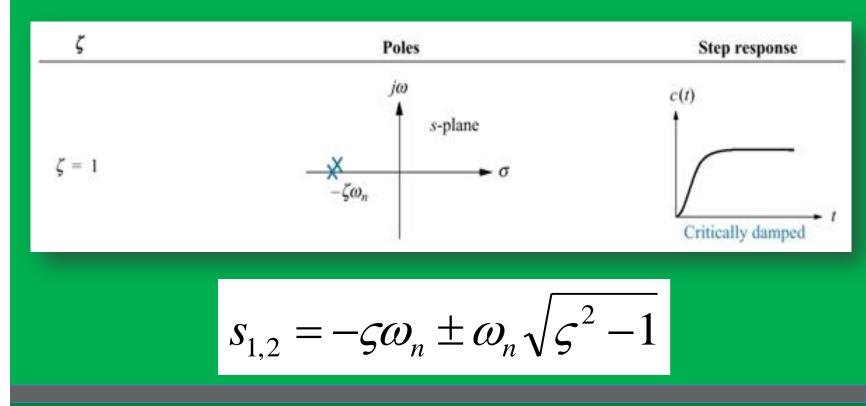
Unit Step Response				
lf	Roots	Response		
0<ζ<1	two –ive real-part	Underdamped		



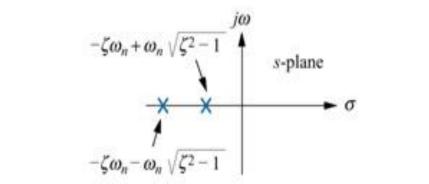
 $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$

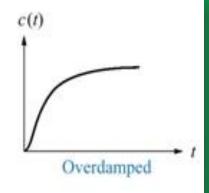
Unit Step Response

lf	Roots	Response
ζ=1	two equal –ive real	Critically damped



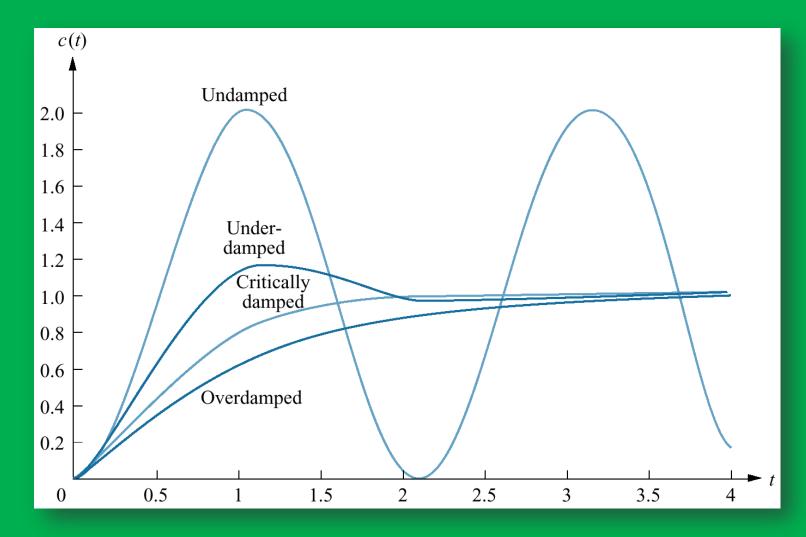
 $\zeta > 1$

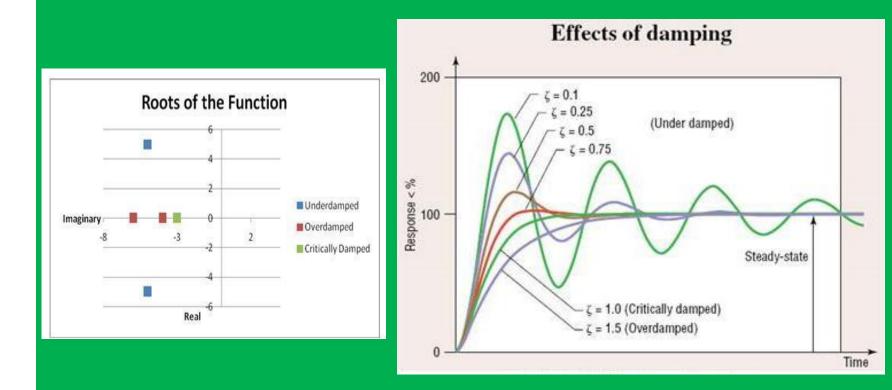




$$s_{1,2} = -\varsigma \omega_n \pm \omega_n \sqrt{\varsigma^2 - 1}$$

Unit Step Response				
lf	Roots	Response		
ζ<0	two +ive real-part	Unstable		
0<ζ<1	two –ive real-part	Underdamped		
ζ=1	two equal –ive real	Critically damped		
ζ>1	two distinct -ive real	Overdamped		
ζ=0	two complex conjugate	Undamped		





- Underdamped
 - Oscillatory response
 - No steady-state error
- Critically damped
 - Mono-incremental response
 - No oscillation
 - No steady-state error

Overdamped

- Mono-incremental response
- Slower than critically damped
- No oscillation
- No steady-state error

Transient Response Specifications

- \succ Rise Time (T_r)
 - The time for the waveform to go from 0.1 to 0.9 of its final value
- Peak Time (T_p)
 The time required to reach the first or maximum peak

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

 \succ Settling Time (T_s)

• The time required for the transient's damped oscillation to reach and stay within $\pm 2\%$ of the steady-state value $T_{T} = \frac{4}{4}$

$$T_s = \frac{4}{\zeta \omega_n}$$

Transient Response SpecificationsPercent Overshoot (%OS)

The amount that the waveform overshoots the steady-state, or final value at peak time, expressed as a percentage of the steady-state value

$$\% OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100\%$$

$$\zeta = \frac{-\ln(\% OS / 100)}{\sqrt{\pi^2 + \ln^2(\% OS / 100)}}$$

Effect of Poles & Zeros on System's Response

Concept of Pole-Zero

The concept of poles and zeros is fundamental to the analysis and design of control system Simplifies the evaluation of system response >The **poles** of a transfer function are Values of the Laplace Transform variables s, that cause the transfer function to become infinite. Decide the system behavior. >The zeros of a transfer function are

 Values of the Laplace Transform variable s, that cause the transfer function to become zero

Concept of Pole-Zero

Example G(s) = (s+2)/(s+5)

> Pole at s=-5 Zero at s=-2

