Recap - Chapter 1

1. Introduction to concepts of basic variables in an electric circuit >> current, voltage \& power.
2. Distinguished between power absorbed $(p=+V i)$ and power supplied ($p=-V i$).

Basic Laws - Chapter 2

2.1 Introduction.
2.2 Ohm's Law.
2.3 Nodes, Branches \& Loops.
2.4 Kirchhoff's Laws.
2.5 Series Resistors \& Voltage Division.
2.6 Parallel Resistors \& Current Division.
2.7 Wye-Delta Transformations.

2.1 Introduction

How to determine values of the basic variables in an electric circuit? What are the Basic Laws?
\square Fundamental laws that govern the electric circuit.

2.2 Ohm's Law (1)

Ohm's Law

The voltage across a resistor is directly proportional to the current, i flowing through the resistor.

$$
\therefore v \propto i
$$

Ohm further defined: The constant of proportionality for a resistor to be the resistance, R.

$$
\therefore v=i R
$$

2.2 Ohm's Law (2)

\square Thus, the resistance, R is the ability of an element to resist the flow of electric current; measured in ohms (Ω).

$$
\therefore R=\frac{v}{i}
$$

$$
\Rightarrow 1 \Omega=\frac{1 \mathrm{~V}}{1 \mathrm{~A}}
$$

2.2 Ohm's Law (3)

\square Passive sign convention;
a) $\quad v=i R \quad \gg$ current from hi pot. to lo pot.
b) $v=-i R \quad \gg$ current from lo pot. to hi pot.

2.2 Ohm's Law (4)

\square Extreme cases: As R can vary from 0 to $\alpha_{\text {it }}$ is important that we consider these two extreme possible values of R.
$R=0 \quad \gg$ short circuit (ideal circuit)
However, in practice, a short circuit is usually a connecting wire, assumed to be a perfect conductor.

(a) Short circuit $(R=0)$.
\therefore A short circuit is a circuit that has circuit element with resistance approaching 0 .

$$
v=i R=0 \quad \therefore R \rightarrow 0 \quad ; \quad v=0 ; \quad i=x
$$

2.2 Ohm's Law (5)

$$
R=\infty \gg \text { open circuit }
$$

\therefore A open circuit is a circuit that has circuit element with resistance approaching ∞.

(b) Open circuit $(R=\infty)$.

$$
i=\lim _{R \rightarrow \infty} \frac{v}{R}=0 \quad \therefore R \rightarrow \infty \quad ; \quad i=0 ; \quad v=x
$$

2.2 Ohm's Law (6)

\square Resistors
Two types
Fixed : resistance remains constant.
Variable : have adjustable resistance.
\square Not all resistors obey Ohm's Law.
a) Linear resistors obey
(e.g. normal resistors)
(a)
b) Non-linear resistors do not obey. (e.g. diode)

However, throughout the course, ALL resistors are assumed LINEAR.

(b)

2.2 Ohm's Law (7)

- Conductance

if	$=\frac{v}{i}$	\rightarrow	resist current,
then			
$\frac{1}{R}$	$=\frac{i}{v}$	\rightarrow	conduct current.

This special quantity, $\frac{1}{R}$ is known as conductance of an element, G.

2.2 Ohm's Law (8)

\square Conductance is a measurement of how well an element will conduct electric current.
\square It is measured in mhos ($\boldsymbol{J})$ or siemens (S).

$$
1 S=1 \mathrm{~S}=1 \frac{\mathrm{~A}}{\mathrm{~V}}
$$

\square In this course, we will use the SI unit of siemens (S).

2.2 Ohm's Law (9)

13

Power in Resistor \& Conductor
Resistor : $p=v i=(i R) i=i^{2} R=v\left(\frac{v}{R}\right)=\frac{v^{2}}{R}$
Conductor: $p=v i=v(v G)=v^{2} G=\left(\frac{i}{G}\right) i=\frac{i^{2}}{G}$
Note that R and G are always positive. As is i^{2} and v^{2}.
\therefore Power dissipated in or absorbed by the resistor is always positive. Confirms theory - resistor is a passive element, cannot generate energy.

2.2 Ohm's Law (10)

\square Practice Problem 2.1

The essential component of a toaster is an electrical element (a resistor) that converts electrical energy to heat energy. How much current is drawn by a toaster with resistance 10Ω at 110 V ?

Solution

$$
i=V / R=110 / 10=\mathbf{1 1} \mathbf{~ A}
$$

2.2 Ohm's Law (11)

15

- Practice Problem 2.2

For the circuit shown below, calculate the voltage v, the conductance G, and the power p.

Solution
(a) $v=i R=2 \mathrm{mAx} 10 \mathrm{k} \Omega=\mathbf{2 0} \mathrm{V}$
(b) $G=1 / R=1 / 10 \mathrm{k} \Omega=\mathbf{1 0 0} \boldsymbol{\mu} \mathrm{S}$
(c) $p=v i=20$ volts $\mathrm{x} 2 \mathrm{~mA}=\mathbf{4 0} \mathrm{mW}$

2.2 Ohm's Law (12)

- Practice Problem 2.3

A resistor absorbs an instantaneous power of $20 \cos ^{2}(t) \mathrm{mW}$ when connected to a voltage source $v=10 \cos (t) \mathrm{V}$. Find i and R.

Solution

$$
\begin{aligned}
p=v i \text { thus, } i=p / v & =\left[20 \cos ^{2}(\mathrm{t}) \mathrm{mW}\right] /[10 \cos (\mathrm{t}) \mathrm{V}] \\
& =\mathbf{2} \boldsymbol{\operatorname { c o s } (\mathbf { t }) \mathbf { m A }} \\
R=v / i & =[10 \cos (\mathrm{t}) \mathrm{V}] /[2 \cos (\mathrm{t}) \mathrm{mA}] \\
& =\mathbf{5} \mathbf{k} \Omega
\end{aligned}
$$

2.3 Nodes, Branches \& Loops (1)

\square A branch represents a single element (voltage source, current source or resistor).
\square A node is the point of connection between 2 or more branches.
\square Aloop is any closed path in a circuit.

2.3 Nodes, Branches \& Loops (2)

\square A network with ' b ' branches, ' n ' nodes, and ' l ' independent loops will satisfy the fundamental theorem of network topology:

$$
b=l+n-1
$$

$\square \geq 2$ elements are in series if they exclusively share a single node.
$\square \geq 2$ elements are in parallel if they are connected to the same 2 nodes.

2.4 Nodes, Branches \& Loops (3)

19

Example 1

How many branches, nodes and loops are there?

2.4 Nodes, Branches \& Loops (4)

Solution 1

Original circuit

Equivalent circuit 5 branches, 3 nodes and 3 loops

$$
b=l+n-1 \quad \therefore 5=3+3-1
$$

2.3 Nodes, Branches \& Loops (5)

21

Example 2

Should we consider it as one

How many branches, nodes and loops are there?

2.3 Nodes, Branches \& Loops (6)

22

Solution 2

Consider as two branches,

7 branches, 4 nodes and 4 loops

$$
b=l+n-1 \quad \therefore 7=4+4-1
$$

2.4 Kirchhoff's Laws (2)

KCL : the algebraic sum of currents entering a node (or a closed boundary) is zero.

$N=$ no. of branches connected to the node;
$i_{n}=n$th current entering the node.

2.4 Kirchhoff's Laws (3)

25

\square Alternatively, the sum of currents entering a node equals the sum of currents leaving a node.

$$
\sum i_{\text {in }}=\sum i_{\text {out }}
$$

Example:

$$
i_{1}-i_{2}+i_{3}+i_{4}-i_{5}=0
$$

or

$$
i_{1}+i_{3}+i_{4}=i_{2}+i_{5}
$$

2.4 Kirchhoff's Laws (4)

26
KCL can be applied to obtain the combined current, when current sources are connected in parallel.

Original circuit

Equivalent circuit

2.4 Kirchhoff's Laws (5)

27

Example 3

\square Determine the current I for the circuit shown in the figure below.

$$
\begin{gathered}
-I-4+(-3)+2=0 \\
I+4-(-3)-2=0 \\
\Rightarrow I=-5 A
\end{gathered}
$$

This indicates that the actual current for I is flowing in the opposite direction.

2.4 Kirchhoff's Laws (6)

28
KVL : the algebraic sum of all voltages around a closed path (or loop) is zero.

$$
\begin{aligned}
& M=\text { no. of voltages (or no. of branches) in a loop; } \\
& v_{m}=m \text { th voltage. }
\end{aligned}
$$

2.4 Kirchhoff's Laws (7)

29
Alternatively, the sum of voltage drops equals the sum of voltage rise.

$$
\sum v_{d r o p}=\sum v_{\text {rise }}
$$

Example:

$$
-v_{1}+v_{2}+v_{3}-v_{4}+v_{5}=0
$$

or

$$
v_{2}+v_{3}+v_{5}=v_{1}+v_{4}
$$

2.4 Kirchhoff's Laws (8)

KVL can be applied to obtain the combined voltage, when voltage sources are connected in series.

2.4 Kirchhoff's Laws (9)

31

Practice Problem 2.5

Find v_{1} and v_{2} in the circuit given below.

2.4 Kirchhoff's Laws (10)

Solution to Practice Prob. 2.5

Applying KVL to the loop we get:
$-10+4 \mathrm{i}-8+2 \mathrm{i}=0$ which leads to $\mathrm{i}=3 \mathrm{~A}$
$\mathrm{v}_{1}=4 \mathrm{i}=\underline{\mathbf{1 2} \mathrm{V}}$ and $\mathrm{v}_{2}=-2 \mathrm{i}=\underline{\mathbf{- 6}} \mathbf{V}$

2.4 Kirchhoff's Laws (11)

33

Practice Problem 2.6

Find v_{x} and v_{o} in the circuit given below.

2.4 Kirchhoff's Laws (12)

34
Solution to Practice Prob. 2.6

$$
\begin{aligned}
& \text { Applying KVL to the loop we get: } \\
& -35+10 i+2 v_{x}+5 i=0 \\
& \text { But, } \mathrm{v}_{\mathrm{x}}=10 \mathrm{i} \text { and } \mathrm{v}_{0}=-5 \mathrm{i} \text {. Hence, } \\
& -35+10 \mathrm{i}+20 \mathrm{i}+5 \mathrm{i}=0 \text { which leads to } \mathrm{i}=1 \mathrm{~A} \text {. } \\
& \text { Thus, } \mathrm{v}_{\mathrm{x}}=\underline{\mathbf{1 0 V}} \text { and } \mathrm{v}_{0}=\underline{-5 \mathrm{~V}}
\end{aligned}
$$

2.4 Kirchhoff's Laws (13)

35

Practice Problem 2.7

Find v_{o} and i_{o} in the circuit given below.

2.4 Kirchhoff's Laws (14)

Solution to Practice Prob. 2.7

Applying KCL, $6=\mathrm{i}_{0}+\left[\mathrm{i}_{0} / 4\right]+\left[\mathrm{v}_{0} / 8\right]$, but $\mathrm{i}_{0}=\mathrm{v}_{0} / 2$
Which leads to: $6=\left(\mathrm{v}_{0} / 2\right)+\left(\mathrm{v}_{0} / 8\right)+\left(\mathrm{v}_{0} / 8\right)$
thus, $\mathrm{v}_{0}=\underline{8 \mathrm{~V}}$ and $\mathrm{i}_{0}=\underline{4 \mathrm{~A}}$

2.4 Kirchhoff's Laws (15)

37

Practice Problem 2.8

Find the currents and voltages in the circuit shown in the circuit given below.

2.4 Kirchhoff's Laws (16)

Solution to Practice Prob. 2.8

$\mathbf{K C L} \quad$ At the top node $\quad \mathrm{i}_{1}=\mathrm{i}_{2}+\mathrm{i}_{3}$
KVL For loop 1
$-5+V_{1}+V_{2}=0$ or
$\mathrm{V}_{1}=5-\mathrm{V}_{2}$
KVL For loop 2
$-\mathrm{V}_{2}+\mathrm{V}_{3}-3=0$
$\mathrm{V}_{3}=\mathrm{V}_{2}+3$

2.4 Kirchhoff's Laws (17)

cont. Solution to Practice Prob. 2.8

Using (1) and Ohm's law, we get

$$
\left(\mathrm{V}_{1} / 2\right)=\left(\mathrm{V}_{2} / 8\right)+\left(\mathrm{V}_{3} / 4\right)
$$

and now using (2) and (3) in the above yields

$$
\left[\left(5-\mathrm{V}_{2}\right) / 2\right]=\left(\mathrm{V}_{2} / 8\right)+\left(\mathrm{V}_{2}+3\right) / 4
$$

or

$$
\mathrm{V}_{2}=\underline{\mathbf{2} \mathrm{V}}
$$

$$
\mathrm{V}_{1}=5-\mathrm{V}_{2}=\underline{\mathbf{V}}, \mathrm{V}_{3}=2+3=\underline{\mathbf{5 V}}, \mathrm{i}_{1}=(5-2) / 2=\underline{\mathbf{1 . 5}} \mathbf{A},
$$

$$
\mathrm{i}_{2}=250 \mathrm{~mA}, \overline{\mathrm{i}_{3}}=1.25 \mathrm{~A}
$$

2.5 Series Resistors \& Voltage Division (1)

What is Series?

Two or more elements are in series if they exclusively share a single node and consequently carry the same current.

The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances.

$$
R_{e q}=R_{1}+R_{2}+\cdots+R_{N}=\sum_{n=1}^{N} R_{n}
$$

2.5 Series Resistors \& Voltage Division (2)

Apply KVL (clockwise dir.)

$$
-v+v_{1}+v_{2}=0
$$

Apply Ohm's Law

$$
\begin{aligned}
-v+i R_{1}+i R_{2} & =0 \\
i\left(R_{1}+R_{2}\right) & =v
\end{aligned}
$$

$$
i=\frac{v}{R_{1}+R_{2}}=\frac{v}{R_{e q}}
$$

$$
\therefore R_{e q}=R_{1}+R_{2}
$$

b Equivalent circuit

2.5 Series Resistors \& Voltage Division (3)

42
To determine the voltage across each resistor;
Ohm's Law

$$
v_{1}=i R_{1}, \quad v_{2}=i R_{2}
$$

Substitute: $i=\frac{v}{R_{e q}}=\frac{v}{R_{1}+R_{2}}$

$$
v_{1}=\frac{R_{1}}{R_{1}+R_{2}} v, \quad v_{2}=\frac{R_{2}}{R_{1}+R_{2}} v
$$

2.5 Series Resistors \& Voltage Division (4)

\square Note that source voltage v is divided among the resistors in direct proportion to their resistances. \Rightarrow principle of voltage division
\square In general, if a voltage supply has N resistors in series with the source voltage v, the nth resistor $\left(R_{n}\right)$ can be expressed as:

$$
v_{n}=\frac{R_{n}}{R_{1}+R_{2}+\cdots+R_{N}} v
$$

2.5 Series Resistors \& Voltage Division (5)

44
Example 4

2.6 Parallel Resistors \& Current Division (1)

\square What is Parallel?
Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.
\square The equivalent resistance of 2 parallel resistors is equal to the product of their resistances divided by their sum.

$$
R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

2.6 Parallel Resistors \& Current Division (2)

Node b

$$
\begin{aligned}
& \text { Apply KCL at node } a \\
& \qquad i=i_{1}+i_{2}
\end{aligned}
$$

Apply Ohm's Law

$$
\begin{gathered}
i=\frac{v}{R_{1}}+\frac{v}{R_{2}}=v\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{v}{R_{e q}} \\
\therefore \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{gathered}
$$

2.6 Parallel Resistors \& Current Division (3)

47
The equivalent resistance of a circuit with N resistors in parallel is:

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}
$$

The equivalent conductance of a circuit with N resistors in parallel is the sum of their individual conductance:

$$
G_{e q}=G_{1}+G_{2}+\cdots+G_{N}
$$

2.6 Parallel Resistors \& Current Division (4)

\square To determine the current through each resistor;

$$
i_{1}=\frac{i R_{2}}{R_{1}+R_{2}}, \quad i_{2}=\frac{i R_{1}}{R_{1}+R_{2}}
$$

2.6 Parallel Resistors \& Current Division (5)

49
\square Note that the total current i is shared by the resistors in inverse proportion to their resistances.
\Rightarrow principle of current division
\square Extreme cases:

When $\boldsymbol{R}_{2}=\mathbf{0}$, the entire current i bypasses R_{l} and flows through the short circuit $R_{2}=0$, the path of least resistance.

2.6 Parallel Resistors \& Current Division (6)

2.6 Parallel Resistors \& Current Division (7)

51

Example 5

2.6 Parallel Resistors \& Current Division (8)

Practice Problem 2.9

By combining the resistors in the circuit below, find $R_{e q}$

2.6 Parallel Resistors \& Current Division (9)

Soln to Practice Prob 2.9

53

Combining the $4 \Omega, 5 \Omega$ and 3Ω resistors in series gives $4+5+3$
$=12 \Omega$
Then, $4 \Omega / / 12 \Omega$ gives
$[4 \times 12] /[4+12]=3 \Omega$
\therefore Equivalent circuit:

Thus, $R_{\text {eq }}=1+2+6 / / 6$
$=6 \Omega$

2.6 Parallel Resistors \& Current Division (10)

Practice Problem 2.10

Find $R_{a b}$ for the circuit shown below.

2.6 Parallel Resistors \& Current Division (11)

Soln to Practice Prob 2.10

55

Combining $18 \Omega / / 9 \Omega$ gives
$[9 \times 18] /[9+18]=6 \Omega$
Then, $5 \Omega / / 20 \Omega$ gives
$[5 \times 20] /[5+20]=4 \Omega$
\therefore Equivalent circuit:

2.6 Parallel Resistors \& Current Division (12)

 cont. Soln to Practice Prob 2.10
\therefore Equivalent circuit:

Combine 4_{Ω} and 2_{Ω}, get 6Ω.
Then $6 / / 6$ gives 3Ω.
Thus, R eq $=8+3$

$$
=11 \Omega
$$

2.6 Parallel Resistors \& Current Division (13)

Practice Problem 2.11

Calculate $G_{e q}$ for the circuit shown below.

2.6 Parallel Resistors \& Current Division (14)

Soln to Practice Prob 2.11

$8 / / 4=8+4=12 \mathrm{~S}$
6 in series with $12=$
$[6 \times 12][6+12]=4 \mathrm{~S}$
$4 / / 2=4+2=6 \mathrm{~S}$
\therefore Equivalent circuit:

12 in series with $6=$
$[12 x 6][12+6]=4 \mathrm{~S}$
Thus, $\mathrm{G}_{\text {eq }}=4 \mathrm{~S}$

2.6 Parallel Resistors \& Current Division (15)

Practice Problem 2.12

Find v_{1} and v_{2} for the circuit shown below. Also calculate i_{1} and i_{2} and the power dissipated in the 12Ω and 40Ω resistors.

2.6 Parallel Resistors \& Current Division (16)

Soln to Practice Prob 2.12

60

$12 / / 6=[6 \times 12][6+12]=4$
$10 / / 40=[10 \times 40][10+40]=8$
\therefore Equivalent circuit:

2.6 Parallel Resistors \& Current Division (17) cont. Soln to Practice Prob 2.12

61

> Use voltage division,
> $v_{1}=[4 /(4+8)](15)=5 \mathrm{~V}$
> $v_{2}=[8 /(4+8)](15)=10 \mathrm{~V}$
$i_{l}=v_{l} / 12=5 / 12=416.7 \mathrm{~mA}$
$i_{2}=v_{2} / 40=10 / 40=250 \mathrm{~mA}$
$p_{1}=v_{1} i_{l}=5 \mathrm{x}(5 / 12)=2.083 \mathrm{~W}$
$p_{2}=v_{2} i_{2}=10 \times(0.25)=2.5 \mathrm{~W}$

2.6 Parallel Resistors \& Current Division (18)

Practice Problem 2.12

For the circuit given below, find: (a) v_{1} and v_{2}, (b) the power dissipated in the 3 k and $20 \mathrm{k} \Omega$ resistors, and (c) the power supplied by the current source.

2.6 Parallel Resistors \& Current Division (19)

Soln to Practice Prob 2.13

63

Ohms' Law
$v_{1}=5 \mathrm{~mA} \times 3 \mathrm{k}=15 \mathrm{~V}$
$v_{2}=5 \mathrm{mAx} 4 \mathrm{k}=20 \mathrm{~V}$
Simplify circuit, to get:
$p_{3 k}=v_{1} i_{l}=15 \times 5 \mathrm{~mA}=75 \mathrm{~mW}$
$p_{20 k}=v_{2}^{2} / 20 \mathrm{k}=400 / 20 \mathrm{k}=20 \mathrm{~mW}$

Power supplied, $p_{o}=v_{o} i_{o}$
$v_{o}=4 \mathrm{k} \mathrm{x} i_{1}=4 \mathrm{k} \mathrm{x} i_{2}=20 \mathrm{~V}$
$p_{o}=20 \mathrm{~V}$ x10mA $=200 \mathrm{~mW}$

2.7 Wye-Delta Transformations (1)

64

Why Transform?

Often, in circuit analysis, the resistors are NOT in parallel nor series.

Example:

The equivalent resistance is found by simplifying circuits using three-terminal equivalent networks.

2.7 Wye-Delta Transformations (2)

65
Three-terminal network equivalents
(i) wye (Y) or tee (T)

(ii) delta (Δ) or pi (Π)

2.7 Wye-Delta Transformations (3)

Superposition of Y and Δ networks

Used as an aid in transforming one to the other.

2.7 Wye-Delta Transformations (4)

67

- Delta to Wye Conversion

Each resistor in the Y network is a product of the resistors in adjacent Δ branches, divided by the sum of the three Δ resistors.

$$
\begin{aligned}
R_{1} & =\frac{R_{b} R_{c}}{\left(R_{a}+R_{b}+R_{c}\right)} \\
R_{2} & =\frac{R_{c} R_{a}}{\left(R_{a}+R_{b}+R_{c}\right)} \\
R_{3} & =\frac{R_{a} R_{b}}{\left(R_{a}+R_{b}+R_{c}\right)}
\end{aligned}
$$

2.7 Wye-Delta Transformations (5)

- Wye to Delta Conversion

Each resistor in the Δ network is the sum of all possible products of Y resistors taken two at a time, divided by the opposite Y resistor.

$$
\begin{aligned}
& R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} \\
& R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} \\
& R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
\end{aligned}
$$

2.7 Wye-Delta Transformations (6)

Practice Problem 2.14
Transform the wye network, in the figure shown below, to a delta network.

2.7 Wye-Delta Transformations (7)

Solution for P.P. 2.14

$R_{a}=\left[R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}\right] / R_{1}=[10 \times 20+20 \times 40+40 \times 10] / 10=\underline{140}$ ohms
$R_{b}=\left[R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}\right] / R_{2}=1400 / 20=\underline{70} \mathbf{~ o h m s}$
$R_{c}=\left[R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}\right] / R_{3}=1400 / 40=\underline{\mathbf{3 5} \text { ohms }}$

2.7 Wye-Delta Transformations (8)

Practice Problem 2.15

For the bridge network in the figure below, find $R_{a b}$ and i.

2.7 Wye-Delta Transformations (9)

${ }_{2}$

Solution for P.P. 2.15

We first find the equivalent resistance, R. We convert the delta sub-network to a wye connected form as shown below:

2.7 Wye-Delta Transformations (10)

73 cont. Solution for P.P. 2.15
$\mathrm{R}_{\mathrm{a}^{\prime} \mathrm{n}}=20 \times 30 /[20+30+50]=6 \mathrm{ohms}$
$\mathrm{R}_{\mathrm{b}^{\prime} \mathrm{n}}=20 \mathrm{x} 50 / 100=10 \mathrm{ohms}$
$\mathrm{R}_{\mathrm{c}^{\prime} \mathrm{n}}=30 \times 50 / 100=15 \mathrm{ohms}$

Thus, $\mathrm{R}_{\mathrm{ab}}=13+(24+6) \|(10+10)+15=28+30 \times 20 /(30+20)=\underline{40}$ ohms.
$\mathbf{i}=100 / \mathrm{R}_{\mathrm{ab}}=100 / 40=\underline{\mathbf{2 . 5} \mathrm{amps}}$

