# Data Structures and Algorithms 

## W4- Lecture 1,2

Trees

Engr. Bushra Tahir

Department of Electrical Engineering
Iqra National University

## Introduction

- The data structures that we have discussed in previous lectures are linear data structures.
- There are a number of applications where linear data structures are not appropriate. In such cases, there is need of some non-linear data structure.
- Some examples will show us that why non-linear data structures are important. Tree is one of the non-linear data structures.


## Genealogy tree



## Example

- The thing to be noted in this genealogical tree is that it is not a linear structure
- We develop the tree top-down, in which the father of the family is on the top with their children downward.
- In the tree of a company, the CEO of the company is on the top, followed downwardly by the managers and assistant managers.


## Why tree data structure?

- In some applications, the searching in linear data structures is very tedious.
- Suppose we want to search a name in a telephone directory having 100000 entries. If this directory is in a linked list manner, we will have to traverse the list from the starting position.
- We have to traverse on average half of the directory if we find a name. We may not find the required name in the entire directory despite traversing the whole list.
- Thus it would be better to use a data structure so that the search operation does not take a lot of time. Taking into account such applications, we will now talk about a special tree data structure, known as binary tree.


## Binary Tree

- A binary tree is a finite set of elements that is either empty or is partitioned into three disjoint subsets. The first subset contains a single element called the root of the tree. The other two subsets are themselves binary trees called the left and right sub-trees".

OR

- In computer science, a binary tree is a tree data structure in which each node has at most two children, which are referred to as the left child and the right child.
- The definition of tree is of recursive nature.


## Binary Tree

- Each element of a binary tree is called a node of the tree.
- Following figure shows a binary tree.



## Sub Classing

- The same process of sub classing the tree can be done at the second level.
- The left and right subtrees can also be divided into three parts similarly.
- Now consider the left subtree of node A. This left subtree is also a tree.
- The node $B$ is the root of this tree and its left subtree is the node $D$. There is only one node in this left subtree. The right subtree of the node $B$ consists of two nodes i.e. E and G.


## Sub Classing

- The following figure shows the analysis of the tree with root B.



## Sub Classing

- On going one step down and considering right subtree of node $B$, we see that $E$ is the root and its left subtree is the single node $G$.
- There is no right subtree of node E or we can say that its right subtree is empty.


## Sub Classing

- This is shown in the following figure.


Now the left sub tree of $E$ is the single node $G$. This node $G$ can be considered as the root node with empty left and right sub trees.

## Sub Classing

- Now if we carry out the same process on the right subtree of root node A, the node $C$ will become the root of this right subtree of $A$.
- The left subtree of this root node C is empty. The right subtree of $C$ is made up of three nodes $\mathrm{F}, \mathrm{H}$ and I .
- This is shown in the figure below.



## Sub Classing

- Now the right subtree of the node C will be considered as a tree. The root of this tree is the node $F$. The left and right subtrees of this root $F$ are the nodes H and I respectively.
- The following figure depicts this.



## A non-tree structure

- We make (draw) a tree by joining different nodes with lines. But we cannot join any nodes whichever we want to each other. Consider the following figure.



## A non-tree structure

- It is the same tree, made earlier with a little modification.
- In this figure we join the node G with D. Now this is not a tree. It is due to the reason that in a tree there is always one path to go (from root) to a node. But in this figure, there are two paths (tracks) to go to node G.
- One path is from node $A$ to $B$, then $B$ to $D$ and $D$ to $G$. That means the path is A-B-D-G. We can also reach to node $G$ by the other path that is the path A-B-E-G.
- If we have such a figure, then it is not a tree.


## A non-tree structure

- Similarly if we put an extra link between the nodes A and $B$, as in the figure below, then it is also no more a tree. This is a multiple graph as there are multiple (more than 1) links between node $A$ and $B$.



## A non-tree structure



## Terminologies of a binary tree

- Now let's discuss different terminologies of the binary tree. We will use these terminologies in our different algorithms. Consider the following figure.



## Terminologies of a binary tree

- $A$ is the parent node with $B$ and $C$ as the left and right descendants respectively.
- We can use the words descendant and child interchangeably.
- Nodes D, G, H and I are said leaf nodes as there is no descendant of these nodes.


## Strictly Binary Tree

- A binary tree is said to be a strictly binary tree if every non-leaf node in a binary tree has non-empty left and right subtrees.



## Strictly Binary Tree

- We know that a leaf node has no left or right child. Thus nodes D, G, H and I are the leaf nodes. The non-leaf nodes in this tree are $A, B, C, E$ and $F$.
- Now according to the definition of strictly binary tree, these non-leaf nodes (i.e. A, B, C, E and F) must have left and right subtrees (Childs).
- The node $A$ has left child $B$ and right child $C$. The node $B$ also has its left and right children that are $D$ and $E$ respectively.
- The non-leaf node C has right child F but not a left one.


## Strictly Binary Tree

- Now we add a left child of C that is node J .
- Here C also has its left and right children. The node F also has its left and right descendants, H and I respectively.
- Now the last non-leaf node E has its left child, G but no right one. We add a node K as the right child of the node E.
- Now all the non-leaf nodes (A, B, C, E and F) have their left and right children so according to the definition, it is a strictly binary tree.


## Level

- The level of a node in a binary tree is defined as follows:
- Root has level 0,
- Level of any other node is one more than the level its parent (father).
- The depth of a binary tree is the maximum level of any leaf in the tree.


## Level



## Level

- The root node has level 0.
- The level of $B$ and $C$ will be 1 (i.e. level of $A+1$ ).
- The levels of the tree increase, as the tree grows downward more. The number of nodes also increases.


## Depth of Binary Tree

- By seeing the level of a tree, we can tell the depth of the tree.
- If we put level with each node of the binary tree, the depth of a binary tree is the maximum level.
- In the previous figure, the deepest node is at level 3 i.e. the maximum level is 3 . So the depth of this binary tree is 3.


## Complete Binary Tree

- "A complete binary tree of depth d is the strictly binary tree all of whose leaves are at level $d^{\prime \prime}$.



## Complete Binary Tree

- The leaf nodes of the tree are at level 3 and are H, I, J, K, $\mathrm{L}, \mathrm{M}, \mathrm{N}$ and O . There is no such a leaf node that is at some level other than the depth level $d$ i.e. 3 .
- All the leaf nodes of this tree are at level 3 (which is the depth of the tree i.e. d). So this is a complete binary tree.


## Level



In a complete binary tree at a particular level $k$, the number of nodes is equal to $2^{k}$.

## Number of Nodes

- This formula for the number of nodes is for a complete binary tree only. It is not necessary that every binary tree fulfill this criterion.
- We can calculate the total number of nodes in a complete binary tree of depth $d$ by adding the number of nodes at each level. This can be written as the following summation.

$$
2^{0}+2^{1}+2^{2}+\ldots \ldots . . .+2^{d}=c_{j=0}^{d i} 2 j=2^{d+1}-1
$$

## Number of Nodes

- Thus according to this summation, the total number of nodes in a complete binary tree of depth $d$ will be $2 d+1$ 1. Thus if there is a complete binary tree of depth 4 , the total number of nodes in it will be calculated by putting the value of $d$ equal to 4 . It will be calculated as under.

$$
2^{4+1}-1=2^{5}-1=32-1=31
$$

- Thus the total number of nodes in the complete binary tree of depth 4 is 31 .


## Leaf and Non-leaf Nodes

- We know that the total number of nodes (leaf and nonleaf) of a complete binary tree of depth $d$ is equal to $2 d+1$ - 1 .
- In a complete binary tree, all the leaf nodes are at the depth level $d$. So the number of nodes at level $d$ will be $2^{d}$. These are the leaf nodes.
- The difference of total number of nodes and number of leaf nodes will give us the number of non-leaf (inner) nodes. It will be $(2 d+1-1)-2^{d}$ i.e. $2^{d}-1$.
- Thus we conclude that in a complete binary tree, there are $2^{d}$ leaf nodes and $2^{d}-1$ non-leaf (inner) nodes.


## Level of a Complete Binary Tree

- We can find the depth of a complete binary tree if we know the total number of nodes. If we have a complete binary tree with $n$ total nodes, then by the equation of the total number of nodes we can write

$$
\text { Total number of nodes }=2^{d+1}-1=n
$$

To find the value of $d$, we solve the above equation as under

$$
\begin{aligned}
& 2^{d+1}-1=n \\
& 2^{d+1}=n+1 \\
& d+1=\log _{2}(n+1) \\
& d=\log _{2}(n+1)-1
\end{aligned}
$$

## Example

- After having $n$ total nodes, we can find the depth $d$ of the tree by the above equation.
- Suppose we have 100,000 nodes. It means that the value of $n$ is 100,000 , reflecting a depth i.e. $d$ of the tree will be $\log _{2}(100000+1)-1$, which evaluates to 15 . So the depth of the tree will be 15 . In other words, the tree will be 15 levels deep


## Operations on Binary Tree

We can define different operations on binary trees.

- If $p$ is pointing to a node in an existing tree, then
- left(p) returns pointer to the left subtree
- right $(p)$ returns pointer to right subtree
- parent $(p)$ returns the father of $p$
- info(p) returns content of the node.


## Tree Traversal

- Traversal is a process to visit all the nodes of a tree and may print their values too.
- Because, all nodes are connected via edges (links) we always start from the root (head) node.
- We cannot randomly access a node in a tree.


## Types

There are three ways which we use to traverse a tree

- In-order Traversal
- Pre-order Traversal
- Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the values it contains.

## In-order Traversal

- In this traversal method, the left subtree is visited first, then the root and later the right sub-tree. We should always remember that every node may represent a subtree itself.
- If a binary tree is traversed in-order, the output will produce sorted key values in an ascending order.


## In-order Traversal



We start from A, and following in-order traversal, we move to its left subtree B. B is also traversed in-order. The process goes on until all the nodes are visited. The output of inorder traversal of this tree will be $D \rightarrow B \rightarrow E \rightarrow A \rightarrow F \rightarrow C \rightarrow G$

## Algorithm

Until all nodes are traversed -

- Step 1 - Recursively traverse left subtree.
- Step 2 - Visit root node.
- Step 3 - Recursively traverse right subtree.


## Pre-order Traversal

- In this traversal method, the root node is visited first, then the left subtree and finally the right subtree.


## Pre-order Traversal



We start from $\mathbf{A}$, and following pre-order traversal, we first visit $\mathbf{A}$ itself and then move to its left subtree $\mathbf{B}$. $\mathbf{B}$ is also traversed pre-order. The process goes on until all the nodes are visited. The output of pre-order traversal of this tree will be $A \rightarrow B \rightarrow D \rightarrow E \rightarrow C \rightarrow F \rightarrow G$

## Algorithm

Until all nodes are traversed -

- Step 1 - Visit root node.
- Step 2 - Recursively traverse left subtree.
- Step 3 - Recursively traverse right subtree.


## Post-order Traversal

- In this traversal method, the root node is visited last, hence the name. First we traverse the left subtree, then the right subtree and finally the root node.


## Post-order Traversal



We start from $\mathbf{A}$, and following Post-order traversal, we first visit the left subtree $\mathbf{B}$. $\mathbf{B}$ is also traversed post-order. The process goes on until all the nodes are visited. The output of post-order traversal of this tree will be -
$D \rightarrow E \rightarrow B \rightarrow F \rightarrow G \rightarrow C \rightarrow A$

## Post-order Traversal

- Until all nodes are traversed -
- Step 1 - Recursively traverse left subtree.
- Step 2 - Recursively traverse right subtree.
- Step 3 - Visit root node.


## Questions?

