
Data Structures and Algorithms

W3- Lecture 1,2

Stacks and Queues

Engr. Bushra Tahir
Department of Electrical Engineering
Iqra National University

Definition of Stack

• A stack is an ordered collection of homogeneous data
elements where the insertion and deletion operations
occur at one end only, called the top of the stack.

Example

Stack of Plates
• Here, one plate is placed on top of another, thus creating

a stack of plates.

• Suppose, a person takes a plate off the top of the stack of
plates. The plate most recently placed on the stack is the
first one to be taken off.

• The bottom plate is the first one placed on the stack and
the last one to be removed.

Operations on Stack

The primitive operations that can be performed on a stack
are given below:

1. Inserting an element into the stack (PUSH operation)

2. Removing an element from the stack (POP operation)

3. Determining the top item of a stack without removing it
from the stack (PEEP/Top operation)

Schematic Diagram

Operation on Stack

• Practically saying, a stack can be an array where
elements are inserted in LIFO fashion

• In case of list, we have used add, remove, get, set as the
suitable names.

• However, for stack, we are using push, pop and top/peep.

Working of Stack

LIFO Structure

• The last element to go into the stack is the
first to come out. That is why, a stack is known
as LIFO (Last In First Out) structure.

Push Operation

• Push function is used for inserting the elements into a stack.
• We have an array named A while current is its index.
void push(int x)
{
 A[++current] = x;
}
• ++current means that add one to the current and then use it.
• That also shows that element x should be inserted at current

plus one position.
• Before using the push method, the user must call isFull()

method.

POP Operation

• POP function is used for deleting the elements from a
stack.

• Stack follows a mechanism of LIFO, hence the last
element to be inserted is the first element to be deleted.

• Before using the pop method, the user must call isEmpty()
method.

POP Operation

The code of pop() method is as:

int pop()

{

 return A[current--];

}

In this method, the recent element is returned to the caller,
reducing the size of the array by 1.

PEEP Operation

• It is also possible to verify the item placed at the top of
the stack without removing it.

• This operation is called PEEP/top.

• The code of the top() method is:
int top()

{

 return A[current];

}

• This method returns the element at the current position.
We are not changing the value of current here. We
simply want to return the top element.

isEmpty() function

• What happens if we call pop() while there is
no element?

• One possible way-out is that we have
isEmpty() function that returns true if stack is
empty and false otherwise.

isEmpty() function

• This method returns the element at the current
position. We are not changing the value of current
here. We simply want to return the top element.

int isEmpty()

{

 return (current == -1);

}

isEmpty() function

• This method also tests the value of the current
whether it is equal to -1 or not.

• Initially when the stack is created, the value of
current will be -1.

• If the user calls the isEmpty() method before
pushing any element, it will return true.

isFull() Function

• It is possible that the array may ‘fill-up’ if we push
enough elements. Now more elements cannot be
pushed.

• To avoid this, we write isFull() method that will return a
Boolean value.

• If this method returns true, it means that the stack
(array) is full and no more elements can be inserted.

• Therefore before calling the push(x), the user should call
isFull() method.

• If isFull() returns false, it will depict that stack is not full
and an element can be inserted.

isFull() Function

int isFull()

{

 return (current == size-1);

}

This method checks that the stack is full or not.

The variable size shows the size of the array.

 If the current is equal to the size minus one, it means that
the stack is full and we cannot insert any element in it.

Example

/* Stack implementation using array */

#include <iostream.h>

/* The Stack class */

class Stack
{
 public:
 Stack() { size = 10; current = -1;} //constructor
 int pop(){ return A[current--];} // The pop function
 void push(int x){A[++current] = x;} // The push function
 int top(){ return A[current];} // The top function
 int isEmpty(){return (current == -1);} // Will return true when stack is empty
 int isFull(){ return (current == size-1);} // Will return true when stack is full

 private:
 int object; // The data element
 int current; // Index of the array
 int size; // max size of the array
 int A[10]; // Array of 10 elements
};

Example

// The main method
int main()
{
 Stack stack; // creating a stack object
 // pushing the 10 elements to the stack
 for(int i = 0; i < 12; i++)
 {
 if(!stack.isFull()) // checking stack is full or not
 stack.push(i); // push the element at the top
 else
 cout <<"\n Stack is full, can't insert new element";
 }

 // pop the elements at the stack
 for (int i = 0; i < 12; i++)
 {
 if(!stack.isEmpty()) // checking stack is empty or not
 cout << "\n The popped element = " << stack.pop();
 else
 cout <<"\n Stack is empty, can't pop";
 }
}

Example (Output)

Stack is full, can't insert new element
The popped element = 9
The popped element = 8
The popped element = 7
The popped element = 6
The popped element = 5
The popped element = 4
The popped element = 3
The popped element = 2
The popped element = 1
The popped element = 0
Stack is empty, can't pop

QUEUES

Definition

• A queue is a linear data structure into which items can
only be inserted at one end and removed from the other.

• In contrast to the stack, which is a LIFO (Last In First Out)
structure, a queue is a FIFO (First In First Out) structure.

Example

• For example, we queue up while depositing a utility bill
or purchasing a ticket. The objective of that queue is to
serve persons in their arrival order; the first coming
person is served first. The person, who comes first,
stands at the start followed by the person coming after
him and so on. At the serving side, the person who has
joined the queue first is served first.

Queue Operations

• The queue data structure supports the following

operations

Operation Description

enqueue(X) Place X at the rear of the queue.

dequeue() Remove the front element and return it.

front() Return front element without removing it.

isEmpty() Return TRUE if queue is empty, FALSE otherwise

Queue using Array

• If we use an array to hold the queue elements, both

insertions and removal at the front (start) of the array
are expensive. This is due to the fact that we may have to
shift up to “n” elements.

• For the stack, we needed only one end

• A queue, requires both.

Queue using Array

2 5 7 1

real

0

1

1

7

2

5

3

2

4

5

6

7

front

0

rear

3

Fig 6. Queue implemented using an array

• Array size is 8

• The front and rear in this implementation are not pointers but just
indexes of arrays. front contains the starting index i.e. 0 while rear
comprises 3.

enqueue()

front

2 5 7 1

rea

0

1

1

7

2

5

3

2

4

6

5

6

7

front

0

rear

4

enqueue(6)

6

Fig 7. Insertion of one element 6
6 has been inserted in the queue. Now, the rear index is containing 4 while the front

has the same 0 index. Let’s see the figure of the array when another element 8 is

inserted in the queue.

front

0

rear

5

enqueue(8)

front

2 5 7 1

rea

0

1

1

7

2

5

3

2

4

6

5

8

6

7

6

Fig 8. Insertion of another element 8

8

dequeue()

• When an element is removed from the queue. It is removed from the front

index

After another call of dequeue() function:

dequeue()

front

2 5

real

0

1

2

5

3

2

4

6

5

8

6

7

front

2

rear

5

6

Fig 10. Removal of another element from front

8

dequeue()

• With the removal of element from the queue, we are not
shifting the array elements.

• The shifting of elements might be an expensive exercise
to perform and the cost is increased with the increase in
number of elements in the array.

• Therefore, we will leave them as it is.

Problem with array implementation

• After insertion of two elements in the queue, the array
that was used to implement it, has reached its limit as
the last location of the array is in use now. We know that
there is some problem with the array after it attained the

size limit.

Problem with array implementation

• We can see that two locations at the start of the array
are vacant.

• Therefore, we can consider how to use those locations
appropriately in to insert more elements in the array.

• The solution to this problem lies in allowing the queue to

wrap around.

Queue implementation using circular array

5 4

front

2 5

rear

2

front

7

rear

6 8 9 12

6

7

0 1

3

2
5

2

6 8

9

12

Fig 12. Circular array to implement queue

The number of locations in the above circular array are also eight, starting
from index 0 to index 7. The index numbers are written outside the circle
incremented in the clock-wise direction. To insert an element 21 in the
array , we insert this element in the location, which is next to index 7.

enqueue() method

Now, we can see that rear index has decreased instread of increasing. It has moved

from index 7 to 0. front is containing index 2 i.e. higher than the index in rear.

enqueue() method

void enqueue(int x)

{

1. rear = (rear + 1) % size;

2. array[rear] = x;

3. noElements = noElements + 1;

}

dequeue()

int dequeue()

{

 int x = array[front];

 front = (front + 1) % size;

 noElements = noElements - 1;

 return x;

}

enqueue() method

another element in the queue.

5 4

front

2 5

rea

2

front

1

rear

6 8 9 12

6

7

0 1

3

2
5

2

6 8

9

12

Fig 14. Another element added in circular array

8

size

8

noElements

21

21

enqueue(7)

7

7

Now, the queue, rather the array has become full. It is
important to understand, that queue does not have such
characteristic to become full. Only its implementation array
has become full.

isFull()

int isFull()

{

 return noElements == size;

}

isFull() returns true if the number of elements (noElements) in the array is
equal to the size of the array. Otherwise, it returns false.

isEmpty()

• isEmpty() looks at the number of elements (noElements)
in the queue.

• If there is no element, it returns true or vice versa.

dequeue()

5 4

front rea

4

front

1

rear

6 8 9 12

6

7

0 1

3

2

6 8

9

12

Fig 15. Element removed from the circular array

8

size

8

noElements

21

21

7

7

isEmpty()

int isEmpty()

{

 return noElements == 0;

}

Questions?

