
Data Structures and Algorithms

W2- Lecture 1,2

Array and List Data Structure

Engr. Bushra Tahir
Department of Electrical Engineering
Iqra National University

Arrays

• An array is a data structure that is a collection of variables of
one type that are accessed through a common name.

• A specific element is accessed by an index.

• Array can hold multiple values of a single type.

• Elements are referenced by the array name and an ordinal
index

• Indexing begins at zero.

• The name of the array holds the address of the first array
element.

Linear Arrays

• The simplest form of array is a one-dimensional array that
may be defined as a finite ordered set of homogeneous
elements, which is stored in contiguous memory locations.

• An array may contain all integers or all characters or any
other data type, but may not contain a mix of data types.

• Example: If we choose the name A for the array, then the
elements of A are denoted by subscript notation:

a1, a2, a3, ……., an

Linear Arrays

• Parenthesis notation:

 A(1), A(2), A(3),……., A(N) or,

• bracket notation:

 A[1], a[2], A[3],…….., A[N]

• number K in A[K] is called a subscript and A[K] is called a
subscripted variable.

• Linear arrays are called one-dimensional arrays because each
element in such an array is referenced by one subscript.

Array Declaration

The general form for declaring a single dimensional array is:

 data_type array_name [expression]

• Data type represents data type of the array. That is, integer,
char, float etc.

• Array name is the name of array

• Expression which indicates the number of elements in the
array

 Example

 int a[100];

It declares an array of 100 integers.

Array Storage

• The amount of storage required to hold an array is directly
related to its type and size.

• For a single dimension array, the total size in bytes required
for the array is computed as

Memory required (in bytes) = size of (data type) X length of
array

Array Initialization

• Initializing an array while declaring it.

 int a[4] = {34,60,93,2};

 int b[] = {2,3,4,5};

 float c[] = {-4,6,81,” 60};

• If the array is initialized at the time of declaration, then
the dimension of the array is optional.

• Till the array elements are not given any specific values,
they contain garbage values.

Example

Let us consider.

Array DATA be a 6-element linear array of integers such that

DATA[1]=247, DATA[2]=56, DATA[3]=429, DATA[4]=135,
DATA[5]=87, DATA[6]=156.

Example

Let us consider

• x = 3; //not allowed

• x = a + b; // not allowed

• x = &n; // not allowed

Example

 int* y = new int[20];
• It means we are requesting computer to find twenty memory

locations

• Now y has become an array and we can say y[0] =1 or y[5] =
15.

• New returns the memory address of first of the twenty
locations and we store that address into y.

Multidimensional Array

• Arrays with more than one dimension are called multi-
dimensional arrays.

• Two-dimensional arrays use two indices to pinpoint an
individual element of the array.

• If you have an m x n array, it will have m * n elements and will
require m*n*element size bytes of storage.

Example

• int table [2] [3] = { 1,2,3,4,5,6 };

It means that element

table [0][0] = 1;

table [0][1] = 2;

table [0][2] = 3;

table [1][0] = 4;

table [1][1] = 5;

table [1][2] = 6;

Example

• #include <iostream>
• using namespace std;
• int main () {
• // an array with 5 rows and 2 columns.
• int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
• // output each array element's value
• for (int i = 0; i < 5; i++)
• for (int j = 0; j < 2; j++) {
• cout << "a[" << i << "][" << j << "]: ";
• cout << a[i][j]<< endl;
• }
• return 0;
• }

Arrays as Parameters

• Two-dimensional arrays can be passed as parameters to a
function, and they are passed by reference.

• When declaring a two-dimensional array as a formal
parameter, we can omit the size of the first dimension,
but not the second; that is, we must specify the number
of columns.

• void print(int A[][3],int N, int M)

• In order to pass to this function an array declared as:

• int arr[4][3];

• we need to write a call like this:

• print(arr);

Example

• #include <iostream>
• using namespace std;
• void print(int A[][3],int N, int M) {
• for (R = 0; R < N; R++)
• for (C = 0; C < M; C++)
• cout << A[R][C];
• }
• int main () {
• int arr[4][3] ={{12, 29, 11},
• {25, 25, 13},
• {24, 64, 67},
• {11, 18, 14}};
• print(arr,4,3);
• return 0;
• }

List Data Structure

Definition

• A list is the collection of items of the same type (grocery
items, integers, names).

• The data which we store in list should be of same nature.

• The items, or elements of the list, are stored in some
particular order.

• Example; You may have names in some alphabetical
order i.e. the names which starts with A should come
first followed by the name starting with B and so on. The

order will be reserved when you enter data in the list.

Operations

Operation Name Description

createList() Create a new list (presumably empty)

copy() Set one list to be a copy of another

clear(); Clear a list (remove all elements)

insert(X, ?) Insert element X at a particular position in the
list

remove(?) Remove element at some position in the list

get(?) Get element at a given position

update(X, ?) Replace the element at a given position with X

find(X) Determine if the element X is in the list

length() Returns the length of the list.

Operations

We need to know what is meant by “particular position” we
have used “?” for this in the above table. There are two
possibilities:

• Use the actual index of element: i.e. insert it after
element 3, get element number 6. This approach is used
with arrays

• Use a “current” marker or pointer to refer to a particular
position in the list.

Operations

 If we use the “current” marker, the following four methods
would be useful

Functions Description

start() Moves the “current” pointer to the very first
element

tail() Moves the “current” pointer to the very last
element

next() Move the current position forward one
element

back() Move the current position backward one
element

Implementation

• Suppose we want to create a list of integers. For this purpose,
the methods of the list can be implemented with the use of
an array inside.

• For example, the list of integers (2, 6, 8, 7, 1) can be
represented in the following manner where the current
position is 3.

A 2 6 8 7 1 current size

 1 2 3 4 5 3 5

Implementation

• In this case, we start the index of the array from 1 just for
simplification, which is actually the second position.

A 2 6 8 7 1 current Size

 1 2 3 4 5 3 5

Implementation

1. add Method

Suppose there is a call to add an element in the list i.e.
add(9). As we said earlier that the current position is 3, so
by adding the element 9 to the list, the new list will be (2, 6,
8, 9, 7, 1).

To add the new element (9) to the list at the current
position, at first, we have to make space for this element.

Shift every element on the right of 8 (the current
position) to one place on the right.

add Method

After creating the space for new element at
position 4, the array can be represented as

In the second step, we put the element 9 at the empty
space i.e. position 4. Thus the array will attain the following

shape.

A 2 6 8 7 1 current size

 1 2 3 4 5 3 5

A 2 6 8 9 7 1 current size

 1 2 3 4 5 6 4 6

add Method

We have moved the current position to 4 while
increasing the size to 6.

next Method

• In this method, we do not add a new element to the list
but simply move the pointer one element ahead.

• This method is required while employing the list in our
program and manipulating it according to the

requirement.
• We have two variables- current and size to store the

position of current pointer and the number of elements
in the list.

next Method

• By looking on the values of these variables, we can find
the state of the list i.e

 How many elements are in the list

 At what position the current pointer is

• The method next is used to know about the boundary
conditions of the list i.e. the array being used by us to
implement the list.

next Method

• For Example, 100 elements are added to the array. When
we want to add 101st element to the array. We used to
move the current position by next method and reached
the 100th position. Now, in case of moving the pointer to
the next position (i.e. 101st), there will be an error as the
size of the array is 100, having no position after this
point.

remove Method

• The remove method removes the element residing at the

current position.

• Suppose there are 6 elements (2, 6, 8, 9, 7, 1) in the list.
The current pointer is pointing to the position 5 that has
the value 7. We remove the element, making the current
position empty. The size of the list will become 5.

A 2 6 8 9 1 current size

1 2 3 4 5 6 5 6
 5

remove Method

• We fill in the blank position left by the removal of 7 by
shifting the values on the right of position 5 to the left by
one space.

• The current pointer remains pointing to the position 5
despite the fact that there is now element 1 at this place
instead of 7.

A 2 6 8 9 1 current size

 1 2 3 4 5 5 5

find Method

• The find (x) function is used to find a specific
element in the array.

• We pass the element, which is to be found, as
an argument to the find function.

Other Methods

• get() Method gets the element from current
position in the array

• return A[current] returns the element to
which the current is pointing to (i.e. the
current position) in the list A.

• update(x) is used to change (set) the value at
the current position. A value is passed to this
method as an argument. It puts that value at
the current position.

Other Methods

• back() method decreases the value of variable
current by 1. In other words, it moves the
current position one element backward.

• start() method sets the current position to the
first element of the list. We know that the
index of the array starts from 0 but we use the
index 1 for the starting position.

• the end() method sets the current position to
the last element of the list.

Analysis of Array List

• We will analyze different methods used for the
implementation of the list.

• We will the level up to which these are
efficient in terms of CPU’s time consumption

• Following are the methods for array list
analysis

Add

• When we add an element to the list, every element is
moved to the right of the current position to make space
for the new element.

• if the current position is the start of the list and we want
to add an element in the beginning, we have to shift all
the elements of the list to the right one place.

• This is the worst case of adding an element to the list.

Add

• Example

Suppose if the size of the list is 10000 or 20000,
we have to do the shift operation for all of these
10000 or 20000 elements.

• if we add an element at the end of the list, it
can be done by carrying out ‘no shift
operation’. It is the best case of adding an
element to the list

Remove

When we remove an element at the current position in the
list, its space gets empty.

To fill this space, we shift the elements on the right of this
empty space one place to the left.

If we remove an element from the beginning of the list,
then we have to shift the entire remaining elements one
place to the left.

Remove

• Example
Suppose there is a large number of elements, say
10000 or 20000, in the list. We remove the first
element from the list. Now to fill this space, the
remaining elements are shifted (that is a large number).
Shifting such a large number of elements is time
consuming process. The CPU takes time to execute the
for loop that performs this shift operation. Thus to
remove an element at the beginning of the list is the
worst case of remove method. However it is very easy
to remove an element at the end of the list.

Find

• The find method takes an element and
traverses the list to find that element.

• The worst case of the find method is that it
has to search the entire list from beginning to
end. So, it finds the element at the end of the
array or the element is not found.

List using Linked Memory

• In an array, the memory cells of the array are
linked with each other. It means that the memory
of the array is contiguous.

• It is impossible that one element of the array is
located at a memory location while the other
element is located somewhere far from it in the
memory.

• It is not possible to increase or decrease the size
of an array during the execution of the program.

List using Linked Memory

• To avoid such problems, there is need of using linked
memory in which the various cells of memory, are not
located continuously.

• Each cell of the memory not only contains the value of
the element but also the information where the next
element of the list is residing in the memory.

• It is not necessary that the next element is at the next
location in the memory. It may be anywhere in the
memory

Linked List

• A linked list is a collection of objects linked together by
references from one object to another object.

• By convention these objects are named as nodes.

• So the basic linked list is collection of nodes where each
node contains one or more data fields AND a reference
to the next node.

• The last node points to a NULL reference to indicate the
end of the list.

Linked List

• Node

A node comprises two fields. i.e. the object field
that holds the actual list element and the next
that holds the starting location of the next node.

Head

 2 6 8 7 1 size = 5

Linked List

Head

• In the linked list we need to know the starting
point of the list.

• we have a pointer head that points to the first
node of the list.

• If we don’t use head, it will not be possible to
know the starting position of the list

Linked List

Current

• A pointer current points to the current node of the list.

• We need this pointer to add or remove current node
from the list.

Null

• We place the memory address NULL in the last node.

• NULL is an invalid address and is inaccessible.

Linked List

The following diagram depicts the process through which
this linked list is stored in the memory.

 1051 6

 1052 1063

 Current 1053

 1054 2

 1055 1051

 1056

 1057 7

 1058 1060

 1059

 1060 1

 1061 0

 Head 1062 1054

 1063 8

 1064 1057

 1065

Node Designing

• A node is a struct with at least a data field and
a reference to a node of the same type.

• A node is called a self-referential object, since
it contains a pointer to a variable that refers to
a variable of the same type.

Node Designing

Example: A struct Node that contains an int data field and a
pointer to another node can be defined as follows.

typedef struct node {

 int data;

 struct node* next;

} node;

node* head = NULL;

Creating First Node

• Memory must be allocated for one node and assigned to
head as follows.

• head = (node*) malloc(sizeof(node));

• head→data = 10;

• head→next = NULL;

Adding Second Node and Linking

• The second node is added in the following way:

node* nextnode = malloc(sizeof(node));

nextnode → data = 12;

nextnode → next = NULL;

head → next = nextnode;

Example 1
#include <iostream>
using namespace std;
struct list
{
 int a[6];
 void createlist (int c[6])
 {
 for (int i=0; i<=5; i++)
 { cin>>a[i];
 c[i]=c[i];}
 }
 void show()
 {
 for (int i= 0; i<=5; i++)
 {cout<<"the value at position "<<i<<" is : ";
 cout<<a[i]<<endl;}}
 void insert()
 {
 int b;
 cout<<"enter the position to insert from 0- 5: ";
 cin>>b;
 cout<<"enter the value to insert : ";
 cin>>a[b];
 }
 void find ()
 {
 int s;
 cout<<" enter a position to find the value from 0-5 ";
 cin>>s;
 cout<<" the value for a given number is : ";
 cout<<a[s];}
•

Example 1

void update()
 {
 int y;
 cout<<" enter a position to update : ";
 cin>>y;
 cout<<" enter a value to update ";
 cin>>a[y];
 cout<<" the update number is "<<a[y]<<" from ";
 }
 void get ()
 {
 int w;
 cout<<"enter the position to get the value of it from 0-5 : ";
 cin>>w;
 cout<<" value at position no "<<w<<" is after insertion is "<<a[w];
 }
 void clear()
 {
 int i;
 cout<<" just clear all the list so "<<endl;
 for (i=0; i<6; i++)
 {a[i]=0; }};

Example 1

void main ()
{
 cout<<" NAME : ALi \n\n SUBJECT : DATA STRUCTURE \n\n\n";
 int q[6];
 list list1;
 list1.createlist(q);
 cout<<endl;
 list1.show();
 cout<<endl<<endl;
 list1.insert();
 cout<<endl<<endl;
 list1.show();
 cout<<endl<<endl;
 list1.find();
 cout<<endl<<endl;
 list1.update();
 cout<<endl<<endl<<endl;
 list1.get();
 cout<<endl<<endl;
 list1.clear();
 cout<<endl<<endl;
 list1.show();
cout<<endl<<endl;

• }
•

Example 2

• #include<stdio.h>
• #include<conio.h>
• struct single_link_list
• {
• int age;
• struct single_link_list *next;
• };
• typedef struct single_link_list node;
• node *makenode(int);
• int main()
• {
• int ag;
• node *start,*last,*nn; //nn=new node
• start=NULL;
• while(1)
• {
• printf(“Enter your age : “);
• scanf(“%d”,&ag);
• if(ag==0)
• break;
• nn=makenode(ag);
• if(start==NULL)

Example 2

• /*creation of node*/
• node *makenode(int tmp)
• {
• start = nn;
• last = nn;
• }
• else
• {
• last->next = nn;
• last = nn;
• }
• }
• printf(“\n\t****Single linked list****\n\n”);
• for(; start!=NULL; start=start->next)
• printf(“%d\t”,start->age);
• getch();
• return 0;
• }
• /*creation of node*/
• node *makenode(int tmp)
• {

Example 2

• {
• start = nn;
• last = nn;
• }
• else
• {
• last->next = nn;
• last = nn;
• }
• }
• printf(“\n\t****Single linked list****\n\n”);
• for(; start!=NULL; start=start->next)
• printf(“%d\t”,start->age);
• getch();
• return 0;
• }

Example 2

