
Data Structures and Algorithms

W1- Lecture 1, 2

Introduction

Engr. Bushra Tahir
Department of Electrical Engineering
Iqra National University

Text and Reference Books

1. Horowitz Sahni, "Fundamentals of Data Structures in C++",
1999.

2. 2. Lipshutz, "Data Structures", Schaum Outline Series, 1999.

3. 3. Weiss, "Data structures and algorithm analysis in C++".

4. 4. A. M. Tanenbaum, "Data structures using C and C++",
2001.

Grading Policy

• Assignments (10 Marks)

• Quiz (10 Marks)

• Mid Term Exam (30 Marks)

• Final Term Exam (50 Marks)

Goals

• In this course, we will do problem solving and see that the
organization of data in some cases is of immense importance.

• The data will be stored in a special way so that the required
result should be calculated as fast as possible.

• Cover well-known data structures such as dynamic arrays,
linked lists, stacks, queues, trees and graphs.

• Implement data structures in C++

Definition of Data Structures

• Data structures help us to organize the data in the computer,
resulting in more efficient programs. An efficient program
executes faster and helps minimize the usage of resources like
memory, disk

Use of Data Structures

• Computers are getting more powerful.

• People have started solving more complex problems.

• Computer applications are becoming complex, so more
resources are requires.

• Instead of buying new computers, use programming, data
structures and algorithms for applications to execute faster.

What does organizing the data mean?

• Data should be arranged in a way that it is easily accessible.

• Suppose the data contains some numbers and the
programmer wants to calculate the average, standard
deviation etc.

• To solve such problems, data structures and algorithm are
used.

What does organizing the data mean?

Data are also organized into more complex types of structures.
The study of such data structure, which forms the subject matter
of the text, includes the following three steps:

 1. Logical or mathematical description of the structure.

 2. Implementation of the structure on a computer.

 3. Quantitative analysis of the structure, which include
determining the amount of memory needed to store the
structure and the time required to process the structure.

Solution Efficiency and Resources

• A solution is said to be efficient if it solves the problem within
its resource constraints.

• Resources include;

 More Memory

Faster CPU

Less time

Selection of Data Structure

• Analyze the problem to determine the resource constraints
that a solution must meet.

• Determine the basic operations that must be supported.

• Quantify the resource constraints for each operation.

• Select the data structure that best meets these requirements

Selection of Data Structure

• Suppose there are eight million names in the directory. Now
someone asks you about the name of some particular person.
You want that this query should be answered as soon as
possible. You may add or delete some data. It will be advisable
to consider all these operations when you select some data
structure.

• The data is so huge i.e. in Giga bytes (GBs) while the disc
space available with us is just 200 Mega bytes. This problem
can not be solved with programming. Rather, we will have to
buy a new disk.

Philosophy of Data Structure

• Each data structure has costs and benefits.

• Any data structure used in your program will have some
benefits.

• There are three basic things associated with data structures. A
data structure requires:

– space for each data item it stores

– time to perform each basic operation

– programming effort

Data Types

Data Types

• Built in data structures are called Primitive data structures.

• User defined data structures are called Abstract data
structures.

• In Linear data structures, the data items are arranged in a
linear sequence

• In Non-Linear data structures, the data items are not in
sequence.

Data Structure Operations and
Algorithms Complexity

Data Structure Operations

• Search: By means of this operation, we can find the location
of the element with a given value or the record with a given
key.

• Insertion: Insertion operation is used for adding a new
element to the list.

• Deletion: Deletion operation is used to remove an element
from the list.

• Sorting: This operation is used for arranging the elements in
some type of order.

• Merging: By means of merging operation, we can combine
two lists into a single list.

Algorithm Complexity

• An algorithm is a clearly specified set of simple
instructions to be followed to solve a problem.

• An algorithm is a procedure that you can write as a C
function or program, or any other language.

• Once an algorithm is given for a problem and decided
(somehow) to be correct, an

• important step is to determine how much in the way of
resources, such as time or space, the

• algorithm will require.

Algorithm Complexity

• An algorithm that solves a problem but requires a year is

hardly of any use.

• An algorithm states explicitly how the data will be
manipulated. Some algorithms are more efficient than
others

Algorithm Complexity

• The complexity of an algorithm is a function describing
the efficiency of the algorithm in terms of the amount of
data the algorithm must process.

• There are two main complexity measures of the
efficiency of an algorithm

Time Complexity

Space Complexity

Time Complexity

• Time complexity is a function describing the amount of
time an algorithm takes in terms of the amount of input
to the algorithm.

• “Time” can mean the number of memory accesses
performed, the number of comparisons between
integers, the number of times some inner loop is
executed, or some other natural unit related to the
amount of real time the algorithm will take.

• The better the time complexity of an algorithm is, the
faster the algorithm will carry out his work in practice

Space Complexity

• Space complexity is a function describing the amount of
memory (space) an algorithm takes in terms of the
amount of input to the algorithm.

• This is essentially the number of memory cells which an
algorithm needs.

• A good algorithm keeps this number as small as possible,
too.

Big O Notation

• “Big O” refers to a way of rating the efficiency of an
algorithm.

• It is only a rough estimate of the actual running time of
the algorithm, but it will give you an idea of the
performance relative to the size of the input data.

• The time efficiency of almost all of the algorithms can be
characterized by only a few growth rate functions.

O(l) - constant time

This means that the algorithm requires the same fixed
number of steps regardless of the size of the task.

Push and Pop operations for a stack (containing n
elements);

Insert and Remove operations for a queue.

O(l) - constant time

 Sequence of statements
 statement 1;
 statement 2;
 ... statement k;
The total time is found by adding the times for all
statements: total time = time(statement 1) +
time(statement 2) + ... + time(statement k)
If each statement is "simple" (only involves basic
operations) then the time for each statement i

O(n) - linear time

This means that the algorithm requires a
number of steps proportional to the size of the
task.
 Finding the maximum or minimum element in a list

 Sequential search in an unsorted list of n elements

Calculating iteratively n-factorial

O(n) - linear time

if

block 1 (sequence of statements)

else

block 2 (sequence of statements)

end if;

 Here, either block 1 will execute, or block 2 will execute.
Therefore, the worst-case time is the slower of the two
possibilities:

max(time(block 1), time(block 2))

If block 1 takes O(1) and block 2 takes O(N), the if-then-else
statement would be O(N)

O(𝑛2) - quadratic time

• The number of operations is proportional to the size
of the task squared.

• Nested loops
for I in 1 .. N loop

for J in 1 .. M loop

sequence of statements

end loop;

end loop;

O(𝑛2) - quadratic time

• The outer loop executes N times. Every time the outer
loop executes, the inner loop executes M times. As a
result, the statements in the inner loop execute a total of
N * M times. Thus, the complexity is O(N * M).

• If inner loop also executes N times, the total complexity
for the two loops id O(𝑁2).

O(log n) - logarithmic time

• An input data set containing 10 items takes one second
to complete

• A data set containing 100 items takes two seconds, and a
data set containing 1000 items will take three seconds.

• Doubling the size of the input data set has little effect on
its growth

• This makes algorithms like binary search extremely
efficient when dealing with large data sets.

O(log n) - logarithmic time

• Binary search is a technique used to search sorted
data sets.

• It works by selecting the middle element of the data
set and compares it against a target value.

• If the values match it will return success.

• If the target value is higher than the value of the
probe element it will take the upper half of the data
set and perform the same operation against it.

http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Binary_search

O(log n) - logarithmic time

• if the target value is lower than the value of the probe
element it will perform the operation against the lower
half.

• It will continue to halve the data set with each iteration
until the value has been found or until it can no longer

split the data set.

Questions?

