
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279352680

Understanding Formal Methods

Chapter · January 2003

DOI: 10.1007/978-1-4471-0043-0_8

CITATIONS

4
READS

245

2 authors, including:

Jean-François Monin

Université Grenoble Alpes

53 PUBLICATIONS 240 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jean-François Monin on 10 July 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/279352680_Understanding_Formal_Methods?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/279352680_Understanding_Formal_Methods?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Francois_Monin?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Francois_Monin?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_Grenoble_Alpes?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Francois_Monin?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Francois_Monin?enrichId=rgreq-b5f5d907663824b5ad7a90a91d347048-XXX&enrichSource=Y292ZXJQYWdlOzI3OTM1MjY4MDtBUzo2NDY3NTcwMTI3NDIxNDZAMTUzMTIxMDI5Njg3MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Foreword to the First Edition

Slowly, but surely, formal methods are spreading from aademi researh to

industrial appliations. The need for erti�ed software for seurity appliations

is driven by the inreasingly large proportion of software in embedded systems,

and by the exponential development of networks, whose reliability and seu-

rity are essential for the modern eonomy. In these domains, where zero-defet

software is a must, the high ost of these tehniques is atually justi�ed by the

absolute neessity of erti�ation. In the more traditional domains of software

engineering, where zero-defet software is far from being the norm, development

methods relying on a rigorous disipline of formal spei�ation are pro�table

in the long run, thanks to the better struturing of the results, their greater

robustness, their better doumentation, whih entails savings on maintenane

and transfer operations, and their greater independene of languages and hard-

ware. The algorithmi solutions are extriated from implementation hoies

and elaborated with a generality whih favors their reuse in other appliations.

One may then talk about CASE tools, where logial spei�ations form the

oneptual basis of the evolution of a system throughout its lifeyle, from the

analysis of ustomer requirements through to the ontinuous adaptation to new

environments and to new features.

This revolution in the design of software systems has already been suess-

fully undertaken in the domain of hardware design, where formal methods are

routinely used on a large sale. The orresponding revolution in software engi-

neering is still to ome, beause mastering these abstrat tehniques and the

di�ulty in using assoiated tools hampers their penetration of an environment

where traditional, or even obsolete programming tehniques, die hard. Indeed,

it is often tempting to �hak the bug with a path� in order to urgently satisfy

the omplaint of a lient, even if it means paying dearly, in the long term, for

the disorder generated by suh praties.

In fat, that part of software whih is formally developed is urrently tiny,

in spite of the onsiderable amount of researh and development whih has

been devoted to this tehnology sine the 1970s. There is no well-established

standard, and tools are still very muh at the level of a ottage industry. In fat,

the di�ulty in learning very abstrat methods and a bad estimation of saling

problems gave rise to a number of bitter failures, and even, to some extent, a

phenomenon of rejetion. The ompetent programmer feels his or her reativity

hindered by the use of bureaurati shakles that sometimes obsure, using a

vi Understanding Formal Methods

rypti set-theoreti jargon, ideas whih ould be very lear if presented from a

more operational perspetive. When the notation hampers understanding, one

runs the risk of losing the guiding thread of the ontrol �ow, and of arrying

out symbol pushing to derive meaningless onlusions. Finally, tools are too

often used erroneously, beause their limitations are insu�iently understood.

There is then a sizeable gap between the speialists in these tehniques and

real-world engineers, who are pressured by deadlines and ost requirements.

It is not easy to keep up with the evolution of tools oming from researh

laboratories, and in this area, professional o�ers are sparse and there is a lak

of standardization. Comparative studies are rare, as are impartial experts, and

the potential user of formal methods often has the impression of making his or

her hoies as if involved in a game of blind man's bu�.

Jean-François Monin's book is therefore of great value, sine it sets out a

sizeable amount of the knowledge whih has to be mastered in order to guide

those hoies. Far from being an exhaustive hoth-poth, this book proposes

an overview of the general tehniques for speifying and developing software by

stepwise re�nement in a modular manner, and elaborating formal proofs, illus-

trated by onrete examples explained using a number of representative tools.

The example of table searhing is very well hosen, beause it is understand-

able to everyone, it is small enough to merit a omplete treatment, but it is,

at the same time, su�iently omplex for illustrating typial issues. The over-

age of tehniques is satisfatory, and methods are explained without ideologial

ommitment or parohialism. This book relies upon a onrete knowledge of a

signi�ant number of tools, and it soberly presents a moderate point of view,

without su�ering from either the exessive enthusiasm of tool designers nor the

exaggerated suspiion of overly pragmati programmers.

This book is aimed at all those who are rightly puzzled by the omplex and

ontroversial panorama of formal methods. It is unique as to its ompleteness

and its ompromise between rigorous exposition of underlying mathematial

theories and onrete explanations of the implementation of tehniques using

atual tools. One of its essential merits is to be an up-to-date presentation

of the best urrently available tehniques, in a �eld where one ould easily

mistakenly hoose an antiquated and rigid tehnology, or take the risk of a

researh prototype with an unknown lifespan.

This book is meant to beome a referene book for the oming years, and

I reommend it to all those who have understood that one should not delay

adopting a tehnology whih is unavoidable.

Gérard Huet

May 1996

Prefae

This book is intended to help the student or the engineer who wants an intro-

dution to formal tehniques, as well as the pratitioner who wishes to broaden

her or his knowledge of this subjet. It mainly aims at providing a syntheti

view of the logial foundations of suh tehniques, with an emphasis on in-

tuitive ideas, so that it an also be onsidered as a pratial omplement to

lassial introdutory manuals to logi, whih generally fous more detail on

spei� subjets (e.g. �rst-order logi), and to books dediated to partiular

formal methods.

This book is a translation of the Frenh edition Introdution aux méthodes

formelles, published by Hermes in 2000. The ontents have been updated and

somewhat lari�ed, in partiular the disussion of typing whih is now at the

beginning of Chapter 10.

Many olleagues, researhers, and friends, have had an in�uene on the form

and the ontent of this text, either through diret omments or enthralling

disussions. I would like to ite: Jean-Raymond Abrial, André Arnold, Yves

Bertot, Mihel Cartier, Paul Caspi, Christine Choppy, Thierry Coquand, Vin-

ent Danos, Pierre Desforges, Gilles Dowek, Jean-Christophe Filliâtre, Lau-

rent Fribourg, Roland Groz, Niolas Halbwahs, Claude Jard, Gilles Kahn,

Claude and Hélène Kirhner, Emmanuel Ledinot, Pierre Lesanne, Fernando

Meijia, Max Mihel, Kathleen Milsted, Chetan Murthy, Christine Paulin, Si-

mon Pikin, Laurent Régnier, John Rushby, Natarajan Shankar, Joseph Sifakis,

Jean-Bernard Stéfani and Daniel Vinent.

I am partiularly indebted to Gérard Huet, who wrote the foreword and

gave me preious hints. Speial thanks to Didier Bégay, Pierre Castéran, Pierre

Crégut, Thierry Heuillard, Franis Klay and Jean-Mar Pitié for their areful

rereading of the Frenh version, to Mike Hinhey for his onsiderable work on

the translation, and to Catherine Drury, Mekanie Jakson and Rosie Kemp for

their kind help.

Finally, I will not forget Caroline, Maxime and Wei, who brought me a

band, a book, a small-sale model of a ar and, above everything else, onstant

support.

Aronyms

ASN1 Abstrat Syntax Notation 1

BDD Binary Deision Diagram

BNF Bakus�Naur Form

CASE Computer Aided Sofware Engineering

CCS Calulus of Communiating Systems

CSP Communiating Sequential Proesses

CTL Computation Tree Logi

HOL Higher Order Logi

ISO International Standardization Organization

LCF Logi of Computable Funtions

LTL Linear Temporal Logi

LP Larh Prover

PLTL Propositional Linear Temporal Logi

PVS Prototype Veri�ation System

RRL Rewrite Rule Laboratory

SADT Strutured Analysis Design Tehnique

TLA Temporal Logi of Ations

VDM Vienna Development Method

Table of Contents

1. Motivation 1

1.1 Some Industrial Appliations 2

1.1.1 Spei�ation for Re-engineering 2

1.1.2 Proving Critial Railway Software 2

1.2 What Is a Formal Method? . 3

1.3 From Software Engineering to Formal Methods 4

1.3.1 Towards More Rigorous Proesses 4

1.3.2 Software Development Using Formal Methods 5

1.3.3 Formal Methods for the Customer 6

1.4 On Weaknesses of Formal Methods 6

1.5 A Survey of Formal Methods 7

1.5.1 Speialized and General Approahes 8

1.5.2 Emphasizing the Spei�ation or the Veri�ation 9

1.6 Aim of this Book . 10

1.7 How to Read this Book . 11

1.8 Notes and Suggestions for Further Reading 12

2. Introdutory Exerise 15

2.1 Exposition . 15

2.2 Sketh of a Formal Spei�ation 16

2.3 Is There a Solution? . 18

2.3.1 Doing Nothing . 18

2.3.2 Attempting the Impossible 19

2.3.3 Weakening the Postondition 19

2.3.4 Intermezzo: Sum of Sets 20

2.3.5 Strengthening the Preondition 22

2.4 Program Development . 22

2.4.1 Prelude: Corretness of a Loop 23

2.4.2 Linear Searh . 25

2.4.3 Disussion: Reasoning Figures 25

2.4.4 Bounded Linear Searh 27

2.4.5 Disussion . 31

2.5 Summary . 32

2.6 Semantis . 33

2.7 Notes and Suggestions for Further Reading 33

x Understanding Formal Methods

3. A Presentation of Logial Tools 35

3.1 Some Appliations of Logi . 36

3.1.1 Programming . 36

3.1.2 Sums and Unions . 37

3.1.3 Chasing Paradoxes Away 38

3.2 Anteedents . 39

3.3 The Di�erent Branhes of Logi 40

3.3.1 Model Theory . 40

3.3.2 Proof Theory . 41

3.3.3 Axiomati Set Theory and Type Theory 43

3.3.4 Computability Theory 44

3.4 Mathematial Reminders . 45

3.4.1 Set Notations . 46

3.4.2 Logial Operators . 46

3.4.3 Relations and Funtions 48

3.4.4 Operations . 49

3.4.5 Morphisms . 50

3.4.6 Numbers . 50

3.4.7 Sequenes . 51

3.5 Well-founded Relations and Ordinals 51

3.5.1 Loop Variant and Well-founded Relation 51

3.5.2 Examples . 52

3.5.3 Well-founded Indution 55

3.5.4 Well Orders and Ordinals 55

3.6 Fixed Points . 57

3.7 More About Computability . 58

3.7.1 Primitive Reursion . 59

3.7.2 Reursion, Deidability 61

3.7.3 Partial Reursion, Semi-Deidability 62

3.7.4 A Few Words on Logial Complexity 63

3.8 Notes and Suggestions for Further Reading 64

4. Hoare Logi 65

4.1 Introduing Assertions in Programs 65

4.2 Veri�ation Using Hoare Logi 66

4.2.1 Rules of Hoare Logi . 67

4.2.2 Bounded Linear Searh Program 68

4.3 Program Calulus . 69

4.3.1 Calulation of a Loop 69

4.3.2 Calulation of an Assignment Statement 70

4.3.3 Weakest Preondition 72

4.4 Sope of These Tehniques . 73

4.5 Notes and Suggestions for Further Reading 74

Table of Contents xi

5. Classial Logi 75

5.1 Propositional Logi . 75

5.1.1 Atomi Propositions . 75

5.1.2 Syntax of Propositions 76

5.1.3 Interpretation . 78

5.2 First-order Prediate Logi . 79

5.2.1 Syntax . 80

5.2.2 Example of the Table 81

5.2.3 Interpretation . 82

5.3 Signi�ant Examples . 84

5.3.1 Equational Languages 84

5.3.2 Peano Arithmeti . 85

5.4 On Total Funtions, Many-sorted Logis 87

5.5 Seond-order and Higher-order Logis 89

5.6 Model Theory . 91

5.6.1 De�nitions . 92

5.6.2 Some Results of Model Theory; Limitations of

First-Order Logi . 93

5.7 Notes and Suggestions for Further Reading 94

6. Set-theoreti Spei�ations 95

6.1 The Z Notation . 95

6.1.1 Shemas . 95

6.1.2 Operations . 97

6.1.3 Example . 98

6.1.4 Relations and Funtions 99

6.1.5 Typing . 100

6.1.6 Re�nements . 101

6.1.7 Usage . 101

6.2 VDM . 102

6.2.1 Origins . 102

6.2.2 Typing . 103

6.2.3 Operations . 103

6.2.4 Funtions . 103

6.2.5 Three-valued Logi . 104

6.2.6 Usage . 104

6.3 The B Method . 105

6.3.1 Example . 105

6.3.2 Abstrat Mahines . 106

6.3.3 Simple Substitutions and Generalized Substitutions . . 107

6.3.4 The B Re�nement Proess 109

6.3.5 Modularity . 110

6.4 Notes and Suggestions for Further Reading 110

xii Understanding Formal Methods

7. Set Theory 111

7.1 Typial Features . 111

7.1.1 An Untyped Theory . 111

7.1.2 Funtions in Set Theory 112

7.1.3 Set-theoreti Operations 112

7.2 Zermelo�Fraenkel Axiomati System 113

7.2.1 Axioms . 113

7.2.2 Reonstrution of Usual Set-theoreti Conepts 115

7.2.3 The Original System of Zermelo 116

7.3 Indution . 117

7.3.1 Reonstrution of Arithmeti 117

7.3.2 Other Indutive De�nitions 118

7.3.3 The Axiom of Separation 119

7.3.4 Separation of a Fixed Point 119

7.3.5 Ordinals . 120

7.4 Sets, Abstrat Data Types and Polymorphism 121

7.4.1 Trees, Again . 121

7.4.2 Algebrai Approah . 121

7.4.3 Polymorphism (or Generiity) 122

7.4.4 The Abstrat Type of Set Operations 122

7.5 Properties of ZF and ZFC . 123

7.6 Summary . 123

7.7 Notes and Suggestions for Further Reading 124

8. Behavioral Spei�ations 125

8.1 Unity . 125

8.1.1 Exeution of a Unity program 126

8.1.2 The Table Example . 126

8.1.3 A Protool Example . 128

8.2 Transition Systems . 129

8.2.1 De�nitions and Notations 130

8.2.2 Examples . 130

8.2.3 Behavior of a Transition System 132

8.2.4 Synhronized Produt of Transition Systems 132

8.2.5 Stuttering Transitions 133

8.2.6 Transition Systems for Unity 134

8.3 CCS, a Calulus of Communiating Systems 134

8.4 The Synhronous Approah on Reative Systems 136

8.5 Temporal Logi . 137

8.5.1 Temporal Logi and Regular Logi 137

8.5.2 CTL* . 138

8.5.3 CTL . 141

8.5.4 LTL and PLTL . 141

8.5.5 The Temporal Logi of Unity 141

8.5.6 Hennessy�Milner Modalities 142

8.5.7 Mu-alulus . 143

Table of Contents xiii

8.6 TLA . 144

8.7 Veri�ation Tools . 146

8.7.1 Dedutive Approah . 146

8.7.2 Veri�ation by Model Cheking 146

8.8 Notes and Suggestions for Further Reading 147

9. Dedution Systems 149

9.1 Hilbert Systems . 150

9.2 Natural Dedution . 152

9.2.1 Informal Presentation 152

9.2.2 Formal Rules . 154

9.2.3 Toward Classial Logi 160

9.2.4 Natural Dedution Presented by Sequents 161

9.2.5 Natural Dedution in Pratie 162

9.3 The Sequent Calulus . 163

9.3.1 The Rules of the Sequent Calulus 164

9.3.2 Examples . 165

9.3.3 Cut Elimination . 166

9.4 Appliations to Automated Theorem Proving 168

9.4.1 Sequents and Semantial Tableaux 169

9.4.2 From the Cut Rule to Resolution 170

9.4.3 Proofs in Temporal Logi 175

9.5 Beyond First-order Logi . 175

9.6 Dijkstra�Sholten's System . 176

9.6.1 An Algebrai Approah 176

9.6.2 Displaying the Calulations 177

9.6.3 The Role of Equivalene 178

9.6.4 Comparison with Other Systems 179

9.6.5 Choosing Between Prediates and Sets 180

9.6.6 Uses of Dijkstra�Sholten's System 181

9.7 A Word About Rewriting Systems 181

9.8 Results on Completeness and Deidability 182

9.8.1 Properties of Logis . 183

9.8.2 Properties of Theories 184

9.8.3 Impat of These Results 186

9.9 Notes and Suggestions for Further Reading 187

10.Abstrat Data Types and Algebrai Spei�ation 189

10.1 Types . 189

10.2 Sets as Types . 190

10.2.1 Basi Types . 190

10.2.2 A First Glane at Dependent Types 191

10.2.3 Type of a Funtion . 191

10.2.4 Type Cheking . 191

10.2.5 From Sets to Types . 191

10.2.6 Towards Abstrat Data Types 192

xiv Understanding Formal Methods

10.2.7 Coerions . 192

10.2.8 A Simpler Approah . 193

10.2.9 Unions and Sums . 193

10.2.10Summary . 194

10.3 Abstrat Data Types . 194

10.3.1 Sorts, Signatures . 195

10.3.2 Axioms . 196

10.3.3 First-order and Beyond 197

10.4 Semantis . 198

10.5 Example of the Table . 199

10.5.1 Signature of Operations 199

10.5.2 Axioms . 199

10.6 Rewriting . 200

10.7 Notes and Suggestions for Further Reading 200

11.Type Systems and Construtive Logis 203

11.1 Yet Another Conept of a Type 203

11.1.1 Formulas as Types . 203

11.1.2 Interpretation . 204

11.2 The Lambda-alulus . 204

11.2.1 Syntax . 205

11.2.2 The Pure �-alulus and the �-alulus with Constants 206

11.2.3 Funtion and Funtion 206

11.2.4 Representing Elementary Funtions 207

11.2.5 Funtionality of �-redution 211

11.3 Intuitionisti Logi and Simple Typing 212

11.3.1 Construtive Logis . 212

11.3.2 Intuitionisti Logi . 213

11.3.3 The Simply Typed �-alulus 214

11.3.4 Curry�Howard Correspondene 215

11.4 Expressive Power of the Simply Typed �-alulus 218

11.4.1 Typing of the Natural Numbers 218

11.4.2 Typing of Booleans . 219

11.4.3 Typing of the Identity Funtion 219

11.4.4 Typing of Pairs, Produt of Types 219

11.4.5 Sum Types . 220

11.4.6 Paradoxial and Fixed-point Combinators 221

11.4.7 Summary . 221

11.5 Seond-Order Typing: System F 222

11.5.1 Typing of Regular Strutures 223

11.5.2 Systemati Constrution of Types 225

11.5.3 Expressive Power and Consisteny of System F 226

11.6 Dependent Types . 227

11.6.1 Introdution of First-order Variables 227

11.6.2 Sums and Produts . 228

11.6.3 Spei�ation Based on Dependent Types 230

Table of Contents xv

11.7 Example: De�ning Temporal Logi 230

11.8 Towards Linear Logi . 231

11.9 Notes and Suggestions for Further Reading 232

12.Using Type Theory 233

12.1 The Calulus of Indutive Construtions 234

12.1.1 Basi Conepts . 234

12.1.2 Indutive Types . 235

12.1.3 The Table Example . 235

12.2 More on Type Theory . 237

12.2.1 System F! . 237

12.2.2 The Calulus of Pure Construtions 238

12.2.3 Indutive De�nitions . 238

12.2.4 Indutive Dependent Types 239

12.2.5 Primitive Reursive Funtions 239

12.2.6 Reasoning by Generalized Indution 240

12.2.7 Indution Over a Dependent Type 241

12.2.8 General Purpose Indutive Types 241

12.3 A Program Corret by Constrution 243

12.3.1 Programs and Proofs . 244

12.3.2 Example: Searhing for an Element in a List 245

12.3.3 Searhing in an Interval of Integers 246

12.3.4 Program Extration . 248

12.4 On Unde�ned Expressions . 251

12.5 Other Proof Systems Based on Higher-order Logi 251

12.6 Notes and Suggestions for Further Reading 253

Bibliography 255

Index 269

1. Motivation

After a long gestation period, formal methods for software development have

reahed a maturity level su�ient for use in a range of real appliations suh

as railway or airraft transportation systems, teleommuniations or energy.

The fundamental ideas of formal methods have been known for a long time:

they emerged with the �rst omputers and have been studied sine the 1960s.

Independently of any ultural onsiderations, it transpired that putting them

into pratie required theoretial improvements as well as omplex software

support tools, whose priniples and arhitetures beame understood over the

following deades, resulting in more and more e�etive prototypes, and, last

but not least, mahines endowed with powerful omputational apabilities.

Various institutions are aware of the progress that has been made in the re-

lated tehnologies. In the domain of seurity, the European ITSEC (Information

Tehnology Seurity Evaluation Criteria) has required the use of formal meth-

ods in its fourth seurity level, and above, sine the mid 1990s. More reently,

the Common Criteria for Information Tehnology Seurity, whih have been in

fore as an ISO standard sine 1999, reommend the use of formal models from

its �fth seurity level, and above, and require the use of formal veri�ation

tehniques at the seventh level.

1

By the end of the 1990s, industrial interest in

these tehniques had been on�rmed and signi�antly widened. This ould be

observed, for example, on the oasion of the First World Congress on Formal

Methods, in September 1999 [WWD99℄. As new, and signi�antly more om-

plex, appliation areas are emerging (smart ards, highly-seured information

systems, robotis, e-ommere, airraft ontrol, et.), one an see the inreas-

ing importane and relevane of formal methods. New tehniques, theories and

tools are being used in various appliations, and these in turn provide feedbak

to the theory and evolution of formal methods and their assoiated proof tools.

Nowadays, formal methods are applied in a whole plethora of systems ranging

from ompliated algorithms, of just a few pages in length, to software systems

involving tens of thousands of lines of ode. Let us illustrate the evolution of

the tehnology with some industrial appliations.

1

The Common Criteria are the result of a joint e�ort of several ountries, in

North Ameria, Europe, and Australia/New Zealand. Formal methods have also been

mentioned in US seurity standards as far bak as the 1980s.

2 Understanding Formal Methods

1.1 Some Industrial Appliations

1.1.1 Spei�ation for Re-engineering

One of the oldest large-sale experiments is the CICS projet undertaken at

IBM (Huxley Park, United Kingdom), in ollaboration with Oxford University.

Its purpose was to perform a major restruturing of a large existing software

system used for transation management. The overall system was omposed of

about 800,000 lines of assembly language and of Plas, a high-level proprietary

language. 268,000 lines were modi�ed or rewritten, of whih 37,000 made use

of formal spei�ation with the Z spei�ation notation. Measurement proe-

dures were introdued in order to evaluate the impat of a formal method on

produtivity and on quality. The quantitative results are detailed in [HK91℄.

They an be summarized as follows:

� development osts dereased by 9 perent;

� in the �rst eight months following the installation of the new version of CICS,

in 1990, the lients reported 2.5 times fewer errors in the parts developed with

Z than in the parts developed with non-formal tehniques; moreover, these

errors were pereived as being less serious.

This experiment is interesting beause of the large amount of ode involved. In

ontrast, its tehnial goals were rather limited: the issue was to speify software

with the Z formal notation, and then to develop the ode from the douments

resulting from this phase; proof tehniques were not taken into aount.

1.1.2 Proving Critial Railway Software

When one takles ritial domains, involving human lives or having a poten-

tially great eonomi or soial impat, it beomes important to ensure the

orretness of the exeutable ode, or at least to give ourselves the strongest

guarantees we an of this orretness. The ode should possess no errors or devi-

ations from intended behavior. One means of attaining this goal is to prove that

it omplies with a arefully written spei�ation, on whih ompetent persons

involved in the development agree. Suh a requirement entails a large amount

of work. It is then important to give the whole system under onsideration an

appropriate struture, so that the areas where proofs will be performed are suit-

ably delimited. The use of the B method by GEC-Alsthom, and more reently

by Matra Transport International-Siemens, in projets suh as the Calutta

subway [SDM92℄ or the Meteor line of the Paris subway [BBFM99℄ is a good il-

lustration of this approah. The objetive is to ommand and ontrol the speed

of a train by means of a devie, whih an be oneptualized, roughly, in the

form of an uninterruptible sequene of instrutions whih run periodially. This

is omposed of a phase where piees of input information are olleted, followed

by a phase where deisions are made, and �nally a phase where ommands are

sent to physial ontrol devies. It transpires that all of the omplexity is on-

entrated in the seond phase. This involves data transformation, whih an be

Motivation 3

reasonably well modeled using the set-theoreti onstruts available in Z or in

B. However, B, developed more reently than Z, involves a proess allowing ex-

eutable ode to be derived in a step-by-step manner; moreover, this ode an

be proven to onform to the initial spei�ation, thanks to appliable support

tools. The result of this proedure was several thousands lines of ode written

in the C language.

Note that, in the above example, reation times are relatively long ompared

to omputation times. In other appliations, the onstraints may be more strit;

sometimes several devies have to be handled simultaneously and, generally,

this greatly ompliates matters. Other formal approahes, based on transition

systems or on synhronous languages, for example, are well suited for dealing

with suh problems.

Finally, more omplex appliations, suh as seurity omponents of net-

work servies, ompilers, or support tools for formal methods themselves, in-

volve both omplex data strutures and subtle behaviors. Using powerful logis

beomes neessary, and we already know of a number of enouraging suess

stories using tools suh as PVS, HOL and Coq.

1.2 What Is a Formal Method?

By �method�, one generally means a proess aiming at progressively reahing

a given objetive. For example, the method followed by a high-shool student

to solve a simple problem of mehanis onsists of establishing the balane of

fores, modeling them by vetors, then omputing the unknowns using linear

algebra or vetor alulus. We must be aware that today, suh a method, in

the former sense, is still very underdeveloped in the ase of formal methods for

software onstrution. Suh methods provide, essentially, a rational framework

omposed of tools to aid in modeling and reasoning, but they don't bring

muh from a methodologial perspetive. We will use the term formal method,

beause it is well established, but formal tehnique would ertainly be more

appropriate.

The domain of ompilation tehniques may be an exeption. In order to

onstrut a ompiler, �rst the grammar of the soure language is de�ned using

suitable formal rules. After a possible transformation of the latter, an e�ient

parser is automatially derived thanks to general mehanisms determined in

the 1960s. We have here all of the ingredients of a formal method. First, we

obviously have a formal language for desribing the grammar rules in a preise

manner � a BNF, normal form of Bakus�Naur. Furthermore, we have a well-

understood mathematial substratum, whih is the theory of formal languages

and automata, and whih provides the preise meaning of the grammar rules

and justi�es the general algorithms to be used. The formal methods we will

onsider in this book are all based on a formal language, inluding, for example,

set-theoreti or logial notations, or more ad ho onepts as in the ase of

the BNF formalism, together with a means of giving a preise mathematial

meaning to every statement � its so-alled semantis.

4 Understanding Formal Methods

What an this be useful for? First, to ommuniate well: a rigorous se-

mantis eliminates ambiguities, and it is an impartial arbiter. This is also an

exellent guide for de�ning support tools. Finally, when a formal model of a

system is available, the properties we expet from this system an be stated

with preision, then formally veri�ed. This leads us to say a few words on the

role of formal methods within software engineering.

1.3 From Software Engineering to Formal Methods

Mastering the omplexity and the ost of software proved to be a real tehno-

logial and eonomial hallenge; this gave birth to a well-established disipline,

namely, software engineering. The pratial aspets of this disipline are those

most well known to developers: languages, ompilers, CASE tools and sup-

port environments, development methods, programming tehniques, methods

related to quality management, et. Design methods appeared: SADT, Jak-

son, objet-oriented tehniques, and others. These methods and tehniques have

non-negligible results to their redit, suh as the following:

� a number of key notions have been reognized, for instane the onept of a

lifeyle for software (ommonly: requirements, spei�ation, general design,

detailed design, enoding, unit testing, integration testing, installation and

maintenane);

� the introdution of rigorous methods in the prodution of software;

� the osts of the di�erent stages have been evaluated and ompared; for ex-

ample, one estimates that maintenane takes up at least two-thirds of the

overall ost of a software projet, and that �xing a spei�ation error re-

quires twenty times more e�ort if it is deteted after the installation stage,

and sometimes even muh more than that.

1.3.1 Towards More Rigorous Proesses

The onsequenes of a software failure are not limited to reovery issues. In a

number of ases (transportation, power plant ommand and ontrol, medial

systems), human lives are onerned. In the domain of teleommuniations,

major operators have experiened serious failures that entailed heavy losses �

for example, the AT&T network in January 1990, following the installation of

a new software upgrade to its swithing systems. The sad fate of �ight number

501 of the satellite launher Ariane is yet another blasting demonstration that

methods in urrent use are insu�ient with regard to the high stakes of today.

We already mentioned that the later a mistake is deteted, the more di�ult

it is to repair. This highlights the onern to devote a large amount of invest-

ment to the early stages of the software lifeyle, and the great importane of

deriving reliable spei�ations :

1. whih atually orrespond to what is intuitively expeted from the

system; and

Motivation 5

2. whih are onsistent.

The tehniques onsidered in this book deal mainly with the seond issue. These

tehniques start with a formal spei�ation, and they allow one to develop

software in a rigorous way based on this spei�ation.

Regarding the �rst issue above, note that establishing good spei�ations

neessitates a good knowledge of the users' needs, a knowledge that users them-

selves do not always possess from the outset. One may remedy this problem by

onfronting a formal spei�ation with a number of simple properties whih we

expet. Suh properties an be regarded as formal spei�ations themselves,

though partial ones, beause their sope is generally limited only to ertain

aspets.

One may also onsider omplementary tehniques, suh as rapid prototyp-

ing, in order to quikly develop an easy-to-modify version of the intended sys-

tem. The most important feature of the tehnology to be used is then its ability

to favor reativity in the development proess; onsiderations relative to lean-

ness or e�ieny of the software may turn out to be awkward at this level.

Beyond the stage of prototyping, the order of priorities hanges, objetives of

quality and rigor ome to the forefront. However, it should be noted that, as a

side result of formal approahes to omputer siene, programming languages

whih are simultaneously powerful, mathematially well de�ned, e�iently im-

plemented and proteted by a strong typing system are now available: fun-

tional languages, in partiular languages from the ML family [CMP02, Pau91℄.

1.3.2 Software Development Using Formal Methods

Formal approahes allow one to write rigorous, preise, and omplete spei-

�ations, and to develop software from them. The main omponent, as was

already mentioned, is a formal spei�ation language. The main bene�ts of

these approahes are the following:

� a formal language omes together with a well-founded and safe semantis,

partiularly if it is based on well-tried mathematial theories;

� proving that the system under onsideration satis�es intended properties

beomes possible, at the spei�ation level on the one hand, and at the ode

level on the other � the idea is to prove that a program onforms to a given

spei�ation; the latter issue may be takled using several approahes: Hoare

logi, enumeration of reahable states, re�nement of spei�ations, program

transformation, program alulation and program extration;

� a formal language is a good basis for the development of support tools;

� e�orts related to testing, maintenane, and sometimes oding may derease

signi�antly, sine one gets a better ontrol over these stages and sine do-

umentation beomes more reliable.

6 Understanding Formal Methods

1.3.3 Formal Methods for the Customer

Formal methods are also of onern to organizations that ontrat their software

development to others. Indeed, suh organizations are mainly involved in the

spei�ation stages, and thus have to hek that:

1. they are working with orret spei�ations;

2. the delivered produt omplies with the spei�ations.

Regarding the seond issue, the ustomer must at least validate the produt.

To this end, the produt is extensively tested. Designing and debugging test-

ases beomes more ompliated when the omplexity of the desired produt

inreases. Moreover, this is an error-prone and tedious task. There again, formal

tehniques an serve as a support tool. Automated generation of test ases

from formal spei�ations is an ative researh topi, and industrial tools are

available.

However, validating the produt turns out to be insu�ient. Tests an only

verify that the behavior of the onsidered system is normal in a �nite number

of (hopefully) typial situations, but it an only takle a partial view of the set

of all possible behaviors. This an be su�ient for analog systems, whih are

ontinuous and regular, but software systems, whih are essentially disrete,

do not bene�t from these properties.

2

In partiular, it is illusory to think that

software may be spei�ed by the set of test ases to be used in order to validate

it. Let us add that it ould even be dangerous, beause a maliious provider,

or simply a provider in a hurry, may well deliver a system whih behaves as

expeted, in the ases orresponding to the spei�ed tests, but badly in other

ones.

Clearly, a better perspetive is obtained if a produt is developed using a

formal method: it an be delivered together with the proof that it satis�es the

intended properties, for example, in a textual form that the ustomer may have

audited by a ontrator, or may hek using automated veri�ation software �

reall that it is muh easier to hek a proof than to onstrut it.

1.4 On Weaknesses of Formal Methods

The previous arguments give some indiations of the support whih an be pro-

vided by formal methods for improving various stages of software development.

However, we don't want to pretend that they onstitute a miraulous remedy.

When we are faed with omplex problems, there is no simple way out.

First, we have to keep in mind that there always remains a distane between

a formal spei�ation, and the objet it is supposed to represent. A similar well-

known situation is true of the laws of physis: we annot prove that they govern

2

Of ourse, it is not enough to test all �branhes� in the ode, all possible ombi-

nations of values for data and parameters have to be taken into aount. In general,

there are an in�nite number of them, or at least a number whih is greater than ur-

rent estimations of the number of atoms in the universe, whih is quite a reasonable

approximation to the in�nite.

Motivation 7

the real world, but it is quite reasonable to be on�dent that this is the ase.

The ertainty of the orretness or appropriateness of a spei�ation an be

aepted as relevant only if it has been validated by a proess omposed of

areful reading, reformulation, and onfrontation.

When a new formal method is onsidered, the �rst obstale to be overome

is to beome fully aquainted with the notation. Beyond this stage, formal

methods require an appropriate appliation, whih inludes pragmati aspets

� manipulation of tools � and theoretial aspets. Note, in passing, that the

mathematial ulture developed in traditional sholarly programs often favors

analysis to the detriment of disrete mathematis. The situation is improving

nowadays, but it is symptomati that we still feel the need to inform about

formal methods for software, whereas in other engineering disiplines, suh as

eletronis or airraft engineering, mathematial models are naturally applied.

This aknowledges the rather experimental light in whih programming is still

ommonly pereived.

Finally, let us note that with formal approahes, muh more time is devoted

to the initial phases of a development (spei�ation, design) than in ommon

proesses. However, experiments show that this investment is (partly) ompen-

sated in later phases (tests, integration). Indeed, formalization reveals deliate

issues very early, whereas, in a onventional lifeyle, these would have to be

solved during debugging, or later. Many di�ulties that are met when using a

formal method are atually a re�etion of di�ulties that are inherent in the

problem at hand. For example, modeling problems will our just beause the

situation is intrinsially more ompliated than it may appear at �rst sight. The

introdution of omplex or abstrat onepts � often denoted by mathematial

symbols � is then not that surprising. We will see that atual formal tehniques

o�er various degrees of abstration level and mathematial omplexity. But to

reassure the reader: basi onepts in logi and set theory, understandable to

high-shool students, are su�ient for a working knowledge of tehniques suh

as B.

M

On

3

the issue of formulation, reall that the task of designing a judi-

ious notation requires muh are, though it is all too often negleted

or overlooked. Both spei�ation and programming languages may su�er from

that. As this topi is rarely dealt with expliitly, let us mention here the books

[vG90a℄, [Mey92℄ and [Set89℄.

1.5 A Survey of Formal Methods

There are various kinds of formal methods, whih we an ollet into several

families. Most of them an be haraterized by:

� an underlying prominent theory (examples: transition systems, set theory,

universal algebra, �-alulus);

3

The meaning of the Möbius band is explained in � 1.7.

8 Understanding Formal Methods

� a preferred appliation �eld (examples: data proessing, real-time systems,

protools);

� a researh and user ommunity, themselves sometimes divided into several

variants or shools.

We will not go into a detailed taxonomy of the domain, but we an suggest

a number of design hoies whih determine important harateristis of most

formal methods.

1.5.1 Speialized and General Approahes

The spei�ation of a system inludes various issues, inluding: arhiteture,

interfaes, visible behaviors and algorithms to be implemented. Some formal

methods onsider systems whih are presented from the outset in a given form,

for example, in the form of data transformers, or of data �ow, or even of �nite

state mahines; information exhanges are supposed to be performed by data

sharing, by synhronous or asynhronous message transmission, by funtion

or proedure alls. Other formal methods stand bak from suh a view of the

world, and limit themselves to a �exible general mathematial framework.

In the �rst ategory, one �nds speialized formalisms, whih may have been

designed for protools, for reative devies, or for data handlers. This speializa-

tion favors the methodologial aspets and the development of e�etive support

tools, but it may have an undesirable e�et: making irrevoable hoies, whih

are relevant at a given stage of a tehnology, but may turn out to be a burden in

later stages. For example, there are tehniques for animating a formal spei�-

ation: one then uses a so-alled exeutable spei�ation. But limiting oneself to

the exeutable fragment of a general language tends to make some desriptions

obsure, by foring the use of ad ho ontortions. Thus, a onvining logial

statement may lose muh of its original larity one it is translated to Prolog.

Conversely, methods loser to logi and mathematis o�er muh more free-

dom of expression. They have a big theoretial advantage, partiularly when one

has to model real systems and to reason about them, beause reality often re-

veals an unexpeted omplexity. But suh methods say nothing at the method-

ologial level. The way of using them onsists of reonstruting paradigms of

speialized methods � with, sometimes, a suitable adaptation or generaliza-

tion. It is also possible to ombine several tehniques, in order to work simul-

taneously on several faets of a given system using a uni�ed framework. But

this is still a topi for researh.

Example: role of states. We an illustrate the distintion between general

methods and speialized methods by means of the importane given to the

onept of a state. It seems impossible to bypass this notion, sine the systems

that we want to model, whih are a support for software (omputers or virtual

mahines), or for their environment, are essentially memories whose ontents

hange from time to time. On the other hand, this onept is not fundamental

in mathematis, whih lies in the realm of quantities, shapes, funtions, all

kinds of spaes � in summary, immutable values in a wide sense. It does not

Motivation 9

mean that, in mathematis, we are unable to talk about states. In general, state

hanges are represented by a trajetory, that is, a value from a suitable spae.

M

The deision to attah more, or less, importane to states, is sig-

ni�ant in pratie, beause transformations with side e�ets are

rather more ompliated to ompose than pure (side-e�et-free) transforma-

tions. When one writes �let x = 3� and �let y = x+ 1�, it is absolutely ertain

that, in the onsidered sope, the value of x is 3, and that x and y are related by

the equation y = x+1. In ontrast, if one states �let x be a memory ell whih

ontains 3� and �let y be a memory ell whih ontains the value of x+1�, one

an no longer understand the produed e�et, without metiulously examining

how x and y may be transformed in every state hange. This inrease in the dif-

�ulty is one of the main motivations for introduing simultaneous assignments

in imperative languages: it diminishes the number of intermediate states that

need to be onsidered. This idea was proposed by Dijkstra and reused in B (see

� 4.3.2 and � 6.3.3). It also explains the interest of funtional programming:

in its pure and strit version, it onsists of desribing omputations on values;

atually, most funtional languages inlude imperative features, beause it is

sometimes onvenient to keep some values in memory and to have side e�ets.

Hene suh programs inlude states, but a good programming disipline limits

their impat to a very limited number of areas.

The �rst formal methods we will onsider, Hoare logi or B for example,

handle an impliit state. In others, states play an essential role out of neessity:

they aim at studying behaviors, and a behavior is nothing but a sequene of

states. Some of them will be onsidered in Chapter 8. Finally, the more abstrat

formal approahes, suh as algebrai spei�ations, or higher-order logi-based

languages, have no prede�ned onept of a state.

1.5.2 Emphasizing the Spei�ation or the Veri�ation

A formal method is omposed of two main ingredients: a spei�ation language

and a veri�ation system. The development of these two omponents is of vary-

ing importane depending on the approahes and the assoiated tools. Thus,

the proof assistant of Boyer and Moore puts the emphasis on automating proofs

to the detriment of ease of expression. In ontrast, the �rst goal in the design

of Z, was to get a very expressive language, but it turned out to be di�ult to

develop support tools for this language. The �rst versions of Boyer-Moore and

of Z go bak to the 1970s.

More reent approahes, suh as HOL or Coq or PVS, attempt to provide

both advantages: they are based on very powerful logis, together with support

tools whih aid the user in developing proofs, and some of them are able to

hek the orretness of the proofs in a very reliable manner.

In this book, we will pay more attention to spei�ation than to auto-

mated veri�ation mehanisms. In partiular, we will ignore the Boyer�Moore

approah, though it an be redited with remarkable suesses, suh as the par-

tial veri�ation of a omplex system, where a hardware proessor, an assembly

10 Understanding Formal Methods

language, a toy Pasal-like language and a basi operating system kernel are

staked.

1.6 Aim of this Book

How does one get one's bearing in the maze of available tehniques? Eah of

them deserves a whole book to desribe its foundations and pratie. Suh

books already exist for many of them. On the other hand, it would probably

be fruitless to try to takle all approahes, even if we limit ourselves to a

brief presentation. Our aim here is to propose a syntheti view of the subjet,

by following logi as our main thread. Logi has an in�uene on all formal

methods, and often a diret one. At the same time, logi allows us to understand

important and subtle phenomena whih our in pratie.

Beyond logi, other mathematial theories play an important role in some

formal tehniques: notably, algebra and automata. They will be mentioned in

order to provide some perspetive. At the same time, it should be emphasized

that logi has various other appliation �elds in omputer siene, suh as

databases, operating systems, and programming languages.

4

The importane of the di�erent aspets of logi varies a lot, depending on

the partiular tehniques one onsiders. For example, set theory is essential to

formalisms suh as Z or B, while intuitionisti logi is a more appropriate basis

for the study of typed funtional languages and orresponding spei�ation

languages. These two approahes share a number of onepts, but they atually

belong to di�erent logial traditions, whih go bak to the beginning of the 20th

entury.

The reader should �nd here an overview of logial disiplines whih are rel-

evant to omputer siene, and, more spei�ally, to formal methods. The aim

of overing suh a wide domain is moderated by the modesty of the tehnial

ontents: most theoretial results are given without demonstration. We hope

that the reader will be inspired to gain a deeper knowledge of those topis. We

have tried to give appropriate referenes to the literature, in partiular at the

end of every hapter.

We tried, whenever possible, to rely on a ommon simple example: the searh

for an element in a table. In order to shed light on onepts, without swamping

them by irrelevant details, it appeared preferable that the example be as simple

as possible. Obviously, the bene�ts of formalization would be better illustrated

on a larger size problem. Indeed, very little will be told about how to takle a

large-sized appliation in a formal manner. Thus, although we will sometimes

give an appreiation of a formalism, it should be lear that we don't have a

4

For example, modern implementations of the funtional language ML, whih was

initially designed from purely logial onsiderations, an be elegantly and e�iently

used in software appliations omposed of system alls, network modules, and human-

mahine interfaes. Suh examples are the �le synhronizer Unison [PJV01℄ and the

Web browser MMM [LR98℄.

Motivation 11

goal of providing a omparative study, whih is de�nitely beyond the sope of

this book. The table example is only a support, not a benhmark!

1.7 How to Read this Book

We tried to make this book as self-ontained as possible. The three �rst hapters

ontain introdutory material, inluding elementary mathematial reminders

(in � 3.4). Then, the general idea is to alternate the presentation of (the basis

of) onrete formal methods with hapters devoted to their logial foundations.

Oasionally, we need to introdue a onept that is not disussed in detail until

a later hapter. In suh ases, we will provide an intuitive explanation, whih

should su�e.

Chapter 2 introdues basi onepts related to spei�ation and veri�ation,

in an intuitive and semi-formal manner.

The di�erent branhes of logi are presented in Chapter 3.

Chapter 4 is devoted to proving the orretness of imperative programs

using formal assertions. The ideas ontained in this approah, mainly due to

Floyd, Hoare and Dijkstra, have an in�uene on all other tehniques.

Chapter 5 presents so-alled lassial logi, whih is a referene for all other

logis.

Chapter 6 deals with formal methods based on set manipulations, namely

Z, B and VDM.

Chapter 7 is devoted to set theory.

We then propose, in Chapter 8, a syntheti view on formal tehniques for

speifying omplex behaviors, based on transition systems and on temporal

logi. More spei�ally, we onsider formalisms suh as Unity, TLA and CCS.

Chapter 9 is an introdution to proof theory, whih not only provides the

essential onepts for understanding omputer-aided proof systems, but serves

as a foundation for typing systems and omputational aspets of logi, to be

onsidered in the last two hapters.

Chapter 10 is essentially a short presentation of the algebrai approah to

formal methods, with an emphasis on abstrat data types.

The disussion on typing started there is ontinued in Chapter 11, where

we present its relation to �-alulus and to higher-order onstrutive logi.

Finally, Chapter 12 is devoted to an implementation of these priniples in a

very expressive logi, the alulus of indutive onstrutions, whih is supported

by proof assistants suh as Coq and Lego. This hapter ends with a brief aount

of other formal tehniques based on a higher-order logi, more spei�ally HOL

and PVS, and ends with some researh perspetives.

The reading di�ulty may vary a lot from one setion to the next. The

reader already aquainted with basi onepts may skip setions presented in

this font; they are also identi�ed by the symbol:

L

12 Understanding Formal Methods

Paragraphs that may be postponed until a seond reading, suh as somewhat

tehnial asides, are identi�ed by a Möbius band:

M

Finally, pitfalls are indiated by the following symbol:

V

We also tried to follow a onsistent disipline in our use of fonts. Here are

some samples:

� a de�ned term, for example: a left gyrating dahu is a quadruped whose left

legs are muh shorter than its right legs;

� an arbitrary mathematial objet: this is represented by a letter suh as d or

L;

� a program or a formal spei�ation omponent, whih would be entered on

the keyboard: if l<r then theta:=theta+1;

� a formal language or a support tool: the method myth.

1.8 Notes and Suggestions for Further Reading

A report of the US National Institute of Standard and Tehnology presents, in

its �rst volume [CGR93a℄, a set of formal tehniques having industrial appli-

ations. Its seond volume [CGR93b℄ ollets several ase studies whih were

performed prior to 1993. [Rus93℄ is another useful doument on formal meth-

ods, written for NASA � and more oriented towards the needs of aerospae

systems. It ontains many interesting ideas, even if its author laims that it is

sometimes biased by his involvment in a partiular approah.

The book by Lalement [Lal93℄ allows one to obtain a deeper knowledge of

many topis introdued here. In it, one may �nd omplementary onepts on

equational logi, rewriting and resolution. A handbook devoted to mathemati-

al logi for omputer sientists has been published [AGM92a, AGM92b℄. For a

broader introdution, one of the best referenes is the Handbook of Theoretial

Computer Siene [vL90a, vL90b℄ whih, as indiated by its name, overs all

theoretial bases of omputer siene, far beyond logi. We partiularly re-

ommend the seond volume [vL90b℄, devoted to formal models and semantis.

Chapters 1 to 14 and 16 to 19 are very readable.

A number of topis are not overed here, even though they ould be on-

sidered relevant, beause takling them would have arried us too far from our

path. This is true in the ase of ategory theory. Developed from the middle of

the 20th entury, partly for establishing the foundations of mathematis on a

more strutured basis than set theory,

5

it still plays quite an important role in

5

The initial motivation was atually di�erent: the idea was to transfer results from

group theory to topology, in order, for example, to lassify geometrial shapes.

Motivation 13

theoretial omputer siene, notably in algebrai spei�ations [EM85, EM90℄

and in typing systems [LS86, Hue90, AL91℄. The basi referene is [Ma71℄, in-

tended for mathematiians, but omputer siene-oriented introdutions have

been available for several years, amongst them [Hoa89℄ and [BW90℄. The afore-

mentioned manual [AGM92a℄ also ontains a hapter devoted to ategory the-

ory.

2. Introdutory Exerise

A new problem is always takled, at the outset, via both intuition and empirial

methods. The design of software systems is no exeption. The �rst step is

to determine the objet

1

to be realized. We then have to desribe it. Most

of the time, one employs the usual means of expression to this e�et: our

mother tongue, explanatory diagrams. Subsequent steps are devoted to ode

writing, generally using a high level language. An intuitive understanding of

the language onstruts is then key. Of ourse, people involved in this proess

employ some reasoning: �in that ase, suh an event happens, then . . . et.�

We will proeed in this manner with an elementary ase study. We will

introdue � or reall � step-by-step the rudiments of logi and set theory

whih make up the framework of formal methods, demonstrating how they an

enhane spei�ations and programs: they simply allow one to desribe things

and to reason in a better way.

In this hapter, onepts are introdued in an intuitive way, with more

rigorous de�nitions oming in later hapters. Our aim is not to solve everything,

but to raise a number of questions.

2.1 Exposition

The exerise we propose is quite simple, viz. the searh for an element in a

table. This is a very banal problem, but we an nevertheless already observe a

lassi pitfall. This an be illustrated with the following dialog, where S. is in

harge of the spei�ation and R. is responsible for the realization (program).

S.: �Please write a program to searh for an element in a table!�

R.: �What kind of table? A list? An array? A tree? Are the ele-

ments sorted? Do they have a key?�

S.: �I don't want to onsider these implementation issues. That is

your job.�

R.: �But what should be done if the sought element is not in the

table?�

S.: �Sorry?�

1

In this book the word objet is to be understood with its usual meaning, without

regard to its onnotation in omputer siene.

16 Understanding Formal Methods

S. faes the following dilemma:

� either, he plays R.'s game, and then may well end up doing R.'s work;

� or, he stiks to his guns, and R. may well make irrevoable hoies � perhaps

unonsiously � whih ould later turn out wrong for S.

2.2 Sketh of a Formal Spei�ation

The formulation given by S., as stated above, is too vague. We need to make it

more preise, without going into algorithmi details. Let us see how elementary

mathematial onepts ould help.

L

A table is a olletion of objets organized in some way. A general

mathematial onept for organized olletions is that of a struture,

that is, a set endowed with omposition laws. Let us ignore the laws at the moment:

they are about organization and we still don't know how to organize the table.

Instead of �olletion� we will use the word �set�. A set, intuitively, is

a olletion of objets, termed its elements. What is the point of replaing the

word �olletion� by another? Atually, there is a whole body of well-established

de�nitions, notations, properties and tehniques. This allows us to manipulate sets

and reason about them in a seure way. Moreover we will see in Chapter 7 that a

olletion is not neessarily a set. The statement x is a member of E is denoted

by x 2 E.

L

If we represent the table by a set T , we already know that the element

to be found is an x suh that x 2 T . But the previous spei�ation

�searh for an element in a table� impliitly tells us that we don't want an arbitrary

element. In order to haraterize it we make use of a property we expet of it.

Whih property we hoose matters little here. In any ase, the element has to exist

and we must also be able to hek whether or not the property holds on given

elements.

We formalize this property using the onept of a prediate: we introdue

a symbol, say P , and make P (x) denote the fat that x satis�es the property P .

P is alled a prediate symbol.

In summary, we introdue a set T whih represents the table, a prediate

P de�ned over T , and we have to searh for an element x, whih is a member

of T and suh that P (x). In later hapters we will see how this spei�ation

an be expressed in real formal spei�ation languages. For the moment we

will ontent ourselves with a semi-formal presentation, that is, a mixture of

formulas (espeially in line 4) and informal text.

1 T: set (read: T is a set)

2 P: prediate defined for all elements of T

3 table-searh-program

4 x 2 T and P(x)

Introdutory Exerise 17

In line 3 we have the unknown: the expeted program. In lines 1 and 2 we

have two assertions stating what we know before the exeution of the program:

they are alled the preonditions. In line 4 we have another assertion, the

postondition, to desribe the result. The desired program is then spei�ed

by a pair hpreondition; postonditioni. This is one of the basi priniples of

formal spei�ation.

What does it meaning? In a real-life (and omplete) formal spei�ation,

assertions would be logial formulas, that an be assigned a mathematial mean-

ing � a semantis. For the moment let us ontent ourselves with their intuitive

meaning, as we stated previously. This spei�ation is onerned with the state

of the world, or merely that tiny part of it we are interested in here. In on-

rete terms, it is just omputer memory, or at least an abstrat version of

it. The preondition

2

states here that the state has two omponents, a set T

and a prediate P , whereas the postondition states that it ontains an ad-

ditional omponent, the element x; moreover, T , P and x must satisfy the

aforementioned onditions. The meaning of a spei�ation expressed in this

form hpreondition; postonditioni is then:

If the program is exeuted from a state satisfying the preondition,

then, after exeution, the state reahed satis�es the postondition.

Remark. The properties of T and P are atually invariants of the program

we desire: the latter should return x without hanging anything about T and

P . Otherwise R. ould plainly return a table ontaining just 0, the prediate

�null� and x = 0. In order to prevent this, let us rephrase the lines 3 and 4 in

the form:

program... returns x with postondition,

and we agree that everything outside returns and with is invariant.

1 T: set

2 P: prediate defined for all elements of T

3 table-searh-program returns

4 x with x 2 T and P(x)

Our new spei�ation indiates what is neessary at this stage and nothing

more. No premature design deisions involving a spei� representation are

made. However, this is more preise than the informal text as a result of the

use of mathematial onepts � albeit elementary ones. R. an take advantage

of it so long as the implementation data strutures faithfully represent sets,

elements or prediates. For example, it is easy to onvine oneself that a list,

an array, or a tree, an represent a set.

M

This intuition an be rigorously on�rmed by assigning a mathe-

matial meaning to programming statements. This is the topi of

2

The reader having some knowledge of logi may be somewhat relutant to onsider

the delarations (e.g. in line 1) as omponents of logial formulas. This is, however,

legitimate in some powerful logis, suh as the ones we onsider towards the end of

this book. For the time-being, it is easier to interpret this as a slight abuse of language.

18 Understanding Formal Methods

semantis, partiularly denotational semantis. We return to this at the end of

the hapter.

In summary, in order to eliminate the original dilemma, the trik was to on-

sider the orret level of abstration. One of the main assets of logi and related

mathematis is their provision of a large palette of abstration mehanisms.

2.3 Is There a Solution?

We still did not answer R.'s last question. Let us reformulate it as follows: what

happens if there is no member x of T suh that P (x)? Several approahes an

be onsidered.

2.3.1 Doing Nothing

Let us �rst analyze the meaning given to the spei�ation above

hpreondition; postonditioni:

If the program is exeuted from a state satisfying the preondition,

then, after exeution, the state reahed satis�es the postondition.

For this disussion we just need to reognize its logial shape: it is an implia-

tion, A) B.

L

A formula suh as A) B means �if A then B� and is read A implies

B. Here A represents the assertion �initially, T is a set, P is a prediate

and P is de�ned for all elements of T �; B represents the assertion �after exeution

x satis�es x 2 T and P (x)�; to be more rigorous we should repeat the onstraints

of A as part of B: see Remark on page 17. This omission has no onsequene in

what follows.

V

The use of �after� ould suggest that time plays an important role

here. On the ontrary, we must forget about time beause we want

to retain the usual framework of plain logi, whih is su�ient for our urrent

needs (time will be onsidered in Chapter 8). We then adopt the viewpoint

of an omnisient reature able to onsider simultaneously all past, present and

future events. Whether this event ours before that event is no more important

than whether this value is smaller than that one.

How an we formalize B, whih has two omponents, �after exeution� and

�x satis�es x2T and P (x)�? The �rst term raises a problem beause a program

may well not terminate its exeution � we say that it loops� or may terminate

its exeution in an abnormal way, for instane as the result of an interrupt. This

an happen, for example, if there is an attempt to divide a number by zero.

A possible interpretation of �after exeution� whih takes this into aount is:

�if the exeution of the program terminates, then . . . �. This is alled partial

orretness.

Let us investigate the onsequenes of this interpretation. Formally, B an

be deomposed into B

1

)B

2

.

Introdutory Exerise 19

L

We take here as B

1

: �the exeution of the program terminates� and as

B

2

: �x satis�es x 2 T and P (x)�.

It matters little that we don't know whether the postondition B

2

is false

or true: if B

1

is false, B is true whatever the truth value of B

2

� we return

to this basi fat in � 3.4.2. As a onsequene, R. has the freedom to provide a

program whih loops or aborts if there is no x in T suh that P (x). Atually R.

even has the freedom to exaggerate this problem: he ould deliver a program

whih loops in all ases. Of ourse this is not satisfatory.

2.3.2 Attempting the Impossible

S. ould onsider that the previous interpretation of B is too wide and then

add to his requirements.

�I want your program to terminate

3

normally and return an ele-

ment in the table satisfying P .�

This is alled total orretness. Formally, S. suggests B

1

^B

2

(read A and B)

instead of B

1

)B

2

. However R. an quite reasonably reply:

�That's impossible: you might as well ask me for the moon on a

silver platter!�

Indeed, there are spei�ations whih are unfeasible. Again, division by zero is

another example of this kind: ��nd x suh that ax = 2� is impossible to realize

when a = 0 is allowed. In eah of the above examples something is required

whih may not exist. There are more subtle ases of unfeasible spei�ations.

Take a program P , written in the language of your hoie and ontaining a

numerial variable. Now ask the question: �will the value of this variable be

null during exeution?� There is an answer, either yes or no. But in general

there is no program for omputing it.

V

It is not su�ient to exeute P and to test the value of the variable

at eah exeution step. The program may well perform many, many

omputations before �nding an assignment to zero. How an we be sure that

the next step will not be the last one in this seemingly endless exeution?

These somewhat triky issues are the onern of omputability theory, whih

we takle in � 3.3.4.

2.3.3 Weakening the Postondition

Our urrent spei�ation is unsatisfatory, but we an still try to modify it

rather than ompletely rejet it. Total orretness is preferable, so we start with

our seond interpretation. As the spei�ation is unfeasible, that is, too strong,

we will weaken it. The �rst thing we an do is to weaken the postondition.

3

Impliitly: �I want the exeution of your program to terminate.� In the following,

�program termination� always refers to the termination of exeutions of that program.

20 Understanding Formal Methods

In other words, we will ask that the program returns an x whih does not

neessarily satisfy (x 2 T) ^ P (x). But, for the program to be useful, we will

ask for an additional piee of information that tells us whether x satis�es the

required property or not. More preisely, we ask the program to return not only

x, but an ordered pair hb; xi where b is a Boolean whih is true if (x2T)^P (x)

and false otherwise.

It is lear that the postondition on x is weakened. What about b, whih

was not even mentioned before? For the sake of omparison, we an suppose

that the previous spei�ation asked also for a fake b without any onstraint.

The last line of the spei�ation would then have been:

hb; xi with (x 2 T) ^ P(x).

As the new spei�ation puts a onstraint on b, we onlude that the poston-

dition on b is stronger.

L

The set of Booleans is a set with exatly two elements representing the

truth values true and false. This set is denoted by B = ftrue; falseg.

More generally one an de�ne a set E by listing its elements in any order. We use

the notation E = fe

1

; e

2

; : : : e

n

g. This kind of de�nition is alled by extension.

Only �nite sets an be de�ned in this way. The empty set is often denoted by ?

instead of fg.

A number of programming languages suh as Pasal have a built-in

boolean datatype. In other languages, suh as C, the values true and false are

enoded by the integers 1 and 0, respetively.

Here is the new spei�ation:

1 T: set

2 P: prediate defined for all elements of T

3 table-searh-program returns

4 hb; xi with b 2 {true,false}

5 and (x 2 T) ^ P(x) if b=true

6 and (8 x 2 T) :P(x) if b=false

This possibility, the most satisfatory for S., will be investigated in � 2.4.4

under a somewhat di�erent, but equivalent, form.

L

The formula at line 6 (literally: for all x in T , not P (x)) means that no

x in T satis�es P (x). The set of ordered pairs ha; bi where a 2 A and

b 2 B is denoted by A � B, it is the Cartesian produt of A and B. Be warned

that order matters: ha; bi 6= hb; ai. The other important set-theoreti onstruts

involving two sets A and B are the intersetion A\B and the union A[B; A\B

is the set of elements whih are both members of A and B, while A[B is the set

of elements whih are members of A or B (or both).

2.3.4 Intermezzo: Sum of Sets

Here we have the opportunity to present a simple and key onept, whih is

ubiquitous in omputer siene, but often in a hidden form and then, unfortu-

Introdutory Exerise 21

nately, largely underestimated: the sum of two sets,

4

also alled their disjoint

union.

The ordered pair hb; xi is not quite so simple. We ould onsider it as a

member of B �T . This is not very aurate. When b = false, nothing is known

about x, so we have no reason to suppose that x 2 T , espeially not when

T = ?!

Let us temporarily forget our previous implementation of the result by the

means of an ordered pair. The key idea is that the result is either an element

of T or the representation of a failure. Let us all R its domain. Can we take

R = T [ffailureg, where failure is a value as well as true, false and elements

of T , rather than R = B � T ? Almost: it works on ondition that failure

is not already a member of T , otherwise nothing ould distinguish it. This

an be handled at the level of the preondition, but we often prefer to avoid

additional onstraints. We then introdue a onstrut ombining two sets A

and B and providing a way of reognizing where an element omes from. In

partiular, ommon elements of A and B will be distinguished. Suh a set is

alled the sum of A and B and is denoted by A+B. Let us illustrate the idea

on R = T + ffailureg, whih is relevant in our example. Only lines 4 to 6 of the

previous spei�ation are modi�ed:

1 T: set

2 P: prediate defined for all elements of T

3 table-searh-program returns

4 r with r 2 T + {failure}, suh that

5 P(x) if r omes from (element x of) T

6 (8 x 2 T) :P(x) if r omes from {failure}

The sum is not a primitive onept in set theory; it is built upon other

onstruts. The most natural way to proeed is to tag elements of A and B

with di�erent tags. Let us all the tagged sets A

T

and B

T

. Then we take

A + B = A

T

[B

T

. The tagging operation maps an element x to an ordered

pair = ht; xi, where t is the tag hosen for x, e.g. true if x is taken from A or

false if x is taken from B.

5

In order to know where omes from, we just have

to hek its �rst omponent t. Then we again get our spei�ation (page 20).

In summary, A+B is a subset of B � (A [B):

A+B = (ftrueg �A) [(ffalseg �B) :

It is easy to generalize this onstrut to multiple sums and it turns out to

be quite useful when one needs to desribe data that an take several di�erent

formats.

4

Later we onsider the sum of two types, but the basi idea is the same.

5

The hoie of true and false is ompletely arbitrary, but it happens to be onsistent

with the spei�ation on page 20.

Note also that, an x of A \ B yields two distint elements of A+B, htrue; xi and

hfalse; xi.

22 Understanding Formal Methods

2.3.5 Strengthening the Preondition

Besides weakening the postondition, there is another way to weaken a spei�-

ation: strengthening the preondition. It makes R.'s job easier if he is a priori

guaranteed that there is an element in the table satisfying the required prop-

erty. Formally, we use the symbol 9 (read: there exists). We get the following

spei�ation:

1 T: set

2 P: prediate defined for all elements of T

3 (9 x 2 T) P(x)

4 table-searh-program returns

5 x with x 2 T and P(x)

It is up to the engineer in harge of the integration of that piee of software

in its environment to ensure that it will be used orretly, that is, that the

preondition is satis�ed on eah oasion that it is used.

L

Otherwise, he runs the risk of losing ontrol of exeution. In parti-

ular, the piee of software under onsideration an not only abort

(whih at least an be notied), or loop, but it ould also return a fani-

ful result without warning. Indeed, reall that the meaning of a spei�ation

hpreondition; postonditioni is roughly preondition)postondition: if the pre-

ondition is false, this impliation is true even if the postondition is not satis�ed.

It is therefore better to avoid strengthening the preondition; this is partiularly

the ase when using assertions whih are not easy to verify.

How an we atually use an abstrat spei�ation to diret the onstrution

of a orret implementation? This is our next topi. We start with the last

spei�ation, whih is the easiest version of it to implement.

2.4 Program Development

In order to implement the previous spei�ation, the obvious intuitive idea is

to examine every element of T until a suitable x is found. Until now the set

T that we used as a model for the table was left undetermined. For a simple

program we need to be more spei�. We take here T = N.

L

N is the set of so-alled natural integers 0, 1, 2 ... Other important

sets of numbers are Z (positive and negative integers, and zero), Q

(rationals, i.e. quotients of integers) and R (reals). The latter an be onstruted

from the natural numbers.

Confusing mathematial integers with the integers of a programming

language is slightly improper: generally the latter are bounded. However this issue

has no onsequene in our example.

The property P will be left abstrat. We only assume that there is an

expression in the programming language under onsideration whih omputes

Introdutory Exerise 23

P (x) for all x of T .

6

The spei�ed problem then beomes the searh for an

integer x satisfying P (x). It is at least as general as the searh for an element

in an array.

2.4.1 Prelude: Corretness of a Loop

The programs we are interested in are made up of a loop allowing a simple

operation to be repeated while traversing the table � for us, elements of N.

We write it:

while test do body done

2.4.1.1 Partial Corretness. In order to show that a postondition Q is true

after the exeution of a loop, the simplest way is to prove that Q is kept true

at eah iteration of the loop! More preisely, if Q is true at the starting point

of the loop, and if exeuting the body preserves the truth of Q, it is lear that

Q is still true after any number of iterations. Suh an assertion is alled an

invariant of the loop. Beware: the invariant an be temporarily violated inside

the body; only its status before and after every iteration matters.

This tehnique is evidently inomplete: if we are interested only in things

whih do not hange, what is the point of exeuting the body of the loop?

Atually the invariant provides only an abstrat, partial, view of the state of

the program. The state is supposed to hange on every iteration; however, this

is preisely what we forget with the tehnique of the invariant.

Surprisingly, a very small addition turns out to be su�ient to derive a

proof method whih is powerful enough for our needs, at least with partial

orretness issues. We just have to take into aount the failure of the test

whih is neessary for exiting the loop. Let C be the assertion orresponding

to this test; we deompose the postondition Q into I ^ :C, where I is the

invariant of the loop. We an also take advantage of the truth of C at the

beginning of an iteration. This yields the following reasoning sheme:

if I is true at the starting point of the loop

and, if the body of the loop establishes I from I ^ C,

then we have I ^ :C at the exit point of the loop.

(2.1)

In order to have total orretness, we still have to ensure that exiting the

loop will atually our. Here again we need to study (an abstrat version of)

state hanges during exeution. Somewhat strangely, the key onept is again

the onept of invariant.

2.4.1.2 Termination. For the sake of simpliity we exlude abortion or ex-

eption mehanisms. We an then informally represent the behavior of our

looping program by a sequene

6

In the pseudo-language we employ here we retain the notation P (x). In languages

without Booleans, one an use a funtion f returning 0 or 1, suh that P (x) is

represented by the test f(x)=1.

24 Understanding Formal Methods

true; body; true; body; : : : true; body;

| {z }

n iterations

false

(n may happen to be zero) if it terminates, or

true; body; true; body; : : : true; body; : : :

if it does not terminate. In order to ensure total orretness of the program,

we have to prove that the seond ase does not our.

The tehnique that an generally be used is to identify a value v, alled the

loop variant, whih depends only on the state, and whih satis�es the following

onditions:

v is a natural number (a non-negative integer), (V

N

)

v dereases at every iteration. (V

<

)

Indeed, eah iteration step results in a distint value of v; but we have

a stritly dereasing sequene of non-negative integers

is neessarily �nite.

(2.2)

As a passing remark, (V

N

) provides an assertion whih must be integrated

into the loop invariant. For example, the program

while x 6=0 do x:=x-2 done

does not terminate if the initial value of x is odd. This problem beomes ap-

parent if, in an attempt to prove the termination of this loop, we hoose the

value of x as the variant v: the input ondition C in an iteration ensures only

v 6= 0, whih, using the invariant (V

N

), yields v 2f1; 2; 3; 4 :::g; after x:=x-2 we

would have v 2 f�1; 0; 1; 2; :::g, and the allowed value �1 would violate (V

N

).

Assuming that the initial value of x is di�erent from 1 would not solve the

problem for a similar reason.

L

This would amount to taking I

def

=

v2f0; 2; 3; 4 :::g as the invariant (

def

=

means �is de�ned as�). At the starting point of an iteration we would

have I^v 6=0, hene v2f2; 3; 4 :::g; after x:=x-2 it beomes v2f0; 1; 2 :::g, whih

is unfortunately di�erent from the invariant I we expet.

By ontrast, if the initial value of x is even, we an take I

def

=

v2f0; 2; 4 :::g

as the loop invariant. At the starting point of an iteration we have I ^C, that

is v2f2; 4 :::g; after x:=x-2 it beomes v2f0; 2 :::g whih does indeed onform

to (V

N

).

The behavior of a orret loop an then be roughly summarized as follows:

while the state is not satisfatory, hange it in a way suh that

the invariant is kept true and the variant dereases.

The onept of a variant an be stated in a muh more aurate manner using

well-founded relations; we return to this in � 3.5.

Introdutory Exerise 25

2.4.2 Linear Searh

We assume here that there is at least one natural integer satisfying P . The

searh is performed by attemping di�erent integers one by one, hene the term

linear.

1 P: prediate defined for all elements of N

2 (9 x 2 N) P(x)

3 integer-searh-program returns

4 x with (x 2 N) ^ P(x)

The proposed program is of ourse:

1 x:=0 ;

2 while :P(x) do x:=x+1 done ;

The following reasoning may help to onvine ourselves that the above program

is orret.

Partial orretness (if the program terminates, then the postondition is

satis�ed):

� x, initialized to 0, is inremented by 1 at every step; then we have always

x 2 N, this invariant is still true at the exit point of the loop;

� :P (x) fores the next exeution step to be in the loop, then P (x) is nees-

sarily satis�ed at the exit point of the loop.

Total orretness (the program terminates).

Let N be an integer suh that P (N) is true (the preondition ensures the

existene of suh an N), and let us take v = N � x as the variant:

(V

N

) N �x is an integer beause N 2N and we know (see the above on partial

orretness) that x 2 N. We still have to show that the property v � 0,

whih is true after x:=0, is left invariant; let us rephrase this as x � N

(sine v = N � x). At the beginning of an iteration step, we neessarily

have :P (x) whih yields x 6= N , sine N satis�es P (N); hene x � N

boils down to x < N ; after the assignment x:=x+1, this yields x � N as

expeted, sine N and x are integers.

(V

<

) N � x dereases at every iteration beause x inreases.

V

In the above reasoning, N is not neessarily the integer that will be

returned by the algorithm: the latter is atually the smaller integer

satisfying P . We need an N suh that P (N) holds only for purposes guaran-

teeing termination.

2.4.3 Disussion: Reasoning Figures

The above reasoning is not that long, but that would be the ase with more

omplex spei�ations and programs. Therefore it is desirable to be able to

hek a proof in a systemati way. To this e�et one redues this heking

to the suessive appliation of primitive reasoning steps, that is, reasoning

26 Understanding Formal Methods

steps simple enough that we an have no doubt about their validity. Logiians

formalize them in a dedution system. A great advantage then is that the proess

an be aided by automated tools. Let us make an inventory of the ingredients

needed in the above proof.

2.4.3.1 Logial Laws. A number of steps are purely logial steps: the ones

related to onnetives suh as _ (or), ^ (and),) (implies), : (not). For exam-

ple, from v>0 _ v=0 (whih was written N � x � 0) and from v 6=0 (oming

from x 6=N) we dedued v > 0. More formally, from A _ B and from :B we

dedued A. Suh a dedution priniple is written in the same way as a fration,

where premises take the plae of the numerator while the onlusion takes the

plae of the denominator:

A _ B :B

A

: (2.3)

The following formula ontains a similar idea:

(A _B) ^ :B) A : (2.4)

However, the latter must be regarded as an ordinary logial expression, in the

same way as (a + b)�(�b)=a is an arithmetial expression. In ontrast (2.3)

denotes a dedution step that yields the onlusion A from hypotheses A _ B

and :B. A omplete reasoning onsists of a ombination of similar steps. This

an be viewed as follows:

hypotheses

#

reasoning

#

onlusion

Formulas suh as (2.4) allow us to represent the hypotheses, the onlusion, or

the fat that the former entails the latter, but not the proof itself. We will see

in Chapter 9 how the box �reasoning� an be formalized using rules analogous

to (2.3).

Other issues will be takled, for instane:

� what is the preise link between (2.3) and (2.4)?

� how an we hek the validity of a formula like (2.4)?

2.4.3.2 Manipulation of Equalities. Aiming at deduing x 6=N from :P (x)

and from P (N), let us suppose that x = N and derive a ontradition. We an

then replae x with N in :P (x), whih yields :P (N), in a ontradition with

the seond premise. The general line of reasoning (redution to the absurd)

is a matter for the previous subsetion. However, we also used the priniple

of substitution of equals by equals, whih is very important in spite of its

simpliity.

Introdutory Exerise 27

2.4.3.3 Proper Laws. We also employed laws whih are spei� to the do-

main of the model, for example arithmeti rules, allowing us to transform

N � x 6= 0 into N 6= x, or laws about assignments. The behavior of a piee

of a program S is desribed using the notation fPg S fQg, whih means that

starting from the preondition P , exeuting S establishes the postondition Q.

fPg S fQg is itself a logial formula, just as are P and Q. The latter two

are logial formulas about the state that we get from the variables of the pro-

gram, whereas fPg S fQg is about its exeution. The reasoning sheme (2.1)

for verifying the partial orretness of a loop, given on page 23, an also be

formalized by means of a premise=onlusion rule:

fI ^ Cg S fIg

fIg while C do S done fI ^ :Cg

: (2.5)

L

The formula fIg while C do S done fI ^:Cg is made up of formulas

suh as I and C, and of piees of programs suh as S and the part that

is framed. In a similar way, an assertion suh as P ^ (1+1 = 2) is made up of

another assertion (P) and of integers.

2.4.3.4 Reasoning by Indution. There is a partiularly powerful means

for proving that a property Q is true for all natural integers n. We proeed in

two steps:

1. we show that Q is true for n = 0 ;

2. we show that if Q is true of an arbitrary integer, then Q is kept true

for the next integer.

This priniple, alled indution, an also be written in the previous format:

Q(0) 8n n 2 N ^Q(n)) Q(n+ 1)

8n n 2 N)Q(n)

: (2.6)

Reasoning by indution is ubiquitous, though sometimes in a hidden format.

The priniple of indution allows us to justify that a loop invariant is true after

any number of iterations given that it is initially true and that it is preserved on

every iteration. It is also required to prove that a stritly dereasing sequene

of natural integers is neessarily �nite (whih is in turn the key argument for

justifying the tehnique of loop variants, see (2.2) on page 24). All important

properties of integers and data strutures suh as lists or trees require a form

of indution. An automated environment for formal methods must support this

kind of reasoning; simply handling logial onnetors is far from su�ient.

2.4.4 Bounded Linear Searh

If no integer satis�es the property P , it is lear that the program on page 25

does not terminate.

28 Understanding Formal Methods

L

If this were the ase, we know from partial orretness that, at the

exit point of the loop, x would satisfy P (x), in ontradition with the

previous hypothesis.

2.4.4.1 Spei�ation. We use the spei�ation given in � 2.3.4 on page 21.

With T = N we an write it as:

1 P: prediate defined for all elements of N

2 table-searh-program returns

3 r with r 2 N + {failure}, suh that

4 P(x) if r omes from (elt. x of) N

5 (8 x 2 N) :P(x) if r omes from {failure}

But this is too di�ult, mainly beause of line 5 where we have a quanti�ation

over an in�nite number of elements.

M

If a general program solving this problem ould exist, for an arbitrary

P , it ould in theory be used to solve onjetures or di�ult problems

of arithmeti. For example, let us onsider Fermat's last theorem (reently

proved by Wiles): for any n greater than 2 we annot �nd three integers a, b

and suh that a

n

+ b

n

=

n

. We would take, for P (x):

9n 9a 9b 9

(n<x) ^ (a<x) ^ (b<x) ^ (<x) ^ a

n+3

+ b

n+3

=

n+3

:

Here we limit ourselves to �nite tables. They are modeled as an interval of

integers. We use [p::q[to denote the set of integers greater or equal to p and

stritly smaller than q. In partiular, if p = q, the interval [p::q[is empty.

1 (p 2 N) ^ (q 2 N) ^ p�q

2 P: prediate defined for all elements of [p..q[

3 table-searh-program returns

4 r with r 2 [p..q[+ {failure}, suh that

5 P(x) if r omes from (elt. x of) [p..q[

6 (8 i 2 [p..q[) :P(i) if r omes from {failure}

In the present situation we an take advantage of the struture of the table to

avoid the introdution of the Boolean b (see page 20): we simply represent the

lak of an element satisfying P (x) in the table by returning a value of x suh

that x = q. In other words, for T = [p::q[, we an model ffailureg by fqg and

T + ffailureg by [p::q[[fqg = [p::q℄. Thus we get the following spei�ation:

1 (p 2 N) ^ (q 2 N) ^ p�q

2 P: prediate defined for all elements of [p..q[

3 table-searh-program returns

4 x with x 2 N ^ p�x ^ x�q

5 and P(x) if x<q

6 and (8 i 2 N) (p�i ^ i<q)) :P(i) if x=q

2.4.4.2 A Naïve Attempt. We ould try the following program:

1 x:=p ;

2 while x 6=q ^ :P(x) do x:=x+1 done ;

Introdutory Exerise 29

Aiming at a orretness proof of this program, we onsider the loop invariant

I that simply tells us that, on the one hand, x is kept on�ned to the expeted

domain (I

1

) and, on the other hand, values of x investigated so far do not

satisfy P (I

2

):

I

def

=

I

1

^ I

2

;

I

1

def

=

x 2 N ^ p � x ^ x � q

| {z }

domain of x

;

I

2

def

=

8i 2 N (p � i ^ i < x)):P (i)

| {z }

unsuessful exploration

:

This invariant is established before the loop: I

1

omes from the preondition

and, with regard to I

2

, p � i ^ i < x is neessarily false beause x = p.

The partial orretness riterion of while tells us that the negation of x 6=

q ^ :P (x) is veri�ed after line 2 of the program. A logially equivalent formula

is

x = q _ P (x) : (2.7)

In the ase where x = q, the invariant I

2

an be written 8i 2 N (p � i ^ i <

q)) :P (i), whih agrees with line 6 of the spei�ation. If x 6= q, the exit

ondition (2.7) fores P (x); with I

1

we then get all the ingredients of lines 4

and 5 of the spei�ation.

We still have to examine total orretness. But . . .

2.4.4.3 Beware of Limits. There is a well-known snag for the experiened

programmer. If there is no element of [p::q[whih satis�es P , the exit test

of the loop of line 2 is performed for x = q, whih means that the ondition

q 6= q ^ :P (q) is omputed. The inequality q 6= q is quietly evaluated to false;

but what about :P (q)? P is not supposed to be de�ned at q. The preondition

of line 2 has been designed intentionally, beause it is a typial programming

problem: array over�ows.

Let us �rst remark that usually, in logi, an expression having the form

b^ anything evaluates to false if the value of b is false. From this point of view

we don't hesitate: the assertion q 6= q ^ :P (q) has a value whih is false.

M

We will see in Chapter 5 that, in usual logi, all funtions are total

and prediates are de�ned everywhere. When we want to model a

partial objet f (prediate or funtion), we have to extend it in an arbitrary

way over the whole domain under onsideration, and to introdue an additional

prediate haraterizing the elements where f is de�ned. The expression f(x)

is then de�ned, even if x is outside the expeted domain of f (the domain of

a funtion is the set of elements where it is de�ned). In our ase the assertion

P (q) has a value, but it is arbitrary and unknown: hene q 6= q ^ :P (q) takes

the value false.

30 Understanding Formal Methods

However, the very fat that this assertion has a value does not mean that

at the level of the program the orresponding omputation sueeds. It is a

well-known fat that when exeuting, a program fragment may starve (hang)

in a loop, abort, or raise an exeption. This is typially what may happen in the

ase of an array over�ow.

7

Modeling these phenomena requires the introdu-

tion of an additional value whih represents the inde�nite. The mathematial

representation of the evaluation of a Boolean expression by a program ompu-

tation is then more omplex than the evaluation of the orresponding logial

assertion.

In order to take this into aount, a number of programming languages

make it expliit that the omputation of A^B starts with the omputation of

A; if A = false the result false is diretly returned without evaluating B. In our

example this works quite well. In the general ase, if B annot be evaluated,

then B^A annot either, aording to this evaluation strategy. Hene a property

as simple as A ^ B = B ^ A is lost, and atually many ommon properties

of logial onnetors are invalidated at the level of programs. This an make

reasoning more ompliated.

Another possibility is to ensure that evaluating P (x) is performed only for

values of x whih are stritly smaller than q. Thus we an ontent ourselves with

the two normal truth values. But, obviously, the previous program needs to be

modi�ed. Let us investigate this idea. Rigor would require that we indiate for-

mally that eah evaluation of P (x) is performed under good irumstanes. To

this e�et we should insert the assertion x < q before all instrutions ontain-

ing P (x), and prove that those assertions are true in the indiated plaes. This

leads us to mix spei�ations and programs. Appropriate syntati means will

be presented in Chapter 4. Here we simply follow this approah in an informal

manner.

V

The issue raised here is not a limitation of formal methods but a

subtle point related to the semantis of programs: in spite of appear-

anes we have to be areful not to onfuse Boolean expressions ourring in

tests with logial expressions ourring in assertions. Therefore in the follow-

ing, we distinguish the logial onstants f and t, used in formulas, and the

Booleans false and true, used in programming.

2.4.4.4 Another Program. Sine the ourrene of P (x) in the exit test of

the loop is harmful, let us remove it. What is left is while x 6= q do body to be

determined. But, when exiting the loop we would neessarily have x = q, whih

is not what we expet.

A basi tehnique whih turns out to be useful in this kind of situation is

to replae a onstant (the only one we have in the test is q) by a variable, say

y. When exiting a loop while x 6= y do et. we have x = y, and we want one

of the following assertions to be true:

7

It is at least the most meaningful behavior (exept when we only want to read

a value for whih we proved, as here, that its value is irrelevant). In most ases,

allowing the exeution to ontinue leads to unpreditable results often di�ult to

analyze. Languages suh as C make this unfortunate hoie.

Introdutory Exerise 31

� either x = y < q, if P (x) (line 5 of the spei�ation),

� or x = y = q, if there is no satisfatory element in the table (line 6 of the

spei�ation).

We will naturally test P (x) in the body of the loop, with the intention of

exiting the loop in the ase of suess; then we have to equate x and y, without

modifying x sine x ontains the value we are looking for: hene we onsider

y:=x. If the test fails, x is inremented as in the previous program. If the

suessive tests always fail, y must behave like q in the previous program, q

is then a good andidate for the initial value of y. Hene we have an elegant

program whih may esape even our experiened programmer:

1 x:=p ; y:=q ;

2 while x 6=y do

3 if P(x) then y:=x else x:=x+1 done ;

The orretness proof is performed as above. We just have to add in the

invariant, that y is between x and q (see I

1

) and that x satis�es P when y is

stritly smaller then q (I

3

):

I

def

=

I

1

^ I

2

^ I

3

;

I

1

def

=

x 2 N ^ y 2 N ^ p � x ^ x � y ^ y � q

| {z }

domain of x and of y

;

I

2

def

=

8i 2 N (p � i ^ i < x)):P (i)

| {z }

unsuessful exploration

;

I

3

def

=

y < q) P (x)

| {z }

suess

:

Now we an hek that at the entry point of the loop body, we have x 6= y,

hene x < q beause of I

1

. Then P (x) an be easily omputed.

For loop termination onerns, we an take y�x as the variant; details are

left as an exerise.

2.4.5 Disussion

This little example illustrates a triky point that ours in programming, in

formal spei�ation, and in logi as well: handling partial funtions.

L

A partial funtion is a funtion whih is not de�ned everywhere. For

example, if we onsider funtions over real numbers, 1=x is not de�ned

for x = 0, and

p

x is not de�ned for x < 0. For an example over N, the square root

funtion is only de�ned over f0; 1; 4; 9 : : :g. Basi notions of funtions are realled

in � 3.4.3 on page 48.

An array an be regarded as a partial funtion whih is de�ned over an

interval of integers, i.e. a (speial) subset of N. It may happen that omputing

a funtion whih is desribed in a programming language either loops or aborts

for partiular values of its arguments; then we still have a partial funtion.

32 Understanding Formal Methods

We already have a problem at the notation level: what is denoted by f(x)

when f is partial and is not de�ned for x? The matter would be simpler if we

ould tell in advane whether or not f is de�ned for x. But in the general ase

suh knowledge annot be provided by mehanial methods, if x is the result of

a omputation. We will onsider three main approahes to this issue, one based

on lassial two-valued logi, one using a third truth value and one based on

types.

It is important to keep in mind that notations oming from mathematis

often take a slightly di�erent meaning in programming. This was illustrated in

� 2.4.4.3 on P ^ Q and on P(x).

8

There is another pitfall with the onept of a

variable. The onept we use in a programming language like C is quite di�erent

from the onept we use in mathematis: it is essentially a memory address, and

generally orresponds to values that are di�ult to predit beause of aliasing

phenomena, that is, when two names refer to the same piee of memory.

2.5 Summary

Considering the right abstration level is essential for writing preise spei�a-

tions without getting lost in the details. Logi turns out to be an exellent tool

in this area. This hapter also introdued, in a semi-formal way, a spei�ation

tehnique based on logial assertions as well as simple reasoning about them.

Reasoning obviously lies within the realm of logi.

We also observed the ambiguity of informal text, and that suh ambiguities

an be overlooked at �rst sight: reall the two interpretations proposed on page

17 for a spei�ation based on a preondition and a postondition. Moreover,

similarities between mathematial notations and programming languages may

ause a number of onfusions: program variables are not exatly mathematial

variables; Boolean expressions annot always be onsidered to be prediates;

partial funtions have a somewhat di�erent status.

Our example for illustration purposes was very simple. What happens when

we onsider real large-sale software? The risk of lapses, ambiguities and in-

onsistenies inreases dramatially. Formalizing (parts of) the spei�ation

beomes more di�ult. However, it should be noted that, during the lifeyle

of a software, we always have at least one formalization step: enoding in a

programming language. Moreover it is better to formalize our knowledge as

early as possible, so we an then derive information about the behavior of the

system under onsideration, ompare the latter with desired properties, and

make more aurate design deisions. At the same time, it is important not

to freeze implementation hoies too early. In this respet, good abstration

mehanisms are essential.

Hene, powerful and expressive languages endowed with a preise seman-

tis turn out to be very useful. Again, logi provides essential tools. However,

8

Reall how P(x) was introdued in our toy programming language on page 23.

Introdutory Exerise 33

they have to be hosen very arefully. The di�ulty of this task should not be

underestimated.

2.6 Semantis

M

Real software is written in programming languages, then ompiled

and exeuted on real (or virtual) mahines. A omplete guarantee of

their behavior would require exhaustive veri�ation right down to the hardware

level. This is of ourse a giganti task, but one against whih we are not,

however, entirely powerless. We will not onsider here the appliation of formal

methods to hardware spei�ation and veri�ation, although they are used in

that arena at least as muh as for software.

In ontrast let us say a few words on programming languages. Rea-

soning about onrete programs is legitimate provided that the language used

is endowed with a well-understood formal semantis. There are several kinds

of semantis. Among them, the most important are denotational semantis,

axiomati semantis and operational semantis.

Denotational semantis aims at giving programs a mathematial

meaning whih is independent from omputations on partiular mahines, in-

luding abstrat mahines. In most ases this mathematial meaning takes the

form of a funtion overing an appropriate domain. In ontrast, operational se-

mantis de�nes the behavior of a program by its e�et on an abstrat mahine.

Finally, axiomati semantis tells us the e�et of eah program statement on

assertions over the state of an abstrat mahine.

Eah semantis has its uses. Denotational semantis provides a better

representation of the very nature of a program. Operational semantis may form

the basis of the design of a ompiler. Reasoning rules to be applied to onrete

programs are based on axiomati semantis. The preferred situation is when

all three type of semantis are available and when eah one is onsistent with

the others.

2.7 Notes and Suggestions for Further Reading

Many textbooks on formal spei�ation tehniques (e.g. [PST91, Jon90, Mor90,

Wor92, WL88℄) provide an easy-to-read introdution to logi and set-theoreti

onepts used in tehniques suh as Z, B or VDM.

The idea of reasoning about programs seems to be as old as programming

itself. It was mentioned in the 1940s by the logiian Alan Turing, who invented

the onept of a universal mahine (a mahine where the program is regis-

tered in memory). Logial assertions were introdued in �ow harts in 1967 by

Floyd [Flo67℄, then in strutured programming languages following the seminal

work of Hoare [Hoa69℄ and Dijkstra, we return to these in Chapter 4.

34 Understanding Formal Methods

There are several introdutory textbooks on programming language seman-

tis. Hanne and Flemming Nielson's book [NN92℄ present the main approahes

learly. The short book by Gordon [Gor79℄ and the referene book by Stoy

[Sto77℄ are more spei�ally devoted to denotational semantis. One may on-

sult [Sh88℄ for a further study.

The bounded linear searh algorithm omes basially from textbooks by

[Coh90℄ and [Kal90℄ on Dijkstra-style approahes. The starting point of the

authors is a spei�ation similar to the last one in � 2.4.4.1, where x = q

enodes the failure of the searh. This spei�ation is simple to understand

and perfetly relevant if the problem to be solved is the searh for an element

in an array. Why did we dismiss T [ffailureg in a �rst stage and �nally ome

bak to it? Preisely beause our initial problem was to searh for an element

in a table, whatever the atual detailed struture of the table. The onept

of sum introdued in � 2.3.4 perfetly �ts our requirements for a high-level

spei�ation. Atually, most implementations onsidered in programming turn

out to use data strutures with two distint variants.

3. A Presentation of Logial Tools

Mathematial logi has spread out in a variety of ways � model theory,

proof theory, set theory, omputability � aording to Barwise's lassi�a-

tion [Bar77℄. To this taxonomy we an add type theory, whih has beome

more important sine the time of Barwise's overview. From our point of view,

the importane of logi an be summarized as follows:

� it provides a natural framework for preisely onstruting and expressing

various onepts in omputing;

� it lends itself well to formalization.

The �rst of these points has been desribed in Chapter 2. The properties

of a program are quite naturally expressed in logi. The language of sets also

�nds many appliations in this domain. Variables manipulated by programs

range over a state spae that is nothing more than a set de�ned by ompos-

ing partiular basi sets (spei�ally, integers, haraters, et.) by means of

set operations (for example, the reord onstrut of the Pasal language or the

strut onstrut of C are both a form of Cartesian produt). In other respets,

omputability theory makes us aware of the existene of unrealizable spei�a-

tions.

1

Finally, type orretness makes programming more aurate and more

seure.

Returning to the seond point, above, our interest in formalization is twofold.

On the one hand, the rigor of our spei�ation texts and our reasoning about

them is inreased, sine this is based on the manipulation of symbols that may

be easily veri�ed; on the other hand, the e�ort may be automated, or at least

aided, by omputer. It must be noted that the omplete formalization of proofs,

whether in software development or in a mathematial ontext, has a tendeny

to submerge the prinipal ideas under a plethora of more or less trivial lemmas.

For suh an approah to be viable, at least a partial automation proves to be

indispensable in pratie.

2

Proof theory provides essential tools in this respet.

On a pratial level, mathematial logi aids in developing spei�ation

languages. An intuitive understanding of onepts, suh as we aquire in shool

and in ollege, is often su�ient. Certain spei�ation languages suh as Z or

B transform the language of sets and logi to aommodate the organizational

needs of omputing by means of adequate struturing mehanisms.

1

Not beause they are ontraditory, but more subtly beause no program an be

derived to ompute the desired funtion.

2

An alternative point of view is presented in � 9.6.

36 Understanding Formal Methods

Knowledge of ertain more advaned aspets of logi is often very useful.

This will be illustrated in � 3.1. Setion 3.2 will give an overview of the historial

ontext of mathematial logial. We will desribe the di�erent branhes in � 3.3.

Basi mathematial terms will be realled in � 3.4. We will end with more

tehnial disussions on well-founded relations and ordinals from � 3.5 � these

onepts play a key role in issues of termination and omputability in � 3.7.

The last two setions may be omitted on a �rst reading.

3.1 Some Appliations of Logi

3.1.1 Programming

Let's take a piee of paper on whih are drawn some ordinary �gures, and

try to determine if a given point is inside this �gure, or if a given line uts

that �gure. In three dimensions, this presents a very onrete problem of aerial

ontrol. The reader is invited to spend a few minutes onsidering a solution in

the programming language of his or her hoie.

Do we, for example, onstrut some form of strutured variables for eah

basi form? Do we try to ombine everything into a tree struture? We must

onsider every possible interation.

It's muh more simple: we use the harateristi funtion of the �gure under

onsideration, that is a funtion that for every point returns the value true

if the point belongs to the �gure, and the value false otherwise. The reader

should be able to easily express the harateristi funtion of basi �gures (diss,

retangles, et.) in the programming language of hoie. But this representation

doesn't really ath our interest unless we an onstrut new �gures from known

�gures. For example, the intersetion of two �gures represented by f and g is

a funtion whih, when applied to the point p, returns true if and only if

f(p) = true and g(p) = true. The funtion that omputes the intersetion is

very general, and makes a total abstration from the partiulars of the �gures

themselves. Other forms of omposition (omplement, union) are also easy to

obtain, as are transformations suh as translations, symmetries or rotations.

Everything rests on one essential ingredient: the ability to pass funtions

as parameters and return funtions as a result. What programming language

should we hoose? At �rst sight we �nd the onept of a pointer to a funtion,

widely used in the C programming language, to be onvenient. In reality, this is

only su�ient to over the ase when the funtions used are �nite in number and

are known in advane. The problem with not pereiving these limitations is that

we may hope to be able to resolve the problem by taking a su�iently shrewd

approah. In reality, only the funtional languages, based on the �-alulus (see

later) suh as Sheme, ML or Haskell, provide a su�iently general mehanism.

The underlying problem is to know if funtions are onsidered as objets

that an be manipulated in the same way as data strutures. This is not a

A Presentation of Logial Tools 37

trivial question. We will see that in set-based spei�ation tehniques, we regu-

larly manipulate binary relations, funtions being a partiular ase of relations.

These relations are intended to be implemented with data strutures (tables,

pointers, et.) or algorithms (proedures, funtions). Choosing the right solu-

tion is deliate. If the development is undertaken unadvisedly, or rashly, it may

well end up with an ine�ient or overly omplex implementation � or just fail.

3.1.2 Sums and Unions

Let us examine some other onstruts used in formal languages. The reader

probably knows already how to use symbols suh as [and an assoiate it

with a simple intuitive interpretation � ombining the elements of two sets.

This notation is generally used to ombine sets of the same �kind�. For example

we an state:

�

x 2 R j 1 � x � �

	

[

�

x 2 R j 2 � x � 2�

	

=

�

x 2 R j 1 � x � 2�

	

:

We don't feel the need to ombine dissimilar sets, for example a set of integers,

a set of ouples and a set of sets:

f1; 2; 3g ;

�

h1; 2i; h3; 4i

	

and

�

f1; 3; 4g; f1; 5g

	

whih would yield:

�

1; 2; 3; h1; 2i; h3; 4i; f1; 3; 4g; f1; 5g

	

;

but after all, nothing is impossible. We atually often need to mix heterogeneous

data in omputing. For example, in protools, when we want to manipulate

messages having di�erent formats in a uniform way. Or in parsers, when we

onstrut a syntax tree: a node orresponding to a statement an have two

hildren if it represents the sequential omposition of two statements, three

hildren if it represents an if-then-else statement, et.; moreover we see that

nodes an represent statements or expressions. A data struture representing

elementary geometri �gures, say irles or triangles, would have, respetively,

two �elds (the enter, whih is a point, and the radius, whih is a distane) or

three �elds (the verties, whih are points). A more elaborate example is the

set of �nite integer sequenes, whih an be seen as an in�nite union:

3

f?g [N [(N � N) [(N � N � N) � � �

However, mixing heterogeneous objets is not harmless. It is plainly mean-

ingful to rejet, at ompile time, a test like a = b if a and b have di�erent types.

The usual interpretation is that a and b take their values from two di�erent

3

We need a singleton for representing the empty sequene. The usual set-

theoretial trik is to take f?g.

38 Understanding Formal Methods

sets A and B, say �oats and strings. But we ould just as easily agree that a

and b take their values from the same set: A [B! And let us stress that we

annot just disallow A [B, as this notion is needed in the previous examples.

How an we get the �exibility that we need while simultaneously ontrolling

the ohereny of data and operations? The onept of sum introdued in 2.3.4

is just the tiket. In a good type system, A, B and A+B an be distinguished.

A sum is dealt with using an operator able to hek whether a given element

s omes from an element a of A or from an element b of B, and then to diret the

omputation appropriately; the omputation depends on a in the �rst ase and

on b in the seond ase. Suh onstruts are available in modern languages like

ML. In Pasal (or C) it is possible to emulate a sum using a reord onstrut

with variants and a swith �eld, but it is the responsibility of the programmer

to ensure that a variant is always used in a way onsistent with the swith

�eld. Note that during the initial design of ASN1, a standardized language for

desribing the format of data exhanged in protools, sums were not reognized

as a primitive onept, leading to many ompliations.

M

In ASN1, the expression CHOICE { a A, b B } yields a value whose

type is either A or B. Swith �elds (like a or b) are mandatory only

sine 1994. Before this date, they were onfused with labels, whih are integers

enoding the type of the �elds of a ompound value. They are lumsy and

annot solve the ambiguity whih appears if A and B happen to represent the

same type.

3.1.3 Chasing Paradoxes Away

Let us again onsider the example of sequenes. They an be haraterized by

the following property: �to be empty or an integer or a pair of integers or et.�.

We often need to form sets from elements satisfying a given property � suh

a set is de�ned by omprehension. In this way we enter into the realm of the

�rst version of set theory, where every olletion made of objets haraterized

by a given property is a set. This so-alled �naïve set theory� turned out to be

inonsistent! Tehnially, an inonsistent system is a system where one thing

and its ontrary an be proved (formally: P ^ :P) or, equivalently, everything

an be proved.

Let us onsider one of the simplest paradoxes, alled Russell's paradox. In

general, a set is not a member of itself. For instane, we have :(B 2 B) beause

B is not a Boolean. Could we imagine a set whih is a member of itself? Yes,

though we have to think a bit.

4

Anyway, what matters is not whether suh sets

exist or not, but that we onsider the property x 2 x and its negation.

Let us de�ne by omprehension R

def

=

fx j :(x2x)g. If R2R, R must satisfy

the harateristi property of members of R, that is, :(R 2R). If :(R 2R), R

possesses the harateristi property, hene R 2 R. If we de�ne P

def

=

R 2 R,

we have P and :P at the same time, whih is inonsistent.

4

Consider, for instane, the set of sets whih an be de�ned with less than a

hundred English words.

A Presentation of Logial Tools 39

M

Formally we have just shown that P) :P and :P) P . By the

equivalene (3.6) on page 47, the �rst impliation yields P)(P)f),

whih by (3.11) boils down to (P ^ P)) f , then to P) f whih we use twie.

First, it an be written :P , and we dedue P from the seond impliation.

Seond, ombined with P we get f .

The same paradox arises if one aepts too broad a onept of �property�

(instead of set), more spei�ally if one aepts that the sope of a property

may extend to all objets, inluding properties. Just replae every set by its

harateristi property in the above reasoning. We then onsider properties A

whih are false when applied to themselves and we de�ne: R(A)

def

=

:A(A),

whih has 8A R(A)() :A(A) as a onsequene. Taking A = R we dedue the

absurd R(R)() :R(R).

We will see in the following that several solutions have been proposed in

order to avoid paradoxes. For the moment, let us just mention that the most

elebrated in mathematis is the axiomati set theory of Zermelo�Fraenkel.

However, as it is an untyped theory, it is not well suited to omputer siene.

This explains why spei�ation languages based on set theory, suh as Z and

B, introdue an additional typing mehanism.

In summary, logi provides onepts and tools that allow us to understand

the bene�ts, limitations and design issues of spei�ation and programming

languages. One has to pay attention to two pitfalls:

� a lak of expressiveness may lead to ompliations in using a language; for

instane, it is sometimes just impossible to state the properties we wish to

verify;

� onversely, some powerful onstruts whih seem orret at �rst sight may

turn out to be muh too powerful; that is, in the ase of a property lan-

guage, the underlying logi may beome inonsistent; or, in the ase of a

programming language, they may lead to run-time errors whih are di�ult

to analyze.

3.2 Anteedents

From an historial perspetive, mathematial logi emerged a entury ago for

the purposes of preisely and rigorously onstruting the foundations of math-

ematis. It was known, sine the times of Dedekind and Cantor, that all math-

ematial objets (numbers, funtions, vetors and so on) ould be onstruted

from natural integers using only set-theoreti operations. However, those opera-

tions, when de�ned in an intuitive way, allowed one to derive paradoxes suh as

Russell's paradox. The whole mathematial edi�e was threatened, leading to

the �foundation risis�, and then to an intensive ativity aiming at establishing

ommon reasoning priniples, suh as dedutive or indutive reasoning, on �rm

ground. This was one of the main motivations for David Hilbert to put forward

his well-known programme, that would (in priniple) redue mathematis to

�nite manipulation of symbols.

40 Understanding Formal Methods

A number of tehniques invented in this framework happen to �t well with

the needs of omputer siene, beause, on the one hand, symbol manipulation

plays a entral role and, on the other hand, manipulated objets (both programs

and data) are of �nite or ountable size (see � 3.4.6). Among theories born at

that time, and whih are of interest to us, we an ite prediate logi, type

theory, axiomati set theory, the �-alulus, and intuitionisti logi. If we add

the works of the 1930s on proof theory (Gentzen and Herbrand) we an see

that the foundations of modern programming were largely available before the

birth of the �rst omputer!

On the mathematial side, things took an unexpeted path in 1931, when

Kurt Gödel proved his famous inompleteness theorem for arithmeti, sounding

the death-knell of Hilbert's programme. To put it in a onrete way, it means

that the most seure and restritive reasoning forms are not strong enough

to justify the priniple of indution, not even to mention the stronger axioms

ontained in Zermelo�Fraenkel set theory. However, the latter turned out to be

su�iently powerful to serve as a basis for all known mathematis, and it is

unlikely that an inonsisteny will be disovered in it. The Zermelo�Fraenkel

system remains the most ommonly used nowadays.

3.3 The Di�erent Branhes of Logi

3.3.1 Model Theory

There are basially two omplementary ways of writing a spei�ation:

� desribing the properties of a system;

� providing a model of the system by means of built-in onstruts.

One sometimes uses the terminology property oriented and model oriented

formal spei�ation. Properties are expressed by logial axioms whereas models

are derived with the help of set-theoreti operations. This duality is already

present in mathematial logi, where we have a syntax for expressing logial

properties and a semantis desribing what we are talking about. This aspet

of logi is alledmodel theory. One distinguishes, on the one hand, the onept

of a logial statement built upon a formal language, for example:

8x9y(y > x) ; (3.1)

and on the other hand the onept of a model satisfying this statement; for in-

stane, (3.1) admits, among other models, N endowed with the relation �greater-

than�, R endowed with the relation �less-than� and N endowed with the relation

�is-a-multiple-of�.

A fundamental onept of model theory is the relation alled logial onse-

quene or semanti onsequene. A sentene E is a semanti onsequene of

the sentenes A, B, C... if every model having the properties A, B, C... has also

the property E. This is a very onrete relation. Let us onsider, for instane,

A Presentation of Logial Tools 41

the three properties �every terminal is a piee of equipment�, �every piee of

equipment possesses a registration number� and �this phone is a terminal�. A

pratial onsequene, of interest to the department in harge of inventories,

is that in any situation where the above three properties hold true, we have,

systematially, �this phone possesses a registration number�. The onept of

model is represented here by what we just alled a situation.

3.3.2 Proof Theory

However, the onept of semanti onsequene su�ers from a big handiap: it is

very di�ult or even impossible to hek it diretly, beause we must onsider

every possible model and there is, in general, an in�nite number of them. This

is why one may prefer to use another relation alled provability. We say that

a sentene E is provable from the sentenes A, B, C... if we an onstrut a

formal proof of E using only hypotheses A, B, C... in ombination with axioms

and the rules of logi. E is refutable if its negation is provable.

Of ourse, the logiian must ensure that those formal manipulations respet

the semantis, hene the onept of soundness. The onverse property (every

semanti onsequene is provable) is a form of ompleteness. Another kind

of ompleteness relates a olletion of formulas � with one intended model

M, stating that the latter is ompletely haraterized by �, i.e. every true

(respetively false) formula in M is provable (respetively refutable) from �.

If we onsider the formal spei�ation of a piee of software, we an easily

admit a spei�ation to be inomplete at a high level stage. We only expet that

the operations of our software respet a number of onstraints, expressed by

the means of logial formulas, but we may want to leave several options open.

For instane, if we speify the alulation of

p

2 with a tolerane of 10

�3

, the

programmer is free to provide an implementation omputing any result between

p

2 � 10

�3

and

p

2 + 10

�3

. In many protool spei�ations, some messages

have to be answered in a very preise manner while others are onsidered less

important. Sometimes we annot a�ord inompleteness: in seurity software,

all possible ases must be handled.

Apart from the links between semanti onsequene and provability, there

are interesting issues onerning provability alone. For example: if we know

that E is provable, an we �nd a proof of E using only sub-formulas of E?

If the answer is yes, the proof searh spae an be signi�antly restrited.

This is espeially important for automated proof tools. The study of axiom

sets and logial rules, seen as formal alulations (by this we mean purely

syntati manipulations where we forget how formulas are interpreted) and

their relationship with the onept of semanti onsequene are the realm of

proof theory.

In model theory, the semantis of logial sentenes is provided by truth

values. This is sometimes alled the Tarskian tradition, in honor of the logiian

Tarski who deeply lari�ed its basis. Proof theory provides a di�erent semanti

perspetive, whih is in some sense more aurate, where logial sentenes are

42 Understanding Formal Methods

assoiated with a set of proofs that onlude to these sentenes, instead of to

a simple value (true or false). This set of proofs an also be seen as a set of

algorithms. This tradition is sometimes alled Heytingian [GLT89℄.

The aim of Heyting was to interpret intuitionisti logi invented by Brouwer

in a formal manner, during the foundation risis. (At the same time normal

logi was termed lassial logi.) Intuitionisti logi ontests the validity of

a number of laws. The most well-known of these is the law of the exluded

middle, whih is formally stated as p _ :p. Let us �rst point out that some

onsequenes of this law are somewhat unexpeted, for instane: �when you

ast a die, if you get an even result then it is smaller than three, or onversely�.

Formally, p)t _ t)p is aepted by lassial logi but rejeted by intuitionisti

logi. We will see in � 3.7.3 another surprising example whih is related to

reursive funtions. More deeply, the exluded middle is rejeted beause of a

new interpretation of disjuntion: in order to aept p _ q, intuitionists want

to know whih proposition is provable amongst p and q. More preisely, it is

enough for them to have the apability to ompute the answer to that question.

Then they an aept some instanes of p _ :p, but not any one.

In order to illustrate the di�erene in points of view, let us take a situation x

in a game of hess and let r(x) denote the fat that the blak king is in hek and

in the situation x. An intuitionist an aept the sentene r(x)_:r(x) beause,

by a mehanial appliation of the rules of the game (the expliit de�nition of

r(x)) we an know whether the blak king is in hek in the situation x. Suh

reasoning remains valid in lassial logi, of ourse. But in this framework we

an also onlude this immediately using the law of the exluded middle. We

an see that the explanation required by the intuitionist provides muh more

information.

The existential quanti�er is interesting as well. In order to prove 9xP (x),

the intuitionist wants to know, or to be able to ompute a witness, x satisfy-

ing P (x). A proof that the hypothesis :9xP (x) leads to a ontradition, for

instane, is not su�ient.

Simple ommon situations, where the law of the exluded middle is rejeted

by intuitionists, an be expressed in the form (9np(n))_:(9np(n)), or, equiv-

alently, (9n p(n)) _ (8n :p(n)), where p is a property of natural numbers for

whih it is unknown whether, or not, there exists an n suh that p(n). Even

if we have a mehanial proedure for deiding, for any given n, whether p(n)

holds or not � formally: even if we know 8n p(n)_:p(n) � the obvious algo-

rithm for testing (9n p(n))_ (8n:p(n)), whih suessively heks whether, or

not, p(0), p(1), : : :, would involve an in�nite number of tests if p happens to be

false everywhere. As this algorithm may not terminate, it annot be onsidered

as reliable for providing an answer to our question. Suitable properties p an

be onstruted from unsolved mathematial onjetures. So-alled Brouwerian

arguments use, typially, the existene of 100 onseutive '9's arbitrarily far

into the deimal expansion of the number �.

A Presentation of Logial Tools 43

Intuitionisti logi has important uses in omputer siene beause of its

onstrutive features. In partiular, there is a lose relationship with type sys-

tems whih we onsider in Chapter 11.

3.3.3 Axiomati Set Theory and Type Theory

A real model, like the one onsidered above in the example of telephone equip-

ment, is not quite onventional in model theory. One merely onsiders mathe-

matial strutures, that is, sets endowed with partiular operations. The same

is true in omputer siene: in a model-oriented tehnique, models are written

using set-theoretial onstruts, though they are muh less sophistiated than

in model theory. For instane, one would onsider an abstrat set of equipment,

having the same relation with reality as data strutures of the orresponding

software.

In order to be able to reason in a safe manner, building bloks for suh sets

need to be well de�ned. However, we know that the problems raised are not

trivial. Several solutions have been proposed for eliminating the paradoxes of

�naïve� set theory.

3.3.3.1 Typing Formulas. The most ambitious solution was proposed by

Bertrand Russell [vH67, p. 199℄. His idea was to introdue types in order to

prohibit expressions like x 2 x, or any expression whih would yield the lat-

ter after a alulation. Atually type theory was not an attempt to save set

theory or to reonstrut it on safe ground, but rather a new approah to es-

tablishing the foundations of mathematis. The �rst versions of type theory

turned out to be unsatisfatory beause they imposed inonvenient restritions

and some axioms were ad ho. The idea has been signi�antly reshaped sine

then, expeially following the work of Martin-Löf [ML84℄, and a fair amount of

mathematis an now be developed in a typed framework.

Ideas progressed in a similar way in omputer siene, and even more su-

essfully: the �rst typing systems, for languages suh as Pasal, proved to be

too restritive. But, subsequent progress led to programming languages that

are both onvenient in pratie and strongly typed (notably, languages of the

ML family).

A number of important ideas ame to light with typing, suh as the idea of

strati�ation. Typing, at least in its most elementary form, strati�es sets (and

properties) in distint layers: at layer 0, individuals; at layer 1, sets of individ-

uals (and properties about individuals); at layer 2, sets of sets of individuals

(and properties of sets of individuals); and so on. Distinguishing �rst-order

logi, seond-order logi, et. (see below) omes diretly from this idea. This

kind of typing is alled prediative, whih means that in order to de�ne a

onept, only onepts de�ned in lower layers an be used.

We �nd something analogous in omputer siene, when a software system

is strutured into layers. A funtion or a proedure whih is de�ned using only

previously de�ned funtions and proedures an also be quali�ed as predia-

tive. Note that in omputer siene we generally use the terminology reursive

44 Understanding Formal Methods

instead of imprediative: saying that a reursive funtion is de�ned as �a fun-

tion of itself�, a paradoxial way of stating things, is preisely reognizing that

this funtion has an imprediative de�nition. There is a lear motivation to use

only prediative de�nitions in logi: paradoxes like Russell's are then avoided.

Note that in our presentation in � 3.1.3, the set R is imprediatively de�ned.

3.3.3.2 Axiomatizing Set Theory. The other attempt to suppress para-

doxes onsisted of de�ning set theory using an axiomati form, in the frame-

work of prediate logi. The main inventors were Zermelo,

5

Fraenkel and

Skolem. In Shoen�eld's presentation in [Bar77, h. B.1℄, the idea of strati�-

ation appears quite learly. This an explain why the well-known paradoxes

ould not be reprodued. One of the most important points onerns the def-

inition of a set by omprehension, that is, by the means of a harateristi

property of its elements. An axiom, alled the separation axiom, states that

we an form a set by omprehension only if we �rst have a su�iently large

set where we take elements having the desired property. As a onsequene, we

annot diretly de�ne A[B as the set of elements x suh that (x2A)_(x2B).

Thanks to this axiomatization, it proved possible to retrieve the ingredients

provided by the �naïve� theory of Cantor, that were needed for developing the

desired mathematial onepts, and hene its quik operational suess.

3.3.4 Computability Theory

A last part of logi is the study of omputable funtions, that is, funtions

whih an atually be de�ned by omputations. This is an intuitive onept

whih must be formalized in order to beome workable. Several proposals were

made in the 1940s, among others: Turing mahines, �-alulus (Churh) and

reursive funtions

6

(Gödel, Herbrand). Eah of these approahes is a way of

formalizing the onept of an algorithm, and in essene, de�nes a primitive

programming language.

A simple reasoning on set sizes shows that many funtions are not om-

putable.

7

Moreover, it turned out that all aforementioned formalisms represent

exatly the same lass of funtions: for instane we an enode any partial

reursive funtion with a Turing mahine and vie versa. The onept of a

omputational proess seems then to be faithfully represented by any of these

formalisms. This postulation is known as the Churh thesis. To date, it has

never been shown to be wrong.

5

Zermelo's �rst paper on this topi was published the same year as the one by

Russell on type theory, f. [vH67℄.

6

Note that the meaning of �reursive� in logi is preise but, unfortunately, di�erent

from its meaning in omputer siene. We saw that the latter orresponds rather to

�imprediative�. The de�nition of �reursive� is given at the end of this hapter.

7

If we restrit ourselves to funtions over natural integers (without loss of general-

ity, beause all useful data strutures an be enoded by integers), the set of funtions

from N to f0; 1g � and a fortiori to N � is not ountable, whereas the set of fun-

tions de�ned by the means of a language having a �nite or ountable voabulary is

ountable.

A Presentation of Logial Tools 45

As a onsequene, a programming language is said �to have the power of

Turing mahines� if it has the maximal expressive power we an expet � but

it does not tell us whether this language is easy or di�ult to use. Informally,

a Turing mahine is omposed of an internal state, a tape with an in�nite

number of squares, a read-write head and instrutions used to move the head

and/or to write on the urrent square aording to the urrent state and the

symbol present on the urrent square. All ommon programming languages,

inluding assembly languages, have the power of Turing mahines. Among for-

malisms whih do not have the power of Turing mahines, we an ite �nite

state automata (whih an parse or generate regular languages) and push-down

automata (whih an parse or generate ontext-free languages). Roughly, in or-

der to get the power of Turing mahines, the key ingredients are:

� basi arithmeti operations (addition, ompare to zero);

� a notion of loop where the exit ondition is omputed at eah iteration (e.g.

the while of Pasal in omparison with the for);

� unbounded memory spae; note that only a �nite amount of memory is avail-

able on real omputers, but the di�erene is hardly pereptible in pratie.

One this lass of funtions ame to light, a number of fundamental ques-

tions ould be asked and sometimes solved. The most well known of them is

the halting problem of Turing mahines: an we mehanially and in a �nite

number of steps, deide whether an arbitrary Turing mahine running on arbi-

trary input data will eventually reah the state �omputation end�? To put it

in other words, an we know in advane � say, at ompile time � whether or

not the exeution of a program will end, or whether a partial reursive funtion

is de�ned on a given input data? It an be shown that this problem is atually

undeidable, whih means that no Turing mahine an ompute the answer to

this question. As a pratial onsequene, a omputer that ould tell in advane

whether an arbitrary program �loops� or not is de�nitely magial.

Notes. When we try to prove the orretness of algorithms, proving their

termination is a ruial issue. The aforementioned result does not prevent us

from doing it, it just states limitations on the extent of the help that we an

expet from automation.

Note that this undeidability result ame after the inompleteness theorem

of Gödel; it is, moreover, proven along similar lines. Deidability and omplete-

ness are atually strongly related questions.

Computability (or reursion) theory omprises many other tehnial results

that are not overed in this book. Their impat on formal methods is, in any

ase, quite weak nowadays.

3.4 Mathematial Reminders

We reall here useful basi onepts of set theory, logi and algebra.

46 Understanding Formal Methods

3.4.1 Set Notations

L

In the following, A; B; C : : : denote �sets� whereas a; b; : : : denote

�elements�; we use quotes beause the onepts of �elements� and sets

are in fat relative, the members of a set an quite aeptably be sets themselves.

L

A singleton is a set having exatly one element, suh as fag. An un-

ordered pair is a set having exatly two elements, suh as fa; bg. The

set with no elements is denoted by ?. Two sets are disjoint if their intersetion is

empty.

L

We say that A is inluded in B, and written A � B, if every element of

A is also an element of B. In partiular, we have A � A and ? � A for

any set A. If A is inluded in B, we also say that A is a subset of B and that B

is a superset of A. Two sets A and B are equal if they ontain exatly the same

elements. Hene A = B if and only if A � B and B � A. A is stritly inluded

in B if A � B and A 6= B. Then A is also alled a proper subset of B. The set

of subsets of A is alled the powerset of A, it is denoted by P(A) or 2

A

.

L

The union, the intersetion and the Cartesian produt of two sets were

previously introdued on page 20. The Cartesian square of A is A�A.

The di�erene A � B is the set of elements whih are members of A but not of

B. The symmetri di�erene A nB is the set of elements whih are members of

either A or B (but not A and B). Thus A nB = (A [B)� (A \ B).

L

The set A

n

denotes the Cartesian produt A�A : : :�A (with n our-

renes of A), i.e. the set of n-tuples ha

1

; : : : ; a

n

i suh that a

i

2 A. A

1

is identi�ed with A. We agree that A

0

is the singleton f?g � another singleton

would do the job just as well, this one is the most simple we an onstrut in a

universe where no element is known a priori.

L

Besides de�nitions by extension introdued on page 20, it is possible to

de�ne a set by omprehension, i.e. by providing a harateristi property

of its elements. We use fx j P (x)g to denote the set of elements x suh that P (x),

and fx 2E j P (x)g to denote the set of elements x whih are members of E and

suh that P (x). The seond form is better beause the �rst an lead to paradoxes.

3.4.2 Logial Operators

L

Tables 3.1 and 3.2 summarize the intuitive meaning of logial operators

as well as their relation to set-theoreti operations. These intuitions will

be developed and explained in subsequent hapters.

The meaning of onjuntion ^ and of negation : is just the one you would expet.

The same is true of disjuntion _ as well, but be aware that we have a non exlusive

or. Interpreting impliation P)Q must be done with greater aution: nothing tells

us that there is an atual ausality relation between P and Q. We an only say

A Presentation of Logial Tools 47

Table 3.1

t true

f false

: not

^ and

_ or

) implies

() is equivalent to

8 for all

9 exists

Table 3.2

E x 2 E

A;B P;Q

A \ B inter P ^Q

A [B union P _Q

A�B minus P ^ :Q

A nB

symmetri

di�erene

:(P () Q)

? empty set f

that Q happens to be true when P is true. Thus 8xR(x)) S(x) means that

all x verifying R verify S as well. If no x veri�es R, we agree that the formula

8xR(x))S(x) is true. We have, therefore, in this ase 8x f)S(x) and, as S(x)

may be true or false, we see that both f) t and f) f are true.

L

The logial equivalene P () Q is an abbreviation for the onjuntion

(P)Q) ^ (Q) P). It behaves like an equality; hene we an replae

P with Q when P () Q. Table 2 above an read: x 2A\B () x2A ^ x2B,

et., x 2? () f .

Numerous logial laws an be stated using equivalenes. For instane,

onseutive onjuntions an be reordered with P^Q () Q^P and (P^Q)^R ()

P ^ (Q ^ R). The same is true for disjuntion. We have also P ^ :P () f and

P _ :P () t.

The onstants t and f an be eliminated using P ^t() P , P _f () P ,

P ^f () f and P _t() t. Hene we see that x2? () f boils down to x2?)f .

Here are other very useful identities:

P _ (Q ^ R) () (P _Q) ^ (P _ R) (3.2)

P ^ (Q _ R) () (P ^Q) _ (P ^ R) (3.3)

::P () P (3.4)

P)Q () :P _Q (3.5)

P) f () :P (3.6)

:(P ^Q) () :Q _ :P (3.7)

:(P _Q) () :Q ^ :P (3.8)

:8xP (x) () 9x:P (x) (3.9)

:9xP (x) () 8x:P (x) (3.10)

(P ^Q)) R () P) (Q) R) (3.11)

(P ^ U))Q () P) (:U _Q) (3.12)

For example, using (3.6), the last line of Table 2 is equivalent to :x 2?: as

expeted, no element an be a member of ?. The laws (3.7) to (3.10), alled De

Morgan's laws, allow us to distribute negation aross other onnetives. The

48 Understanding Formal Methods

equivalene (3.11) provides two ways for expressing �if I have P , if I have Q

then I have R�. This an also be written P) Q) R. Using (3.5) we get the

equivalene (3.12) that allows us to move a formula U to the opposite side of

an impliation at the prie of a negation.

exerise. Show the equivalene (P _ Q) ^ :(P ^ Q) () :(P () Q).

Justify A nB () :(P () Q), where P

def

=

x 2 A and Q

def

=

x 2 B, from

A nB = (A [B)� (A \ B).

exerise. Find the logial laws used in the reasoning on page 29 for proving

partial orretness of the �rst bounded linear searh program.

3.4.3 Relations and Funtions

L

A (binary) relation R from A to B is a subset of A �B. Its elements,

whih are ordered pairs ha; bi with a 2 A and b 2 B, are also denoted

by a 7! b. Then we say that a is related to b or that a maps to b by R. We often

use the in�x notation aR b instead of ha; bi 2 R .

A simple example of a relation is the identity relation on a set A, whih is the set

of all ordered pairs a 7! a suh that a 2 A.

A relation R on A is re�exive if for all x in A, xRx.

It is symmetri if 8x; y 2 A; xR y) yRx.

It is anti-symmetri if 8x; y 2 A; (xR y ^ yRx)) x=y.

It is transitive if 8x; y; z 2 A; (xR y ^ yR z)) xR z.

An equivalene relation is a re�exive, symmetri and transitive relation. An order

is a re�exive, anti-symmetri and transitive relation. An order is total when two

elements an always be ompared: 8x; y 2 A; xR y _ yRx. In the opposite ase

(or if we don't know) we have a partial order.

If R is an order on A and if B is a subset of A, an elementm of A is a lower bound

(respetively an upper bound) of B if 8 b2B mRb (respetively 8 b2B bRm).

L

A relation R from A to B is de�ned at a with a 2 A, if there exists an

ordered pair a 7! b in R, i.e. if a is mapped to an element of B by R.

The domain of R is the set of elements a suh that R is de�ned at a. R is a total

relation if its domain is A. In the opposite ase (or if we don't know) we say that

R is partial. The set of total funtions from A to B is denoted by A! B.

L

A funtion f from A to B is a relation suh that if x 7! y

1

and x 7! y

2

are members of f , then y

1

= y

2

(intuitively, applying a funtion to a

given element always yields the same result). If x 2A and if x is in the domain of

f , we denote fx or f(x) the unique element y of B suh that x 7! y is a member

of f .

The omposition of two funtions f and g from B to C and from A

to B, respetively is the funtion from A to C denoted by g Æ f suh that

(g Æ f)x = g(fx). This de�nition generalizes if f and g are relations. In that ase

x 7! z is a member of g Æ f if and only if there exists a y in B suh that x 7! y

is a member of f and y 7! z is a member of g.

A Presentation of Logial Tools 49

L

The �rst projetion p

1

is the funtion from A � B to A de�ned by

p

1

ha; bi = a. Similarly the seond projetion p

2

is de�ned by p

1

ha; bi =

b. More generally, the ith projetion is the funtion from A

1

� : : : A

i

� : : : to A

i

de�ned by p

i

ha

1

; : : : a

i

; : : :i = a

i

.

L

A funtion is injetive if distint elements are mapped to distint ele-

ments. A funtion f from A to B is surjetive if all elements of B are

mapped by f . A bijetion is a total, injetive and surjetive funtion.

3.4.4 Operations

L

An operation ? on the set A is a total funtion from A�A to A. It is

ommutative if for all x; y of A we have x ? y = x ? y. It is assoiative

if for all x; y; z of A we have (x ? y) ? z = x ? (y ? z).

L

The element e is alled an left identity element of ? (respetively a

right identity element) if for all x in A we have e ? x = x (respetively

x ? e = x). The element a is alled a left absorbing element of ? (respetively

a right absorbing element) if for all x in A we have a ? x = a (respetively

x ? a = a). The element x

0

is alled a left inverse (respetively right inverse) of x

if x

0

?x = e (respetively x?x

0

= e). An identity element (respetively an inverse,

an absorbing element) is a left and right identity (respetively inverse, absorbing)

element.

L

Notation: when the underlying operation ? is lear from the ontext, it

is often omitted: one writes xy instead of x ? y. If ? is assoiative, one

also writes x

n

for x ? : : : ? x (with n ourrenes of x). The inverse of an element

x (when it exists) is denoted by x

�1

.

L

Example: given a set A, let R

A

denote the set of relations on A. Then Æ

is an operation on R

A

, with the identity relation as an identity element.

The inverse of a relation R (written R

�1

) is then the set of ordered pairs y 7! x.

suh that x 7! y is in R. A funtion is injetive if and only if the inverse relation

is a funtion. A funtion is surjetive if and only if the inverse relation is total. A

funtion is bijetive if and only if the inverse relation is a total funtion.

L

An element x is said to be idempotent if x ? x = x. The operation ? is

idempotent if all elements of A are idempotent.

exerise. The onnetives ^, _,) and () an be seen as operations on

B (see � 5.1.3). Whih of them are ommutative? Assoiative? Idempotent?

Whih ones possess an identity element? An absorbing element? Invertible

elements? Do not neglet ().

50 Understanding Formal Methods

3.4.5 Morphisms

Let us onsider the set of natural integers endowed with addition and the

identity element 0 on the one hand, the set of natural integers endowed with

multipliation and the identity element 1 on the other hand. The funtion '

whih maps n in N to 3

n

preserves the identity element and the operation in

the following sense: '(0) = 1 and '(m + n) = '(m) � '(n). We say that ' is

a morphism from hN;+; 0i to hN;�; 1i.

Let us onsider a more general ase. We take a set E endowed with a

funtion f , an operation ?, and a relation R. This struture is denoted by a

4-tuple: hE; f; ?; Ri. Let us take a similar struture hE

0

; f

0

; ?

0

; R

0

i. Amorphism

of hE; f; ?; Ri to hE

0

; f

0

; ?

0

; R

0

i is a funtion ' from E to E

0

whih preserves

the struture in the following sense. Let x, y, z be arbitrary elements of E and

let x

0

, y

0

, z

0

their respetive targets by ': thus we have x

0

= '(x), y

0

= '(y)

and z

0

= '(z). The funtion ' is a morphism if:

� ' preserves the funtion: if y = f(x), then y

0

= f

0

(x

0

);

� ' preserves the operation: if z = x ? y then z

0

= x

0

?

0

y

0

;

� ' preserves the relation: if xR y then x

0

R

0

y

0

.

An isomorphism is a bijetive morphism. Two strutures are isomorphi if

they are related by an isomorphism. Intuitively, we an to a fair extent agree

that they are idential beause they have exatly the same properties.

3.4.6 Numbers

Common number sets (N, Z,Q and R) are realled on page 22. Natural numbers

an be generated from the empty set using the following enoding: 0 is enoded

by fg = ?, 1 is enoded by f0g = f?g, 2 is enoded by f0; 1g = f?; f?gg, : : :

n is enoded by f0; : : : n� 1g.

It is not as obvious as it may seem to de�ne what is a �nite or an in�nite

set. A �rst idea ould be to ount its elements and to say that the set E is

in�nite if there is an injetion (an injetive funtion) from N to E. In fat, the

�axiom of in�nity� stated in Chapter 7 says that there is a set ontaining N. We

an avoid the referene to N in the following way: a set E is said to be in�nite

if and only if there is a bijetion from E to a proper subset of E.

A set E is ountable if there exists a sequene (u

n

) of elements of E overing

E, or, equivalently, if there exists a surjetive funtion from N to E (intuitively:

we an ount the elements of E). For example, �nite sets, N itself, Z, Q P

F

(N)

(the set of �nite subsets of N) are ountable. Among sets that are not ountable

we have R and P(N) (the set of all subsets of N). Here is an important example

for omputer siene: a set whose elements an always be denoted by a �nite

sequene of haraters taken in a �nite alphabet is ountable. In partiular, the

set of programs de�ned in all programming languages is ountable, whereas the

set of funtions on natural numbers is not ountable.

A olletion where the element an be repeated is alled a family or a

multiset. Formally, if E is a set, a family of elements of E is a total funtion

from E to N.

A Presentation of Logial Tools 51

3.4.7 Sequenes

L

A sequene u

0

; u

1

; : : : u

n

; : : : of elements u

i

of E is a total funtion

from N to E: u

n

is just another notation for u(n). A sequene an be

de�ned diretly (for example v

n

= n

2

) or by indution, by providing the value of

u

0

and a funtion yielding the value of u

n+1

from u

n

(for example u

0

= 0 and

u

n+1

= u

n

+ 2n+ 1). The typial way of proving properties of suh sequenes is

through proof by indution. On the last example it is easy to prove: 8nu

n

= v

n

.

V

We sometimes need to talk about sequenes that are �nite or in�nite.

We mean, total funtions from A to E, where A is either a subset of

N of the form fn2N j n < ag for a given natural number a, or N itself. We will

then use the expliit terminology ��nite or in�nite sequene�, ��nite sequene�

when A has the �rst form and �in�nite sequene� when A has the seond form.

In other ontexts �sequene� will always denote an in�nite sequene.

3.5 Well-founded Relations and Ordinals

3.5.1 Loop Variant and Well-founded Relation

We have seen in � 2.4.1.2 that the termination of a program an be studied

by onsidering a quantity v that dereases at eah step while staying in N. Let

us emphasize the last point. It is not enough to ensure that the variant v is a

dereasing number:

� an integer an derease ad vitam æternam by taking arbitrarily large negative

values;

� a positive rational or real number an derease while approahing a lower

limit without reahing it.

The point is that v must take a �nite number of values. Reasoning with a �de-

reasing number� is of ourse an inorret wording, whih has to be formalized

with a �nite or in�nite sequene v

0

; v

1

; :::v

n

; ::: as we will see below.

In order to model the problem of termination, let us �rst onsider the set

S of the values that an be taken by the state of a program.

8

The hange in

this state is observed at ertain points between whih we admit that nothing

important an happen.

9

Eah exeution step orresponds to a state transition

whih is modeled as an ordered pair hs

i

; s

f

i where s

i

and s

f

, the value of

the state respetively at the beginning and at the end of the transition, are

8

For the sake of ompleteness we should inlude in the state a omponent for the

program ounter and another for the exeution stak. We proeed in this manner in

order to de�ne an operational semantis.

9

We an hoose �ne grain observation, orresponding to elementary instrutions

or large grain observation, orresponding to bloks of suh instrutions: the point is

that exeuting those �grains� always terminates.

52 Understanding Formal Methods

members of S. We then introdue the set of transitions T , whih is a relation

on S.

When we reason with a variant v, the latter is a funtion of the state s. Eah

transition hs

i

; s

f

i at the level of states orresponds to a transition hv(s

i

); v(s

f

)i

at the level of the variant. The general situation is then aptured by a set S

endowed with a relation T .

The hanges of the state during an exeution beginning at initial state

s

0

are then modeled by a �nite or in�nite sequene s

0

; s

1

; :::s

n

; ::: suh that

two onseutive elements s

k

and s

k+1

are always related by T . Ensuring the

termination of the program boils down to prohibiting the sequene from being

in�nite. For example, in the ase of natural integers, there is no in�nite sequene

v

0

; v

1

; :::v

n

; ::: suh that v

0

> v

1

> ::: > v

n

> ::: , whih allowed us to justify

the tehnique of the variant on page 24. When no suh sequene exists the

relation is said to be Noetherian. We an similarly onsider the inverse relation

(reall that, for instane, < and > are inverse relations). We then have a well-

founded relation. Let us develop this onept.

Let E be a set and R a relation on E. Let x and y be two elements of E, we

say that x is a predeessor of y for R if xRy. When there is no ambiguity we

simply say that x is a predeessor of y. A hain is a �nite or in�nite sequene

e

0

; e

1

; :::e

n

; ::: of elements of E suh that e

n+1

is always a predeessor of

e

n

: 8n 2 N e

n+1

Re

n

. R is a well-founded relation if R ontains no in�nite

hains.

10

V

The onept of predeessor that we use here generalizes from the

usual one on integers: just take for R the relation noted R

1

below.

For an arbitrary relation R, the predeessor of an element, when it exists, need

not be unique.

In summary, expressing that a program terminates boils down to saying

that the underlying transition relation T is Noetherian, or that the inverse

relation T

�1

is well founded. In pratie, instead of reasoning diretly on the

set of states S endowed with T

�1

, it is worth onsidering a simpli�ed view E

of S endowed with a orresponding relation R, whih must be well founded as

well. The loop variant presented in the above example amounts to taking N for

E and < for R.

3.5.2 Examples

The relation < is well founded on N, but is not well founded on Z, nor on any

interval of R or of Q. Any relation inluded in a well-founded relation is also

well founded. Hene all sets of ordered pairs of natural integers hm;ni verifying

m < n are well founded. Here are three examples:

R

1

def

=

fhn; n+1i j n 2 Ng

10

Nothing prevents the repetition of an element in a sequene. If x is suh that

xRx, the sequene x; x; ::: x; ::: is then an in�nite hain. If x and y satisfy xRy and

yRx, the sequene x; y; ::: x; y; ::: is an in�nite sequene as well.

A Presentation of Logial Tools 53

R

2

def

=

fhn; 2n+"i j n 2 N ^ n>0 ^ ("=0 _ "=1)g

R

3

def

=

fhn; n+2i j n 2 Ng

The relation > is not well founded on N, but it beomes so on a �nite subset

of N. As a onsequene, relations having the form R

4

(q) are well-founded:

R

4

(q)

def

=

fhn+1; ni j n 2 N ^ n<qg

Here is a very important example. Let R be a well-founded relation on E and

let S be a well-founded relation on F , the relation de�ned over E � F by

R

5

def

=

fhhx; ui; hx

0

; vii j x; x

0

2 E ^ u; v 2 F ^ xRx

0

g [

fhhx; ui; hx; u

0

ii j x 2 E ^ u; u

0

2 F ^ uS u

0

g

is well founded. This onstrution orresponds to the lexiographi ordering

used by all of us when onsulting a ditionary.

11

This example is more subtle

than the previous ones. If we onsider the relation < on N (or its subsets R

1

,

R

2

and R

3

), we have already observed that all dereasing sequenes are �nite.

But additionally, we know an upper bound on the length of suh sequenes

as soon as we know the �rst element (the latter is suh an upper bound). In

ontrast, if we take the struture hN; <i or even hN; R

1

i for hF; Si in R

5

, it

is no longer possible to give an upper bound for dereasing sequenes starting

from hx

0

; n

0

i if there is no x

1

in E suh that x

1

Rx

0

. In that ase there exist an

in�nite number of �nite dereasing sequenes starting from hx

0

; n

0

i, and their

length is arbitrarily large.

M

The lexiographi ordering on the Cartesian produt of two or of

any �nite number of well-founded sets is well founded. Note however,

that the lexiographi order on words, that is, arbitrarily large �nite sequenes

of elements of a well-founded set E, is not well founded. For instane, with

E = f0; 1g and 0 < 1, we have the in�nite dereasing hain 1, 01, 001, 0001,

et.

Generalizing the tehnique of loop variants with well-founded relations an

be useful in two ways:

1. We an aquire a knowledge of the number of iterations performed

when exeuting a loop.

2. We an ope with more omplex situations involving several loops,

whether embedded or not.

3.5.2.1 Counting Iterations in a Loop. First reall that the number of

iterations n

i

depends on the initial value v

0

of the variant. In general, the

latter depends in turn on a preliminary omputation or on an external event

� reading a number for example � and is then essentially unpreditable. In

ontrast we an ask how n

i

depends on v

0

.

11

One should pay attention to the following tehnial point: a well-founded relation

like R or S is not an order beause it annot be re�exive. We ome bak to the links

between these onepts in � 3.5.4.1.

54 Understanding Formal Methods

Let us take N as the domain of the variant. If the well-founded relation at

hand is <, we only know that n

i

� v

0

. If the relation is R

1

, we have n

i

= v

0

.

If the relation is R

2

, we know that n

i

is lose to the base 2 logarithm of v

0

.

3.5.2.2 Using more Complex Well-Founded Relations. In order to

study the termination of programs omposed of several loops using only one

well-founded relation, the domain E we have to onsider for the latter has to

be larger

12

than N. Here we ontent ourselves with the simple ase of a pro-

gram made of a �rst loop, followed by the omputation or the reading of an

arbitrarily large positive integer L and �nally a seond loop.

Let us �rst onsider eah loop separately. Assume that the variant of the

�rst is v in N endowed with R

1

whereas the variant of the seond is w also in

N endowed with R

1

. For all initial values v

0

and w

0

, it is intuitively lear that

the program terminates sine eah loop terminates. If we knew in advane the

value of w

0

, we ould take u = v+w as the global variant, in the same domain

N endowed with R

1

. To be more preise, u would be de�ned as v + w

0

in the

�rst loop, as w

0

between the two loops and as w in the seond loop. But we

annot proeed in this way if the value L taken by w

0

is unknown in advane

and arbitrarily large.

A satisfatory solution is to take for E the sum of two opies of N or,

equivalently, the Cartesian produt

13

f0; 1g� N . The variant u is h1; vi in the

�rst loop, h1; 0i between the two loops (let us all this element !) and h0; wi in

the seond loop. Our well-founded relation R

1;1

is de�ned by hi; niR

1;1

hi; n+1i

(intuitively it behaves like R

1

on eah opy of N) and h0; niR

1;1

!. R

1;1

is

ontained in the relation R

5

above, where we take E = f0; 1g, R = fh0; 1ig,

F = N and S = R

1

.

Let us point out that, in ontrast with most relations presented so far,

the element (!) admits an in�nite number of predeessors in R

1;1

. However, a

dereasing sequene starting from any element of f0; 1g�N is neessarily �nite.

A relation like R

4

(q) an be onvenient in pratie. For instane, R

4

(N)may

be used for a diret termination proof of the bounded linear searh program

instead of reasoning on the di�erene N � x, as we did on page 25.

We also remark on R

2

, R

3

and R

4

that it is not required that only one

value (0) has no predeessor, even if we onsider only natural (i.e. non-negative)

numbers:

14

in R

2

, we have 0 and 1; in R

3

we have 0 and all odd natural numbers;

in R

4

(q) we have all numbers greater or equal to q. This is re�eted in the loop

invariant and in the exit test. For example, with R

4

, we have to ensure that, at

the beginning of the loop, the variant v is stritly less than q (ondition (V

<

)

on page 24, reshaped with R

4

, tells us that during an iteration v is neessarily

inremented by 1); in this situation, we are led to put v � q in the invariant,

12

In a sense oming from the theory of ordinal numbers, see below.

13

Tehnially we an also represent N + N by N (onsider even and odd numbers).

But it would only make the de�nition of the well-founded relation more ompliated

with no ompensation in the reasoning. The onept of ordinal presented below lar-

i�es the situation.

14

We hoose to keep 0 � v in the invariant.

A Presentation of Logial Tools 55

and then to take v = q as the exit ondition. With R

3

the exit test would

orrespond to v = 0 and the invariant would entail that v is even.

3.5.3 Well-founded Indution

Given a well-founded relation R on a set E, we an prove that a property P is

true on all elements of E by showing the following proposition (H) whih tells

us, in familiar terminology, that P propagates:

given any element x of E,

if P is true on all predeessors of x,

then P is true on x.

(H)

In partiular, we have to show that P is true on all x without a predeessor,

whih orresponds to the base ases.

This kind of reasoning is alled well-founded indution. Usual indution

on N is a (simple) speial ase of well-founded indution, where the relation

onsidered is R

1

. Assume that, despite the fat that (H) has been shown, we

have an element e

0

where P is not true; e

0

has at least one predeessor, sine

P is true for all elements without a predeessor; by (H) we also know that P is

false on at least one of the predeessors of e

0

; let e

1

be one of them. Repeating

the proess would then yield an in�nite dereasing hain e

0

; e

1

; ::: e

n

; ::: , whih

is impossible beause R is well-founded.

M

The previous reasoning impliitly uses a priniple alled the axiom

of hoie, whih will be introdued in Chapter 7. Indeed, in order

to onstrut the hain e

0

; e

1

; ::: e

n

; ::: we simultaneously onstrut the in�nite

family P

0

; P

1

; ::: P

n

; ::: where P

i

is the non-empty set of predeessors of e

i

. At

eah step, we have to hoose e

i+1

in P

i

.

The rule of the loop is an appliation of well-founded indution. Let us

illustrate what happens with the relation R

3

. This orresponds to a loop B

where the initial value of v is even:

while v 6=0 do ... v:=v � 2... done

We then have to show the property P (n) de�ned by fv=n^ IgB fIg, where I

is the loop invariant. We distinguish the �true� base ase n = 0 (orresponding

to a suessful exit test) from the �false� ones (odd values of v). In the latter

ases P (n) is trivially true by redution to the absurd, provided we put �v is

even� in the invariant.

3.5.4 Well Orders and Ordinals

We an present well-founded indution from speial order relations. Here are

some preliminary de�nitions. The main point to remember is that two isomor-

phi ordered sets are essentially the same up to the name of their elements. A

set E endowed with an order R will be denoted by a 2-uple hE;Ri.

56 Understanding Formal Methods

Let hE;Ri and hF; Si be two ordered sets. A funtion f from E to F is

monotone if the order is preserved by f :

8x; y2E xR y) f(x)S f(y) :

An isomorphism is a monotoni bijetion. Two ordered sets hE;Ri and hF; Si

are isomorphi if there is an isomorphism from hE;Ri to hF; Si.

3.5.4.1 Well Orders. Let E be a set endowed with an order R. Given a

subset A of E, a minimum of A, if it exists, is an element a of A suh that

there is no predeessor di�erent from a in A: if xR a ^ x 2A then x = a (R is

re�exive!). If R is total, a minimum of A must be unique.

We say that R is a well order if R is total and if every subset of E possesses

a minimum. Note that E possesses a unique minimum m in that ase.

Let us note R

6=

, the relation de�ned by xR

6=

y if and only if xRy and x 6= y.

If R is a well order, R

6=

is a well-founded relation. Conversely it is possible to

onstrut a well order from a well-founded relation. But beware: a given well

order an ome from several well-founded relations.

The onept of a well-founded indution is de�ned as in � 3.5.3 if we replae

R with R

6=

. The base ase onerns only m. This priniple an be justi�ed as

follows. Suppose that the set A of elements e whih do not verify P is not empty,

A possesses a minimum a whih must be di�erent from m; the predeessors of

a are not members of A, hene they verify P , but with (H) we then have that

P is also true of a, so a annot be a member of A, a ontradition.

Some well orders are espeially important: ordinals.

3.5.4.2 Ordinals. Let E be a set endowed with the well order R. The setion

X

a

determined by an element a of E is de�ned as the set of elements x whih

are smaller than a:

X

a

def

=

fx 2 E j xR

6=

ag :

E endowed with the well order R is an ordinal if for all a of E we have X

a

= a.

Thus, to verify that 3 is an ordinal, we just have to remember that in set theory

3

def

=

f0; 1; 2g, whih atually yields 2

def

=

f0; 1g = X

2

. The �rst ordinals are

exatly ?, f?g, f?; f?gg, et., where the order is inlusion or, equivalently,

membership (the two relations happen to oinide on ordinals).

Given an arbitrary ordinal x we an onstrut its suessor x [fxg. We

then start from ? and we onstrut all natural numbers step by step. The next

step onsists of taking N itself (it an be shown that N satis�es the required

properties). N is traditionally noted ! in this ontext.

The proess arries on in the same way: !, ![f!g (noted !+1), et. Apart

from 0 only two ases an our for an ordinal: either it ontains a greatest

element, it has then the shape x [fxg and it is alled a suessor ordinal; or,

it does not ontain a greatest element and it is alled a limit ordinal.

The �rst limit ordinal is !. The next one, noted 2!, is the limit of f0; 1; ::: !;

!+1; :::g. Carrying on this proess we de�ne 3!, ... n!, ... !

2

, ... !

!

, ... !

!

!

,

A Presentation of Logial Tools 57

... until a new limit ordinal �

0

whih veri�es !

�

0

= �

0

. There are still many

other ordinals. Ordinals up to �

0

are used in the automated proof assistant of

Boyer�Moore and in PVS in order to formalize termination arguments [Rus93℄.

An important theorem about ordinals states that a well order is always

isomorphi to an ordinal. Ordinals an then be used for measuring the om-

plexity of termination proofs of algorithms. Let us also remember that the most

general form of indution is well-founded indution, beause the onept of a

well-founded relation is �ner than the onept of well order.

3.5.4.3 Ordinals and Cardinals. Cardinals are another onept of set the-

ory that an be used for measuring the size of a set. We will not go into detail

here. We say that two sets have the same ardinality if there exists a bijetion

between them. Finite sets have a ardinal 0, 1, 2, ... n with n 2 N.

Next we have N itself, whose ardinality is denoted �

0

(pronouned aleph

zero). We already know from � 3.4.6 that many in�nite sets are ountable: in

other words, their ardinality is �

0

.

Another important point is the following. If the ardinal of a set E is �,

then the ardinal of P(E) is stritly greater than �.

All ordinals presented so far are ountable. A better wording is: the un-

derlying sets of those ordinals are ountable. We must remember that what

matters in an ordinal is the orresponding order. Indeed, there are many (non-

isomorphi) ways to order the elements of N, and eah of them orresponds to

a di�erent ordinal.

15

However, the order is ompletely irrelevant for ardinals.

In ontrast to ordinals, ardinals don't seem to have appliations in formal

methods. Note, however, that they play an important role in set theory.

M

One of the �rst questions raised at the very beginning of development

in set theory was the following: let be the ardinal of R; is also the

ardinal of P(N), thus we have > �

0

; but is there an intermediate ardinal?

Cantor thought that the answer should be no � this is alled the ontinuum

hypothesis � but the question turned out to be arduous. Gödel showed in the

1930s that this hypothesis is onsistent with (i.e. annot be disproved from)

the axioms of set theory, while onversely Cohen showed in 1963 that it annot

be proven in set theory. This reveals the somewhat arbitrary harater of set

theory. We ome bak to this point at the end of Chapter 7.

3.6 Fixed Points

Let E be a set and f be a funtion from E to E . A �xed point of f is an element

x of E suh that x = f(x). For example 1 and 5 are �xed points of the funtion

15

For example, if the order we onsider is <, the orresponding ordinal is !. How-

ever, let us onsider the order R, de�ned by xR y if x < y and x 6= 0, and by x < 0

for all x: the orresponding ordinal is ! + 1. Intuitively, in the latter ase, natural

integers are put in the following order: 1, 2, ... 0. The two relations < and R are not

isomorphi sine only the seond one possesses a greatest element.

58 Understanding Formal Methods

on R that maps x to (x

2

+ 5)=6. The theorem of Knaster�Tarski states that

under quite general onditions, f is guaranteed to have a least or a greatest

�xed point. This allows us to de�ne x by a �xed-point equation.

M

We suppose that (1) E is ordered by a relation �; (2) f is monotone,

that is, x � y)f(x) � f(y); (3) all non-empty subsets A of E have a

greatest lower bound glb(A) (it is not neessary that glb(A) is a member of A);

and (4) post

f

= fx 2 E j f(x) � xg is non-empty (elements of post

f

are alled

post-�xed points of f). In our example we have 4 2 post

f

. Then f possesses a

least �xed point whih is �

f

= glb(post

f

).

Indeed � let us remove the index f � as � is a lower bound of

post-�xed points, we have � � x for all x suh that f(x) � x, then, as f is

monotone: f(�) � f(x) � x; then f(�) is also a lower bound of post . As � is

greater than all lower bounds, we get f(�) � �. By monotony f(f(�)) � f(�),

hene f(�) 2 post , then � � f(�) sine � is a lower bound of post . By anti-

symmetry of � we have that � = f(�).

Symmetrially, if all non-empty subsets A of E have a least upper

bound lub(A) and if the set pre

f

= fx 2 E j x � f(x)g of pre-�xed points of f

is non-empty, then f possesses a greatest �xed point �

f

= lub(pre

f

).

The least �xed point an also be reahed from below when E possesses

a least element ? (take E = [0;+1[in the previous example): we onstrut

the monotoni sequene (u)

�

with u

0

= ?, u

�+1

= f(u

�

) and u

lim(�

n

)

=

lubfu(�

n

)g. The proess ends at the �rst limit ordinal ! if f is ontinuous, i.e.

f(lubfx

i

g) = lubff(x

i

)g for all monotoni sequenes (x

i

)

i2N

. For the greatest

�xed point, one would proeed symmetrially from a greatest element > in E.

The relation � is not required to be total here. We an then apply the

previous results with the inlusion relation on a set of sets, for example E =

P(E): ? plays the role of ?, glb(A) is the intersetion of elements of A, lub(A)

is the union of elements of A and E plays the role of >.

3.7 More About Computability

Here we give more preise de�nitions for the onepts of omputability men-

tioned above [Gir87b, Bar90℄. Here, unless we expliitly write partial reursive

funtion, a reursive funtion will mean a total reursive funtion, aording to

the original de�nition of Gödel and Herbrand. Note that, following the work of

Kleene, many textbooks use the opposite onvention.

M

Let us onsider a problem P . If we have a searh proess for solutions

of P at our disposal whih (i) sueeds if a solution exists, and (ii)

answers �no� in the onverse ase, this proess is alled a deision proedure.

If ondition (i) only is satis�ed, i.e. if the proess may go on looking inde�nitely

for a solution where no solution exists, it is alled a semi-deision proedure.

To summarize what follows, a deision algorithm is a reursive funtion, while

a semi-deision proedure is a partial reursive funtion.

A Presentation of Logial Tools 59

M

For the remainder of this hapter, the funtions onsidered are arith-

meti funtions. By that we mean funtions that take natural integers

as input and that return a natural integer. For the sake of uniformity, onstants

are onsidered to be funtions of arity 0. In order to lighten the notation, ap-

plying a funtion f to n arguments x

1

... x

n

is denoted by f(~x), where ~x is seen

as the n-tuple hx

1

; : : : ; x

n

i � the value of n is the arity of f .

M

In order to formalize the onept of an algorithm, we need a formal

language apable of expressing algorithms, and we have to stipulate

the omputations assoiated with legal expressions. This an be done with very

low level onstruts, but it is more onvenient to use funtions diretly. It is easy

to understand, for example, how to ompute the omposition of two funtions

provided one knows how to ompute eah of them separately. We proeed by

introduing primitive reursive funtions, then reursive funtions and �nally

partial reursive funtions, whih orrespond to progressively larger lasses of

algorithms.

V

It is important to keep in mind the distintion between the funtion

whih is omputed, that is, a set of ordered pairs (the extension of

the funtion), and the algorithm whih performs the omputation: two di�erent

algorithms may independently and orretly ompute the same funtion f ;

for example one of them ould be primitive reursive while the other is not.

Aording to the following de�nition, f is then onsidered as primitive reursive.

Indeed, the word funtion below takes its extensional meaning � though the

underlying omputation remains ruial in the rules (R

i

) given below.

It may transpire that the most e�ient algorithm that omputes a

given primitive reursive funtion is not primitive reursive. For instane, the

obvious primitive reursive way for omputing the minimum of two integers

m and n is not symmetrial: it takes e.g. m steps, while a better algorithm

would take min(m;n) steps. Indeed, a result due to Loï Colson shows that

the latter algorithm annot be enoded using primitive reursion. Reursion

theory is then an important theoretial tool, but the light shed on the onept

of expressivity is limited.

3.7.1 Primitive Reursion

M The initial funtions are:

� the onstant 0;

� the suessor funtion S(n) = n+ 1;

� the projetions pr

n

i

(x

1

; : : : ; x

n

) = x

i

; 1 � i � n.

We then onsider the formation rules:

(R

1

) omposition rule: take k+1 funtions h

1

, ... h

k

and g already onstruted

and onstrut the funtion f de�ned by f(~x) = g(h

1

(~x); : : : ; h

k

(~x));

60 Understanding Formal Methods

(R

2

) primitive reursion rule: take two funtions g and h already onstruted

and onstrut the funtion f de�ned by

�

f(~x; 0) = g(~x)

f(~x; n+ 1) = h(~x; n; f(~x; n)) :

A primitive reursive presentation or, a primitive reursive algorithm, is an

expression onstruted only from initial funtions and by appliation of rules

(R

1

) and (R

2

). A funtion f is primitive reursive if there exists a primitive

reursive presentation whih omputes f .

The ourrene of f on the right of �=� in (R

2

) is not that prob-

lemati. Indeed it is lear that f(~x; 0) is de�ned for all ~x, then f(~x; 1), and

so on. The funtion f an be regarded as a sequene de�ned by indution but

parameterized by ~x: f(~x)

0

; : : : f(~x)

n

; f(~x)

n+1

; : : :

Examples. Addition is primitive reursive, as it an be de�ned by add(m; 0) =

m and add(m;n + 1) = S(add(m;n)). Multipliation is de�ned in a similar

way. We an then de�ne the fatorial funtion (fat(0) = 1 and fat(n+1) =

mult(n + 1; fat(n))) subtration (see below), the exponential funtion, and

many other funtions over integers. The linear searh of an integer n suh that

P (n) = 0, is not primitive reursive even if P is:

R = R

0

(0)

R

0

(n) = if P (n) = 0 then n else R

0

(n+ 1) :

There is no way to de�ne this funtion using only the previous rules. By on-

trast, there is a primitive reursive presentation of bounded linear searh be-

tween p and q similar to the program given in � 2.4.4.

R = R

0

(q � p)

�

R

0

(0) = q

R

0

(n+ 1) = h(n;R

0

(n))

h(n; r

2

) = tzer(q � (n+ 1); r

2

; P (n+ 1))

�

tzer(r

1

; r

2

; 0) = r

1

tzer(r

1

; r

2

; n+ 1) = r

2

:

Note that testing the equality to zero, realized by tzer, makes use of rule (R

2

),

with g = pr

2

1

and h = pr

4

2

.

In a programming language like Pasal, we get primitive reursive

funtions if we restrit iterative ontrol strutures to for loops (general while

loops have to be prohibited

16

): in for loops, the number of iterations is om-

puted (at run-time, however) before the loop. One of the main properties of

primitive reursive funtions is that they are total, in other words the orre-

sponding programs terminate in all ases.

16

goto statements and �reursive� (!) proedures must also be prohibited, as it is

lear that suh mehanisms are at least as powerful as the while loop.

A Presentation of Logial Tools 61

V

A number of funtions over natural integers, like subtration, are

usually not de�ned everywhere. As a onsequene of the last remark,

their primitive reursive presentation extends them over the whole set N. The

default value is often 0. Thus the usual primitive reursive de�nition of the

predeessor funtion is P (0) = 0 and P (n + 1) = n � using (R

2

) with g = 0

and h(n; a) = n, that is, h = pr

2

1

. We get subtration by iteration of P .

M

There are total funtions that annot be de�ned by a primitive re-

ursive presentation, but they are not that easy to �nd. One of the

simplest is the Akermann funtion:

8

<

:

A(0; n) = n+ 1

A(m+ 1; 0) = A(m; 1)

A(m+ 1; n+ 1) = A(m;A(m+ 1; n)) :

It an be shown that this funtion grows faster than all primitive reursive

funtions. Its termination an be proven by well-founded indution using a

lexiographi ordering based on relation R

5

of � 3.5.2, with E = F = N and

R = S = R

1

.

3.7.2 Reursion, Deidability

M

The previous examples learly show that primitive reursive fun-

tions do not exhaust intuitively omputable funtions. In order to

enrih our set of funtions, let us introdue the following rule:

(R

3

) minimalization rule: take a funtion g already onstruted suh that

8~x 9m g(~x;m) = 0 (3.13)

and onstrut the funtion f that maps ~x to the smaller m suh that

g(~x;m) = 0, denoted by f(~x) = �m[g(~x;m) = 0℄.

Intuitively, a way to ompute this funtion is by a linear searh program: su-

essively try m = 0, m = 1, et. until an m satisfying g(~x;m) = 0 is found.

A reursive presentation, also alled an algorithm, is an expression

onstruted only from initial funtions and by appliation of rules (R

1

), (R

2

)

and (R

3

). A funtion f is reursive if there exists a reursive presentation

whih omputes f .

For example, the linear searh programR given on page 60 is enoded

by a trivial appliation of (R

3

): by hypothesis there exists an n suh that P (n) =

0, where P is primitive reursive; then we take simply R = �m[P (m) = 0℄.

Again, reursive funtions are total funtions: requiring ondition

(3.13) amounts to ensuring a priori that the previous linear searh program

terminates. In other words, intuitively, an algorithm is a program whih pro-

vides an answer for all input data. We then get a preise formal de�nition for

the intuitive onept of an algorithm. This formal de�nition may be onsidered

as arbitrary. However, as in physis, experiene deides the matter.

62 Understanding Formal Methods

M

Here we enode a prediate P by a funtion f

P

from tuples of integers

to f0; 1g. A prediate is reursive if the orresponding funtion f

P

is

reursive. We an also de�ne a reursive set E as a set (of integers, or of tuples

of integers) having a reursive harateristi funtion. It means that we have at

our disposal an algorithm for deiding, given any tuple ~x, whether or not P (~x),

or equivalently, whether or not ~x is a member of E. We say that a problem is

deidable if the orresponding prediate is reursive. In the opposite ase we

say that the problem is undeidable.

3.7.3 Partial Reursion, Semi-Deidability

M

In pratie and in logi as well, we need to onsider programs whih

do not always terminate. Thus we are led to weaken the rule (R

3

)

by relaxing ondition (3.13).

(R

3

') partial minimalization rule: take a funtion g already onstruted and

onstrut the funtion f suh that, if there exists anm suh that g(~x;m) =

0, returns f(~x) = �m[g(~x;m) = 0℄, or else is not de�ned.

The new rule (R

3

') allows one to onstrut partial funtions. Therefore, we now

agree that our rules onstrut partial funtions from partial funtions.

A partial reursive presentation is an expression onstruted only

from initial funtions and by appliation of rules (R

1

), (R

2

) and (R

3

'). A fun-

tion f is partial reursive if there exists a partial reursive presentation whih

omputes f . Here is another de�nition: a partial reursive funtion is a funtion

whih an be enoded using a Turing mahine.

17

The Churh thesis for par-

tially omputable funtions states that the lass of partial reursive funtions

formalizes the intuitive onept of program.

Roughly, we an say that a reursive funtion is a partial reursive

funtion whose termination is proven in all ases. Let us onsider the linear

searh program given on page 60, where we add an integer parameter x in the

searh riterion P :

R(x) = R

0

(x; 0)

R

0

(x; n) = if P (x; n) = 0 then n else R

0

(x; n+ 1) :

In general, the searh sueeds only for speial values of x. For example, if we

want to searh the smaller n suh that 2n = x, we an hoose for P (x; n) the

expression (x� 2n)+ (2n�x) (pay attention to the de�nition of subtration!);

then it is lear that the omputation terminates for even values of x and for no

others.

Here is another example of a partial reursive funtion, sometimes

alled the Syrause funtion. It an only return 1, and in all known experiments

17

We don't present a formal de�nition of Turing mahines here: it is a bit long but

raises no di�ulty.

A Presentation of Logial Tools 63

it does return. But termination for all inputs remains an open problem so far,

thus we don't know if this funtion is reursive.

8

<

:

U(0) = U(1) = 1

U(n) = U(

n

2

) if n is even and n > 1

U(n) = U(3n+ 1) if n is odd and n > 1 :

V

What is the status of the funtion t

U

that returns 1 if U is total

and otherwise returns 0? This presentation of t

U

is not reursive.

However, the funtion k

i

, whih returns a �xed i, is reursive; then t

U

is reur-

sive as well, sine t

U

is either k

0

, or k

1

, though we don't know whih one. We

onlude that a omputable funtion, as formally de�ned in reursion theory

� a lassial theory admitting the exluded middle priniple, is not quite the

same as a funtion we know how to ompute.

M

The last important basi onept we present here is the onept of a

reursively enumerable prediate or set. As suggested by the name, it

is a set whih an be ompletely overed by appliation of a alulable funtion

on 0, 1, 2, et. Equivalently, we an say that membership of this set is a semi-

deidable problem.

We say that a set is reursively enumerable if it is the domain of a

partial reursive funtion. We say that a prediate P is reursively enumer-

able:

� if it is the harateristi prediate of a reursively enumerable set;

� or, equivalently, if the funtion g de�ned by g(x) = 0 for all x suh

that P (x), and unde�ned elsewhere, is partial reursive;

� or, equivalently, if there exists a reursive funtion f suh that, for

all y verifying P (y), there exists x suh that y = f(x).

Let x be an integer and let P and Q be partial reursive prediates. The

funtions omputing P (x)^Q(x), P (x)_Q(x) and :P (x) are partial reursive.

If P and Q are reursive, these funtions are reursive as well, whih allows

us to determine if P (x), Q(x), P (x) ^Q(x), P (x) _Q(x) and :P (x) are true.

If P and Q are only reursively enumerable, we are only able to determine if

P (x), Q(x), P (x)^Q(x) and P (x)_Q(x) are true. We have also the following

theorem:

Theorem 3.1

A prediate (respetively, a set) is reursive if and only if itself and its negation

(respetively, its omplement) are reursively enumerable.

3.7.4 A Few Words on Logial Complexity

M

If the prediate P is reursively enumerable, then so are the pred-

iates P (x) ^ Q(x), P (x) _ Q(x) 8x < n P (x), 9x < n P (x) and

9x P (x). However, :P (x) and 8x P (x) are not always reursively enumerable.

64 Understanding Formal Methods

The intuitive idea is that it is possible to enode the searh for an x satis-

fying P (x) by pseudo-simultaneously heking P (0), P (1), et., but heking

8x P (x) would in general require an in�nite number of veri�ations. As a on-

sequene, a formula inluding unbounded quanti�ers and (partial) reursive

prediates spei�es a relation between its free variables, but we may not have

any algorithm for omputing it. A relation thus spei�ed is alled arithmetial.

Kleene established that arithmetial relations an be lassi�ed a-

ording to the arithmetial hierarhy, whih measures their logial omplex-

ity. Formulas are put under the form 8x

n

9x

n�1

:::� or 9x

n

8x

n�1

:::�, where

the prediate � is primitive reursive. Eah lass is haraterized by the �rst

quanti�er and the number of quanti�er alternations. Formulas of the �rst

kind are designated by �

0

n

, formulas of the seond kind by �

0

n

. For exam-

ple 9n n

2

= 25 is �

0

1

, while 89r r

2

� ^ < (r+1)

2

is �

0

2

. The reader an

onsult [vL90a, Cou91, Sho93℄ for a rigorous de�nition.

There is a tight link between omplexity of program termination

proofs, ordinals and logial omplexity [Gir87b, CW97, Wai91, Wai93℄.

3.8 Notes and Suggestions for Further Reading

The reader interested in the soures of mathematial logi an �nd the texts

of founding fathers edited and ommented on by J. van Heijenoort in [vH67℄.

The Handbook of Mathematial Logi [Bar77℄ is a referene book for speialists.

However, a number of hapters are very aessible, notably: the �rst, whih is a

good introdution to model theory; the hapter written by Shoen�eld is a good

introdution to set theory; and the hapter written by Rabin inludes many

deidability results.

The example of geometri �gures omes from a ontest organized by the

US Air Fore. Two teams, hampioning a funtional language (Haskell, in fat),

submitted similar solutions based on the priniples

18

indiated in � 3.1.1. There

are many introdutory books on funtional programming, for instane [Pau91℄,

[BW88℄, [CMP02℄ and [CM98℄.

18

They beat all other approahes hands down, whih ame as a surprise beause

traditionally favorite domains for funtional languages were ompilation or theorem

provers.

4. Hoare Logi

The tehniques to be disussed in this hapter are aimed at reasoning about

algorithms. We �rst introdue the traditional notation for annotating a pro-

gram with assertions. This yields a speial kind of proposition and we give the

logial rules whih govern them � spei�ally, Hoare logi. Finally, we show

another interpretation of these rules, due to Dijkstra, whih leads to a tehnique

allowing one to alulate a program that establishes a given assertion.

4.1 Introduing Assertions in Programs

Chapter 2 showed how to speify what we expet from a program or from a

piee of ode, using assertions whih are logial formulas over the input and

output data of this program. It turned out to be useful to put assertions inside

a program, beause (among other reasons) instrutions sometimes make sense

only if they are exeuted from a suitable state. This state is itself de�ned by

the value of all program variables at a given time.

For instane, let us suppose that the state is de�ned by three numerial

variables x, y and z, and that the program onsists of a sequene of instrutions:

S

1

; S

2

; S

3

; z:=2/(y-x) ; S

5

Just before the fourth instrution, x has to be di�erent from y. Suh onditions

are traditionally inserted at the relevant point in the ode between urly (or,

set) brakets:

S

1

; S

2

; S

3

; { :(x=y) } z:=2/(y-x) ; S

5

.

We ould then omplete the table searh program of page 31 as follows:

1 x:=p ; y:=q ;

2 while x 6=y do { p�x<q }

3 if P(x) then y:=x else x:=x+1 done ;

Here is the program together with its omplete spei�ation, derived from the

last spei�ation (page 28). Reall that line 8, whih is in the form A)B) C ,

reads A) (B) C), that is, �A implies that B implies C�, or in other words,

�if I have A and I have B then I have C�.

66 Understanding Formal Methods

1 (p 2 N) ^ (q 2 N) ^ p�q ,

2 P: prediate defined for all elements of [p..q[}

3 x:=p ; y:=q ;

4 while x 6=y do { p�x ^ x<q }

5 if P(x) then y:=x else x:=x+1 done ;

6 { x 2 N ^ p�x ^ x�q

7 ^ x<q) P(x)

8 ^ x=q) (8 i 2 N) (p�i ^ i<q)) :P(i) }

V

We have to deal with two onepts of a variable. The onept we use

in programming is a name that onretely denotes a piee of memory,

or, more abstratly, a portion of the state whose ontents varies in the ourse

of exeution. This is, for instane, the ase with x and y in the above program.

In addition, we have logial variables whih are used to onstrut logial for-

mulas. Suh variables were used informally throughout Chapter 3, for example

x on pages 42 and 44. They will be formally introdued in Chapter 5. They

represent a value that does not depend on exeution but rather on external

onsiderations. However, we need to mention program variables in logial for-

mulas � assertions � and onsequently mix these two kinds of variables! We

already did that with x and N on page 25. Any e�etive use of rule (4.4) below

mentions program variables within I and the logial variable V .

V

Fortunately, the onfusion an be tolerated to an extent. The key

point is not to fall into the pitfall of aliasing, as mentioned on page 32.

In brief, we an agree that the state assigns a value to logial as well as pro-

gram variables, but that logial variables an be onsidered as onstants during

exeution. Note that, in our table searh program, p and q are also arbitrary

onstants. We onsider this point again in onnetion with the semantis of

logial formulas (see � 5.2.3).

In Chapter 8 we will take an additional view point, where the semantis of

program variables itself is manipulated: they are regarded as �elds (or more

mathematially: projetions) of the state.

4.2 Veri�ation Using Hoare Logi

The orretness proof of a program will be strutured aording to the struture

of the program itself. Let us �rst analyze the latter. A program is omposed

of program elements (sequene, alternative onstruts, loops) whih are them-

selves omposed of smaller and smaller elements, until we have the simplest

ones, that is, assignment. Eah program element (inluding the whole program

itself) an be onsidered separately: it performs its own ation on the state,

whih is also formalized by a relation between a preondition and a postondi-

tion. For example, the above program is the sequential omposition of:

� line 3, whih is itself the sequential omposition of:

� the assignment x:=p,

� the assignment y:=q,

Hoare Logi 67

� lines 4 and 5: a loop whose body is:

� line 5: an alternative between

� the assignment y:=x,

� the assignment x:=x+1.

4.2.1 Rules of Hoare Logi

The relation between the preondition and the postondition of a ompound

element depends only on the omponents and on the kind of omposition. Hene

we an onstrut the proof inrementally. The simplest examples are the empty

statement skip, whih establishes the postondition P from the preondition

P , and the sequential omposition S ; S

0

.

On page 27 we introdued the notation fPg S fQg for �S establishes the

postondition Q from the preondition P �. The e�et of skip is then axioma-

tized as

fPg skip fPg : (4.1)

On the other hand, it is lear that, if fP

1

g S fP

2

g and if fP

2

g S

0

fP

3

g then the

sequene S ; S

0

establishes the postondition P

3

from the preondition P

1

. This

dedution rule is given as:

fP

1

g S fP

2

g fP

2

g S

0

fP

3

g

fP

1

g S ; S

0

fP

3

g

: (4.2)

The rule for alternation, the �if-then-else� statement, is not very di�ult

either. Premises read: �S

1

(respetively S

2

) establishes Q from the preondition

P in the ase when C is true (respetively false)�:

fP ^ Cg S

1

fQg fP ^ :Cg S

2

fQg

fPg if C then S

1

else S

2

fQg

: (4.3)

The rule for the loop involves an invariant denoted by I , whih ours in

the preondition and whih must be preserved by the body of the loop when

the input ondition C is true, and a natural integer v � the variant � whih

dereases at eah exeution of the body of the loop (< an be replaed with

another well-founded relation). Then termination is guaranteed and both I and

:C are true at the exit of the loop:

(I ^ C)) v 2 N fI ^ C ^ v = V g S fI ^ v < V g

fIg while C do S fI ^ :Cg

: (4.4)

We have another useful rule, whih tells us that we an strengthen the

preondition and weaken the postondition:

P

0

) P fPg S fQg Q)Q

0

fP

0

g S fQ

0

g

: (4.5)

68 Understanding Formal Methods

We are left with the rule for assignment, whih may seem surprising at �rst

sight beause it works bakwards. It is atually an axiom, that is, a rule without

a premise, sine an assignment is not omposed of simpler program elements:

1

f[x := E℄Pg x:=E fPg : (4.6)

The formula [x := E℄P represents P where E is substituted for x. This axiom

goes from the postondition to the preondition: it states that every property

whih is true for x after the assignment must be true for E before the assign-

ment. For example, if x > 5 is the postondition of x:=x+1, Intuitively, we had

x > 4 before this assignment; we get an equivalent preondition if we replae

x with x+ 1 in the postondition: x+ 1 > 5.

An axiom suh as fPg x:=E fP ^ x = Eg would be unsatisfatory for at

least two reasons:

1. x may our in P , then we annot keep the same P in both the pre-

ondition and the postondition;

2. x may also our in E; for example x:=x+1 ertainly does not establish

the postondition x = x+ 1.

4.2.2 Corretness of the Bounded Linear Searh Program

Now we have all the ingredients we need for onoting a formal orretness

proof of the program on page 66. Five formulas (not ounting the spei�ation

itself) to prove the orretness of a three-line program may seem like rather a

lot. However, our example happens to onentrate all fundamental onstruts

into a small spae.

2

Rules (4.1) to (4.6) are su�ient for proving the orret-

ness of arbitrarily omplex algorithms. Of ourse, we also need normal laws of

logi, for example the laws realled in � 3.4.2 or others whih are explained in

forthoming hapters.

Let us now show that our program is orret. We analyze its struture. First

we have a sequential omposition of two onseutive assignments followed by

a loop. Then we apply rule (4.2), where P

1

and P

3

are, respetively, the pre-

ondition and the postondition of the spei�ation. We have to �nd P

2

, whih

is also the loop invariant I aording to (4.4). Following the idea explained in

our informal reasoning on pages 29 and 31 we onsider:

I

def

=

I

1

^ I

2

^ I

3

;

I

1

def

=

x 2 N ^ y 2 N ^ p � x ^ x � y ^ y � q

| {z }

domain of x and of y

;

I

2

def

=

8i 2 N (p � i ^ i < x)) :P (i)

| {z }

unsuessful exploration

;

1

For the sake of simpliity, we agree that expressions on the right-hand side of an

assignment don't have side e�ets.

2

The programming language we onsider here has the power of Turing mahines.

Hoare Logi 69

I

3

def

=

y < q) P (x)

| {z }

suess

:

Rule (4.5) is often used in the following way: in order to prove fP

0

g S fQg,

take a preondition P suh that fPg S fQg is easy to show, and verify that P

is a onsequene of P

0

. This strategy works when S is an assignment and Q is

known: a simple reading of (4.6) provides a good andidate for P .

We verify easily that I is true after the two assignments of line 3, by an

appliation of (4.6), and taking the preondition into aount. Indeed, the latter

entails [x := p℄ [y := q℄I .

The loop variant is v = y � x. We still have to verify

fI ^ x 6=y ^ y�x=V g S fI ^ y�x<V g

where S is an alternative. Note that the assertion we introdued in line 4 of

the program is a onsequene of I ^ x 6= y. We apply rule (4.3). It is easy to

verify that the variant dereases in the two branhes; we now onsider invariant

preservation.

In the �rst branh, after simpli�ation, [y := x℄I

1

yields x 2 N^p � x^x � q

whih is a onsequene of I

1

; [y := x℄I

2

yields exatly I

2

; [y := x℄I

3

is in the

form A) P (x) whih is satis�ed sine P (x) plays the role of C in (4.3).

The preondition of the seond branh ontains I

1

and x 6= y, thus it implies

x < y; that is (in N) x + 1 � y, hene [x := x + 1℄I

1

is satis�ed. On the other

hand, as :P (x) is initially true, we also have :y < q taking I

3

into aount;

then [x := x+1℄I

3

is in the form A)P (x+1) where A is false. We are left with

[x := x+ 1℄I

2

whih an be deomposed in I

2

^ :P (x) and is learly satis�ed.

Finally, the postondition we look for is a onsequene of I ^ :C, that is,

I ^ x = y here: we just use ordinary logial manipulations.

4.3 Program Calulus

The use of Hoare logi we just onsidered requires that we look a posteriori for

intermediate assertions, suh as loop invariants. This may turn out to be rip-

pling. Other researhers, notably Dijkstra, advoate a di�erent, onstrutive,

approah whereby a program is designed together with its orretness proof.

In short, one has to start from a given postondition Q and then look for a

program that establishes Q from the preondition. Often, analyzing Q provides

interesting hints to �nding the program.

4.3.1 Calulation of a Loop

Let us again onsider bounded linear searh. The postondition is:

x 2 N ^ p � x ^ x � q (4.7)

^ x < q) P (x) (4.8)

^ x = q) 8i 2 N (p � i ^ i � q)) :P (i) : (4.9)

70 Understanding Formal Methods

Our idea is, of ourse, to use a loop. Its postondition, given (4.4), is a on-

juntion I ^ :C. The �rst strategy we an try is to share out the onjunts

(4.7) to (4.9) among I and :C. Assertions about the domain of x in (4.7) fall

learly within the invariant. The assertion (4.9), whih involves a quanti�er, is

too ompliated for a test. Let us then envisage :C = x< q) P (x), that is

C = x<q ^ :P (x). This leads us to a program having the following shape:

1 x:=p ;

2 while x<q ^ :P(x) do ... done ;

The body of the loop � x:=x+1 � an be guessed at without alulation. We

then get a variant of the �rst algorithm for linear bounded searh given on

page 28, as well as a good approximation to the invariant to be used in its

orretness proof. This is not so bad, although this program requires P to be

de�ned over q. A derivation of the seond program is explained in [Coh90℄.

4.3.2 Calulation of an Assignment Statement

A striking example for the synthesis of an assignment statement, inspired by

[Coh90℄, is the omputation of the ube of a natural integer N where the only

allowed arithmetial operation is addition. The �rst postondition we onsider

is = N

3

.

Aiming at a loop, a tehnique already mentioned (page 30) onsists of re-

plaing a onstant with a variable. The e�et of this transform is to put the

postondition in the form I ^:C. Here the only available onstant is N , hene

we put the postondition in the form =x

3

^x=N . Then we look for a program

having the following shape:

1 establish I ;

2 while x 6=N do

3 preserve I while making x loser to N done ;

where the loop invariant is I

def

=

=x

3

.

An obvious way to establish I at the beginning of the loop is to take x =

 = 0. We an partially guess the body of the loop: inrement x, with the aim

of suessively omputing 1

3

, 2

3

, 3

3

, et. The loop variant is N�x, and we will

leave this unhanged.

The loop body ontains x:=x+1 and an assignment to suh that the invari-

ant is preserved. Here reasoning is made easier if we onsider a simultaneous

assignment : the sequential omposition of x:=x+1 and :=... would introdue

a umbersome intermediate state. The shape we envisage for line 3 is then:

3 x, := x+1,E done ;

where E is an expression that is yet to be found, and we want (invariant

preservation and assignment rule):

I ^ x 6=N) [x; := x+ 1; E℄ I : (4.10)

Hoare Logi 71

We get an equation where the unknown is the program, or at least a part of the

latter: the expression E. In order to solve (4.10) we alulate:

3

[x; := x+ 1; E℄ I

= {de�nition of I}

[x; := x+ 1; E℄(= x

3

)

= {simultaneous substitution}

E = (x+ 1)

3

= {arithmeti}

E = x

3

+ 3x

2

+ 3x+ 1

= {use of the hypothesis I , that is = x

3

}

E = + 3x

2

+ 3x+ 1 :

The expression 3x

2

+3x+1 raises a problem: it is not a sum of known quantities.

Let us introdue d and assume, at the same time, that d = 3x

2

+ 3x + 1. We

an omplete the previous alulation:

E = + 3x

2

+ 3x+ 1

= {use of the hypothesis d = 3x

2

+ 3x+ 1}

E = + d :

To summarize, we have:

(= x

3

^ d = 3x

2

+ 3x+ 1))

[x; := x+ 1; + d℄(= x

3

) ;

(4.11)

to be ompared with (4.10). Then we atually onsider I

def

=

I

1

^ I

2

with

I

1

def

=

 = x

3

and I

2

def

=

d = 3x

2

+ 3x+1. The impliation (4.11) an then be

written

I) [x; := x+ 1; + d℄I

1

:

Note that, if [S℄ is a substitution, [S℄(I

1

^ I

2

) = [S℄I

1

^ [S℄I

2

, we still have to

establish that I

2

is invariant; that is, to �nd an appropriate assignment for d.

Then we alulate (E

0

is an expression to be found):

[x; ; d := x+ 1; + d;E

0

℄ I

2

= {de�nition of I

2

, substitution, arithmeti}

E

0

= 3(x

2

+ 2x+ 1) + 3(x+ 1) + 1

= {use of the hypothesis I

2

}

E

0

= d+ 6x+ 6

= {invention of e satisfying I

3

def

=

e = 6x+ 6}

3

The format we use is explained in � 9.6.2.

72 Understanding Formal Methods

E

0

= d+ e :

We repeat the proess in order to make I

3

invariant:

[x; ; d; e := x+ 1; + d; d+ e; E

00

℄ I

3

= {de�nition of I

3

, substitution, arithmeti}

E

00

= 6(x+ 1) + 6

= {use of the hypothesis I

3

}

E

00

= e+ 6 :

We just have to initialize the loop by means of a simultaneous assignment, that

is, to (easily) �nd C, D and E suh that:

[x; ; d; e := 0; C;D;E℄ I :

This leads us to the following nie program:

1 x,,d,e := 0,0,1,6 ;

2 while x 6=N do

3 x,,d,e := x+1,+d,d+e,e+6 done ;

4.3.3 Weakest Preondition

Given two assertions A and B, we say that A is stronger than B, and that B

is weaker than A, if A)B.

The proess illustrated in � 4.3.2 rests on a alulation of expressions having

the shape [S℄P where S is a substitution and P is a prediate � an assertion

whih depends on a number of variables. This proess an be generalized if, for

eah program element S , we have at our disposal a simple means to alulate

the weakest preondition P suh that fPg S fQg. The latter is denoted

4

by

[S ℄Q.

[S ℄ is alled a prediate transformer: when applied to Q, it returns the

weakest P suh that fPg S fQg:

fPg S fQg () P) [S℄Q : (4.12)

We have for example :

[skip℄Q

def

=

Q ; (4.13)

[x:=E℄Q

def

=

[x := E℄Q ; (4.14)

[S ; S

0

℄

def

=

[S ℄ Æ [S

0

℄ : (4.15)

It turns out to be onvenient to generalize the lassial onstrut if B

1

then

S

1

else S

2

to a non-deterministi hoie:

4

This notation, used in the B language (see Chapter 6), is inspired by the notation

of substitutions. Dijkstra's original notation is wp.S:Q .

Hoare Logi 73

if B

1

! S

1

2 B

2

! S

2

fi

where B

2

does not need to be the negation of B

1

. The orresponding weakest

preondition is:

[if B

1

! S

1

2 B

2

! S

2

fi℄Q

def

=

8

<

:

B

1

_ B

2

^

B

1

) [S

1

℄Q ^

B

2

) [S

2

℄Q :

(4.16)

This onstrut �ts better with program alulation, as well as multiple as-

signment with relation to sequential omposition of assignments. Note that it

is easy to translate an algorithm written with non-deterministi hoies and

multiple assignments into a programming language with usual alternative on-

struts and sequential omposition of single assignments. We don't give further

details here; the ideas are explained and illustrated with many examples in

[Dij76, Coh90, Kal90℄. The above onstruts (sequential omposition, multi-

ple assignment, skip, loop, hoie expressed with 2) make up the language of

guarded ommands devised by Dijkstra.

4.4 Sope of These Tehniques

Hoare logi has been used in a number of industrial projets, to provide guar-

antees on ritial programs following their realization. A notable example is the

railway signaling software for line A of RER in Paris. However, it turned out

to be di�ult to transfer the results to versions of the software implemented

for other towns.

5

The tehniques à la Dijkstra allow skilled people to design algorithms whih

an be surprisingly subtle and elegant. Large-sale programming, however, is

not within the sope of these tehniques. Struturing mehanisms, suh as

subroutines, modules and so on are needed for more realistially sized systems.

Normal programming languages inlude somewhat omplex features, suh as

reursive proedures with side e�ets, pointers, dynami data strutures, et.

But it is not that simple to de�ne and to use an axiomati semantis for them.

Apart from algorithm design, the tehniques onsidered in this hapter apply

mainly to small subsets of ommon programming languages. It is interesting

to remark that suh subsets �t well with the programming standards used

for ritial software. Moreover, reall that �omplete� C and languages derived

from it are seriously disadvantaged ompared to languages provided with a

lear formal semantis, suh as ML.

In any ase, methods and tehniques introdued in this hapter are useful for

everyday programming. Even an informal use of invariants and variants makes

the design of a loop signi�antly easier. For example, who never hesitated when

onsidering initial or terminal values of a loop index?

5

Development teams deided then to swith to B, whih is quite similar in some

respets, but o�ers tehniques and tools that are useful for maintenane.

74 Understanding Formal Methods

Let us also remark that in a programming language, suh as Ei�el [Mey88℄,

using assertions is expliitly and strongly enouraged. They an be heked at

run-time and are linked to the exeption mehanisms, providing a valuable aid

to debugging. Similar features are also available in Objetive Caml (a version

of ML) and even, to some extent, in C. Note that only omputable assertions

(in partiular, without unbounded universal quanti�ers) make sense in this

ontext.

4.5 Notes and Suggestions for Further Reading

Introduing assertions in programs is an idea dating bak at least to Floyd

[Flo67℄. It has been strutured under what is now alled Hoare Logi in [Hoa69℄,

and applied to Pasal in [HW73℄. The language of guarded ommands and

Dijkstra's approah to the design of orret-by-onstrution sequential pro-

grams are both presented by their author in [Dij76℄, and in various textbooks,

e.g. [Kal90℄ and [Coh90℄.

Among reent innovations, a number of researhers have provided auto-

mated support for Hoare-style proof of imperative programs in a general frame-

work. For example, suh ideas are developed and implemented by J.-C. Filliâtre

[Fil99℄ for Coq � the version of type theory that we onsider in Chapter 12 �

and PVS � whih is also disussed in this hapter.

As mentioned earlier, the tehniques onsidered in this hapter are essen-

tially relevant when one onsiders programming-in-the-small. An important

tehnique for dealing with larger-sale software development is re�nement. The

basi idea onsists of relating onrete spei�ations to abstrat spei�ations,

so that we an reason about high-level properties of a system without be-

ing hampered by unneessary low-level details. We will say more about this

in Chapter 6. The interested reader may also onsult the artile by Gardiner

[GM91℄ and the book by de Roever [dRE98℄.

5. Classial Logi

Logi provides a syntax for expressing properties. A �meaning� of these expres-

sions and their ompositions is de�ned by the onepts of an interpretation

and of a model. We begin by introduing the most simple of these expressions,

alled propositions. We then present the general ase of formulas, whih are

expressions that depend on the value of parameters alled variables, or whih

an themselves be variables. These formulas may be quanti�ed using 8 (for all)

and 9 (there exists).

In this hapter we examine di�erent logis: the logi of propositions (� 5.1),

�rst-order logi (� 5.2), and higher-order logi (� 5.5), along with a variant

of �rst-order logi, whih we will examine as part of a disussion of partial

funtions (� 5.4). Equality and arithmeti are takled in � 5.3. We onlude

with basi onepts of model theory (� 5.6).

5.1 Propositional Logi

5.1.1 Atomi Propositions

We assume a olletion of elementary expressions alled atomi propositions,

whih are appliation dependent. These atomi propositions may then be om-

bined by means of logial onnetors (and, or, not, et.). There are two possi-

bilities:

1. We do not need to break down these expressions. In this ase we represent

them by a letter identi�er (for example, P, Q, et.); if we need to better

express the ideas we are trying to represent, we may use a longer identi�er,

for example it_is_sunny; these symbols are alled proposition symbols;

2. The atomi expression is strutured. In this ase the interpretation de-

pends on the subjet and there are as many possible interpretations as

there are subjets. For example, we an onsider the individuals denoted

by Claudio, Elliot, John, and onstrut three expressions stating the fat

that Claudio, Elliot and John are telephone subsribers in the same way

as follows: is_a_subsriber(Claudio). We employ a funtional notation

that is justi�ed by the fat that is_a_subsriber will be interpreted by a

76 Understanding Formal Methods

funtion from the set of people to ftrue; falseg. We all is_a_subsriber

a one-plae prediate symbol, or simply a one-plae prediate.

1

Similarly, we an introdue prediates with any number of plaes. For example,

to express that Claudio rents a given telephone we introdue the onstants

tel1, tel2, et., as well as a two-plae prediate rents; now we an write:

rents(Claudio; tel27) : (5.1)

Then, an individual an be expressed as a funtion of one, or several, other in-

dividuals. For example, we an introdue the funtions denoted by father_of,

whih allows us to express the fat that Elliot's father (the father of Elliot)

rents telephone number 5:

rents(father_of(Elliot); tel5) : (5.2)

Note. The �rst situation is a partiular ase of the seond: the proposition sym-

bols (P, Q, it_is_sunny) an be onsidered to represent zero-plae prediates.

On the other hand, the di�erene between the �rst type of expression and the

seond is super�ial for now. For example, the olletion of expressions above

an be replaed by Claudio_is_subsribed, . . . , Claudio_rents_tel27,

father_of_Elliot_rents_tel5, et. The advantage of a strutured represen-

tation of atomi propositions is that it allows for the synthesis of a great number

of them in a systemati way.

M

This omment suggests that the prediate alulus an be redued to

the propositional alulus (see the de�nitions below) provided that

quanti�ers an be eliminated. In fat, Herbrand showed that every �rst-order

logi proof, within a su�iently general lass of formulas, may be transformed

to a proof in the logi of propositions; Herbrand even provided an algorithm

to perform this transformation. This has had important onsequenes in au-

tomati programming and the development of Prolog. We will return to this

in Chapter 9. Henkin also used proesses aimed at reduing propositions to

�rst-order, thereby establishing results of ompleteness.

2

See [Bar77, h. 1℄ and

[Gal86℄.

5.1.2 Syntax of Propositions

Atomi propositions are the building bloks of propositions. It is onvenient to

have two prede�ned atomi propositions, t and f , representing the proposition

1

It should be noted that this is an abuse of terminology. This will be made more

lear when we address semantis.

2

It is a little unusual to present propositional logi by introduing funtion and

prediate symbols straightaway. These symbols are essential only in �rst-order logi.

They are already useful, however, and we an see a ontinuity between propositional

logi and �rst-order logi. Really what distinguishes between them is the use of vari-

ables and quanti�ers.

Classial Logi 77

that is always true and the proposition that is always false, respetively. To

illustrate the terminology, onsider expression (5.3):

rents(father_of(Elliot); tel5) ^ rents(Claudio; tel27) : (5.3)

In this example:

� (5.3) is a proposition ;

� rents(father_of(Elliot),tel5) and rents(Claudio,tel27) are also propo-

sitions, more preisely atomi propositions;

� father_of(Elliot), Elliot, tel5, Claudio and tel27 are terms, the last

four being simply onstant symbols; as no variable is used so far they are, in

fat, onstant terms;

� rents is a prediate symbol;

� father_of is a funtion symbol.

Propositions are de�ned as follows:

1. Every atomi proposition is a proposition;

2. If A is a proposition, its negation, written :A (pronouned �not A�) is a

proposition;

3. If A and B are propositions, A_B, A^B, A)B and A() B (pronouned

� A and B�, �A or B�, �A implies B� and �A equivalent to B�, respetively)

are propositions;

4. There are no other propositions other than those onstruted via the pre-

eding three rules.

Notes.

(1) This de�nition gives only the essentials of propositions, the abstrat syntax

in omputer siene terminology. To redue ambiguities in a onrete ex-

pression suh as P ^ Q _ R, it is onvenient to introdue priority levels for

the operations ^, _, et., as well as parentheses when neessary. In this

book, we use onventional parentheses �(� and �)� for this, as well as square

brakets �[� and �℄�

(2) Often the symbols �!� and ��� are used in plae of �)�, and ��� in plae

of �()�.

Atomi propositions are formally onstruted by ombining two ingredi-

ents � prediate symbols and onstant terms, the latter being themselves

onstruted by means of the onstant symbols (suh as tel2) and the funtion

symbols (suh as father_of) that we assumed initially:

1. A proposition symbol is an atomi proposition;

2. If P is an n�plae prediate symbol, and if t

1

, ... t

n

are onstant terms,

then P (t

1

, . . . t

n

) is an atomi proposition;

3. Every onstant symbol is a onstant term;

4. If f is an n�plae funtion symbol, and if t

1

, . . . t

n

are onstant terms, then

f(t

1

, . . . t

n

) is a onstant term;

78 Understanding Formal Methods

5. There are no other atomi propositions or onstant terms other than those

onstruted via the preeding four rules.

M

A zero-plae prediate an be viewed as an atomi proposition, in

whih ase the �rst rule is a speial ase of the seond. Similarly, a

given symbol an be onsidered to be a zero-plae funtion symbol, in whih

ase the third rule is a speial ase of the fourth.

5.1.3 Interpretation

The approah to interpreting the preeding notions is as follows. First we as-

sume the set B = ftrue; falseg; true and false are alled truth values. We then

onsider a universe of disourse D (more formally, a non-empty set of onstants

alled a domain), satisfying ertain properties. We then establish a orrespon-

dene between the symbols, individual people, and these properties.

In our example we reate a orrespondene between given names and real

people, let's say Claudio with Abbado, John and Elliot with Gardiner,

3

the

symbols tel1, tel2, et. with atual telephones and the symbol father_of

with the funtion that assoiates an individual with his/her father. To every

atomi proposition we attah a truth value; for example true for P, it_is_sunny

and Claudio_is_subsribed, false for Q, John_is_subsribed and Elliot_

is_subsribed; if we prefer the strutured representation, this amounts to as-

soiating the funtion fAbbado 7! true; Gardiner 7! falseg with the prediate

symbol is_a_subsriber.

The general ase o�ers no surprises: onstant symbols represent onstants,

funtion symbols represent funtions, and so on. The only point that warrants

partiular attention is that all represented funtions are total (they are de�ned

for all values of the domain). We will return to this later.

An interpretation I, therefore, is a orrespondene that assigns:

� an element

I

from the domain D to every onstant symbol ;

� a total funtion f

I

from D

n

to D to every n�plae funtion symbol f ;

� an element P

I

of B , t and f being neessarily interpreted by true and false

respetively, to eah proposition symbol P ;

� a total funtion P

I

from D

n

to B to eah n�plae prediate symbol.

M

If E is a set, by onvention E

0

denotes a singleton, let's say f1g; that

allows us to identify E

0+n

to E

n

by means of a natural bijetion

(1; x) 7! x. Then every total funtion from E

0

to F may be identi�ed as an

element of F (the image of 1). Taking E = D and F = B (respetively, F = D)

the assimilation of propositions as zero-plae prediates (respetively, onstants

as zero-plae funtions) is justi�ed.

3

Every onstant symbol must orrespond to an individual, but there is nothing to

prevent two di�erent symbols from relating to the same individual.

Classial Logi 79

We see that an interpretation allows the assignment of a value in D to eah

onstant term t; it is su�ient on eah ourrene of a funtion symbol f in t,

to apply the orresponding funtion f

I

to the value of its arguments. Similarly,

every atomi proposition P (:::) has a truth value obtained by applying P

I

to

the value of its possible arguments.

The same approah allows for the assignment of a truth value to all propo-

sitions. The onnetives :, _, ^,) and () are assoiated with B to B and

B � B to B funtions de�ned via well-known truth tables (Figure 5.1).

P Q P _Q P ^Q P)Q P () Q :Q

false false false false true true true

false true true false true false false

true false true false false false

true true true true true true

Figure 5.1: Truth tables.

Observe that P^Q is true if and only if P and Q are both true. Nevertheless,

it is unsatisfatory to present the semantis of ^ based solely on the usual

meaning of the word and, beause there are many suh meanings! We an see

three here:

� I took my hat and my oat

(onept of a olletion or grouping)

� I took my hat and I left

(lose to logial onjuntion but with a onept of a temporal ordering) and

� See Naples and die

(onept of a permission and of a suession).

The other onnetives present similar ambiguities. The use of truth tables

avoids this pitfall by invoking a lear mathematial onept, the appliation

of a funtion to arguments.

5.2 First-order Prediate Logi

The language we've onsidered thus far, the propositional logi, doesn't allow

us to express relatively simple fats, for example:

� if Claudio rents telephone 2, then Claudio is a subsriber.

It is learly desirable to be able to apture more general properties, suh as:

� every individual who rents a telephone is a subsriber.

80 Understanding Formal Methods

To this e�et, we �rst need parameterized propositions, for example:

� if x rents telephone y, then x is a subsriber.

A parameterized proposition is alled a formula. The next step onsists of

quantifying formulas. Universal quanti�ation over x in

� if x rents a telephone, then x is a subsriber

expresses:

� for all x, if x rents a telephone, then x is a subsriber.

In plain English:

� every individual who rents a telephone is a subsriber.

This expression an be viewed as a potentially in�nite onjuntion:

� if Claudio rents a telephone, then Claudio is a subsriber and if John rents

a telephone, then John is a subsriber and et.

Finally, existential quanti�ation of y in

� x rents telephone y

is:

� there exists y suh that x rents telephone y.

In plain English:

� x rents a telephone.

In the same way, this expression an be viewed as a disjuntion:

� x rents telephone 1 or rents telephone 2 or . . . et.

The logi employed here is prediate logi, or more preisely �rst-order

prediate logi beause the variables onsidered throughout are drawn from a

domain of onstants,D, and annot represent funtions overD nor propositions.

5.2.1 Syntax

We need to omplete the notions of a term and of a proposition that we intro-

dued earlier. We introdue into the language a set of variables V = fx; y; : : :g

and two symbols 8 (for all) and 9 (there exists), also alled quanti�ers (re-

spetively, the universal and existential quanti�ers). The onstants, funtions,

variables and prediates that we assumed form what is termed a �rst-order

language.

4

Terms, atomi formulas and formulas are then de�ned by replaing on-

stant term with term, atomi proposition with atomi formula and proposition

with formula in the previous de�nitions. We add the following rules:

4

What we often all a language is really a set of terms and formulas. That amounts

to the same thing sine the language here is ompletely determined by variables and

the onstant, funtion and prediate symbols.

Classial Logi 81

� every variable is a term;

� if P is a formula and if x is a variable then 8xP and 9xP are formulas. x

need not our in P , although in pratie this is often the ase.

By onvention, a quanti�er extends as far as possible, taking any parentheses

into aount. For example, 8xP)Q does not represent (8xP))Q, but rather

8x (P)Q).

Example. Every x that rents some thing (y) is a subsriber:

8x[9y rents(x; y)℄) is_a_subsriber(x) : (5.4)

Comment. The expeted interpretation here is that every person who rents

a telephone is a subsriber, but in the given formula there is nothing that

requires that x must denote a human being and that y must denote telephone

equipment. In ontrast to ollege mathematis, quanti�ers are not onstrained

to a domain of de�nition (i.e., the set of human beings or the set of telephones,

in the previous example):

8x 2 humans; (9y 2 tels; rents(x; y))) is_a_subsriber(x) :

Writing the formula in suh a way uses the onept of sets within the lan-

guage, something that we have arefully avoided in this setion. That doesn't

onstitute a redution in the expressive power of the logi, as the same ef-

fet is obtained by representing not sets (suh as humans) but harateristi

prediates:

8x is_a_human(x))

[(9y (is_a_tel(y) ^ rents(x; y)))) is_a_subsriber(x)℄ :

(5.5)

M

The onepts of a set, a funtion, et., have only been used in an

informal manner and in the metalanguage, so that the syntax and

the neessary material for interpretation ould be desribed. The syntax of

logi itself does not inlude the symbol 2. There is, however, an important �rst

order language that uses 2 � axiomati set theory. We note that the use of a

symbol denoting a set is subjet to ertain restritions.

In set-based spei�ation languages, quanti�ers are neessarily on-

strained: quanti�ed formulas are of the form (8x 2 E)P or (9x 2 E)P , (also

written 8x 2 E � P or 9x 2 E � P), and the rules employed guarantee that E

exists. But to justify the orretness of mehanisms employed, a well-developed

theory of sets must be available beforehand.

5.2.2 Example of the Table

In the example of searhing for an integer between two bounds, terms repre-

sent natural numbers. These are onstruted from a onstant symbol 0 and a

one-plae funtion symbol S. The latter represents the suessor funtion; for

82 Understanding Formal Methods

example, the integer 2 is represented as S(S(0)). Other symbols representing

addition, multipliation, and other operations on integers are useful but not

neessary.

An almost omnipresent prediate is that of equality. We introdue the two-

plae prediate (symbol) equal, but we will use the usual in�x notation x = y

instead of equal(x; y). Similarly, for omparisons, we will write the prediates<

and � in an in�x manner. Moreover, we will onsider the three-plae prediate

between, the intended meaning of between(a; b;) being: b is ontained between

a (inlusive) and .

Let us suppose that we wish to �nd an element divisible by 37 in the interval

[p::q[, where p and q are variables.

5

We introdue the prediate symbol div37;

the integer x to be found must satisfy the formula:

(between(p; x; q) ^ div37(x))

_ (x = q ^ 8i between(p; i; q)):div37(i)) :

(5.6)

5.2.3 Interpretation

How do we interpret a formula depending on x? Consider, for example, the

formula is_a_subsriber(x). It is lear that its value, true or false, depends

a priori on the value of x. We had a similar situation for is_a_subsriber

(without �(x)�), whih was interpreted by a funtion from D to B . Here, we in-

trodue the onept of an assignment, whih is a funtion from a set of variables

V to D. Let us �x an assignment �, the value given to is_a_subsriber(x)

is then is_a_subsriber

I

(�(x)). More generally, the value of a term and the

truth value of a formula over D depends on the interpretation I and on the

assignment �.

To interpret a quanti�ed formula suh as 9y rents(x; y), it should be noted

that its truth value depends only on x and not on the quanti�ed variable y:

suppose that D ontains only two onstants

1

and

2

, this formula has the

same value as rents(x;

1

) _ rents(x;

2

). Note that we ould just as easily

have written 9z rents(x; z). We have unovered the phenomenon of dummy

variables, well known in mathematis, in expressions suh as

P

n

y=1

f(y) or

R

f(y) dy.

In logi, we use the term free or bound variable. For example, in the formula

9y rents(x; y), x is free while y is bound. Only free variables an be viewed as

parameters of a formula.

M

One must be onsious of the fat that in the same formula a vari-

able x an have both free and bound ourrenes; for example x in

P (x; y) ^ 8xQ(x; y). The free ourrenes of x are de�ned by: (1) every our-

rene of x in a term or an atomi formula is free; (2) every free ourrene of

x in P is also free in :P ; (3) every free ourrene of x in P is also free in

P _Q, P ^Q, P)Q,P () Q; idem for every free ourrene of x in Q; (4) no

ourrene of x in 8xP or in 9xP is free.

5

Following the onvention of Chapter 2, the value returned is q if no value divisible

by 37 is ontained in [p::q[.

Classial Logi 83

The substitution of for x in R, where R is a term or a formula, is de�ned

by replaing all free ourrenes of x in R with . We will write this [x := ℄R. In

the following de�nition, will represent a onstant and we will assume without

loss of generality a onstant symbol

v

for every value v of the domain D. When

 is not a onstant but rather a term possessing free variables, we must �rst

rename all quanti�ed variables of R � [x := y℄(9y(y > x)) is not 9y(y > y)

but 9y

1

(y

1

> y).

M

To be ompletely rigorous it is neessary to mathematially de�ne

the onepts of a term, of an ourrene and of a substitution. That

is done by de�ning a onept of a tree domain � intuitively, an address spae

strutured in the form of a tree; a term is de�ned as an appliation of suh a

spae to the set of onstant and funtion symbols used. That is purely teh-

nique, and gives the results one expets for justifying pratial manipulations.

The reader seeking a more rigorous exposition is direted to [Gal86℄.

We an now give the de�nition of the interpretation I of a formula in the

assignment �:

� the interpretation of onstant, funtion and prediate symbols is the same

as in the propositional ase (assignment makes no hange);

� if x is a variable, its interpretation x

I

is �(x) ;

� the onnetors :;^; et. are interpreted as before;

� 8xP is interpreted by true if for every value v of D, [x :=

v

℄P has the value

true, and by false otherwise;

� 9xP is interpreted by true if there exists a value v of D for whih the formula

[x :=

v

℄P has the value true, and by false otherwise.

Overall, the truth value of a formula ontaining n free variables x

1

, . . .x

n

depends on �(x

1

), . . .�(x

n

). It may be useful to onsider that this formula is

interpreted by a funtion from D to B .

M

We already pointed out in � 4.1 that the variables used in programs

represent �state portions� whose value varies during the ourse of an

exeution. Let us �x a program with its variables y

i

; we an formalize it by

the means of a set of states S and of an appropriate projetion p

y

i

for eah

variable y

i

of the program, provided there is no aliasing. The value represented

by the variable y

i

in the state s is then p

y

i

(s). We will proeed in this way in

Chapter 8.

Symmetrially, we an onsider that in eah state s, we have a fun-

tion �

s

suh that �

s

(y

i

) provides the value of the variable y

i

in the given state.

Indeed, �

s

is an assignment in the sense given above. Then we an reason in a

formal way about a program by representing its variables by logial variables

and eah state by an assignment de�ned over these variables and over other

regular logial variables as well.

Let us for instane interpret the formula x � N of page 25. We

represent an exeution by a sequene of assignments �

0

, �

1

, : : : where �

i

(x)

varies aording to the evolution of x allowed by the program, whereas �

i

(N)

remains �xed: N is not part of the program.

84 Understanding Formal Methods

The expressive power of �rst-order logi is onsiderably greater than that

of the propositional logi, beause one an potentially ahieve in�nity using a

�nite number of formulas. For example:

int(0) ^ (8x int(x)) int(S(x)))

has as a onsequene

int(S(:::S(

| {z }

n

0):::))

where n is arbitrarily large. To obtain the same result in the propositional logi,

we would straightaway need to express an in�nite number of propositions suh

as

int(S(S(0))) :

Note: as soon as we have at least one onstant symbol and one funtion

symbol, the possible ombinations enable us to oneive of an in�nite number

of propositions, even if we annot express them expliitly.

5.3 Signi�ant Examples

Most appliations require the use of at least integers and equality. For this

reason, we introdue the neessary symbols and what we refer to as their theory,

made up of logial formulas alled axioms. The interested reader may wish to

refer to more preise de�nitions of these onepts in � 5.6.1.

5.3.1 Equational Languages

A language L is said to be equational if it ontains the binary prediate =.

This prediate, if it is to behave as equality, must always impliitly satisfy the

following three axioms:

� the fat that = is an equivalene relation (3 axioms);

6

� the priniple of substitution of equals for equals, that is, the Priniple of

Leibniz. For every n-ary funtion symbol f , n axioms are required:

8x

1

:::8x

n

8y

i

x

i

= y

i

)

f(::: x

i�1

; x

i

; x

i+1

:::) = f(::: x

i�1

; y

i

; x

i+1

:::) ;

likewise for every n-ary prediate symbol P :

8x

1

:::8x

n

8y

i

x

i

= y

i

)

P (::: x

i�1

; x

i

; x

i+1

:::)() P (::: x

i�1

; y

i

; x

i+1

:::) :

This symbol is always interpreted by the equality over the domain of interpre-

tation D.

6

In fat, re�exivity is su�ient; it, ombined with the Priniple of Leibniz, allows

us to use symmetry and transitivity also.

Classial Logi 85

M

In fat, the axioms allow for the interpretation of = by any equiv-

alene relation ompatible with the operations of the language L

(that is, a ongruene). But it is also possible to onsider the quotient of D

by the relation D

0

, whih provides an interpretation under whih �=� is indeed

equality.

Algebrai spei�ation languages are equational languages. Most theories of

mathematis are equational and, generally, model theory onsiders equational

languages. On the other hand, basi proof theory generally does not address

equality, whih poses spei� problems. While axioms are just equations, we

must resort to the theory of rewriting systems.

M

For more general axiomatizations, ombining logial onnetors and

equality, an important tehnique employed in automati proof is

paramodulation [RW69℄. We will not address that here, but the interested

reader will �nd a good desription in [CL73℄.

Comment. If we onsider seond-order logi, equality an be de�ned as the

seond-order prediate that expresses the fat that x and y are equal if they

have exatly the same properties:

x = y

def

=

8P P (x)() P (y) :

5.3.2 Peano Arithmeti

A partiularly important theory, due to Peano, is one whih formalizes arith-

meti. This is a �rst-order equational theory over the language omposed of the

onstant 0, the unary funtion symbol S (representing the suessor funtion),

the binary funtion symbols �+� and � :�, and the relation <. These operations

are written here in the in�x form, following ommon usage. The integer n is

represented by S(:::S(

| {z }

n

0):::).

5.3.2.1 Axioms of Peano Arithmeti. The axioms are as follows.

No two integers are the same:

8x :(0 = S(x)) ;

8x8y S(x) = S(y)) x = y :

Axioms of addition:

8x x+ 0 = x ;

8x8y x+ S(y) = S(x+ y) :

Axioms of multipliation:

8x x:0 = 0 ;

8x8y x:S(y) = x+ (x:y) :

86 Understanding Formal Methods

Axioms of omparison:

8x :(x<0) ;

8x8y x<S(y) () x<y _ x=y :

Note that the axioms of addition, multipliation and omparison are on-

struted by systematially onsidering the possible patterns of the seond ar-

gument, whih is either 0 or S(y).

Our last axiom is atually a olletion of axioms, beause � represents an

arbitrary �rst-order formula having x as a free variable. A olletion of axioms

de�ned in this way is alled a shema. We then have an in�nite number of

possible instanes for a shema. The key point is that they may be reognized

by an algorithm: we say that Peano arithmeti is reursively axiomatizable.

Indution shema:

�(0) ^ [8x �(x)) �(S(x))℄) 8x �(x) :

We an, for example, take the formula x < S(x+x) for �(x), signifying that

x is less than or equal to 2x. The priniple of indution in this ase is:

0 < S(0+ 0) ^ [8x x < S(x+ x)) S(x) < S(S(x)+ S(x))℄

) 8x x < S(x+ x) :

There is nothing to stop us from taking a generally false formula suh as x= 0,

for �(x):

0= 0 ^ [8x x= 0) S(x)= 0℄) 8x x= 0 ;

but of ourse there is no hope of proving the seond premise!

The formula � an be more omplex, for instane it an depend on other

free variables and use logial onnetors. Moreover, it is aeptable to hoose

variables other than x for the indution. An interesting example is the following:

�(x; y) = x<y) S(x)<S(y) :

Taking y as the indutive variable, we obtain the axiom:

(x<0) S(x)<S(0)) ^

(8y (x<y) S(x)<S(y))) [x<S(y)) S(x)<S(S(y)) ℄)

) 8y x<y) S(x)<S(y) :

(5.7)

5.3.2.2 Appliation to the Table Example. For the table example that

we desribed in � 5.2.2, we use the language of arithmeti augmented with two

prediate symbols, between and div37. These symbols do not represent arbi-

trary prediates, but are linked to < and =. We wish to de�ne between(x; y; z)

by x�y ^ y<z, but � does not exist in our language. We an introdue it and

state the following axiom:

Classial Logi 87

8x8y x�y () x<y _ x=y :

Another possibility is to note that, thanks to the seond axiom of omparison,

one an always replae x�y by x< S(y). We therefore an avoid ��� and state

the following axiom about between:

8x8y8z between(x; y; z) () x< S(y) ^ y<z : (5.8)

We don't really have a need to axiomatize div37, sine it has no e�et on

the riteria for searhing in a table. If it were neessary we ould introdue a

onstant thirty_seven, with the axiom:

thirty_seven= S(:::(

| {z }

37

0):::) :

The axiom of div37 would then be:

8x div37(x) () 9y x = y:thirty_seven :

5.3.2.3 Models of Arithmeti. This setion refers to the onepts oming

from model theory as desribed in � 5.6.

M

It is intuitively lear that the set of natural numbers N together with

obvious funtions is a model of Peano arithmeti, whih we all the

standard model. But is it the only one? We an �nd others, suh as the set

of even integers where +, 0 and < are interpreted without hange, while S and

� :� are interpreted, respetively, by n 7! n+2 and m;n 7! mn=2. In fat, these

two models are identi�ed by the isomorphism n 7! 2n.

We obtain a muh more unexpeted result by applying the theo-

rem of ompaity and the theorem of Löwenheim (f. � 5.6.2) [Gal86℄: Peano

arithmeti admits a ountable model non-isomorphi to N. The existene of

suh models, whih we all non-standard models, shows that N is not entirely

haraterized by the axioms of Peano. We will see in � 9.8.2 that this fat

may be established by other means, and in a stronger manner through Gödel's

theorem of inompleteness. On the one hand, Gödel's proof, ontrary to that

of the theorem of Löwenheim, uses only the �nite proesses reommended by

Hilbert and aepted by the intuitionists; on the other hand, it shows that the

introdution of supplementary axioms to �ll the gap serves no purpose.

5.4 On Total Funtions, Many-sorted Logis

Funtion symbols are interpreted by total funtions, whereas one might want

to model partial funtions. Let's take the funtion father as an example; if we

interpret it over the onrete set A of inhabitants of London, it is lear that this

funtion is far from being total. We are then driven to taking for the interpreta-

tion of father a funtion from A to A assoiating with every person a his/her

88 Understanding Formal Methods

legal father if the latter is in the set A, otherwise any value (for example, a it-

self). It would be more judiious to name this prediate father_if_he_exists.

This modeling must be ompleted by introduing a prediate has_a_father,

whih haraterizes those persons whose father is also in the domain.

In general, a partial funtion an be modeled by a total funtion and the

harateristi prediate of its domain of de�nition. We use formulas that simul-

taneously ombine both of these aspets of the funtion, for example:

8x has_a_father(x))

[is_subsribed(father(x))) is_subsribed(x)℄ :

The need for harateristi prediates is far more obvious when the domain

D mixes elements of di�erent types, for example people and telephones (f. the

omment on page 81).

The interpretation by total funtions an be attaked as being arti�ial

and redundant. In our example, it assigns a value a priori to father(tel3)

or to rents(tel1,tel2), even though this value has no in�uene. But, blindly

replaing total funtions by partial funtions brings its own ompliations. In

partiular, this an lead to the introdution of a third truth value?, pronouned

unde�ned. In fat, there are many three-valued logis, whih have di�erent

properties and are less straightforward than ordinary logi. The spei�ation

languages VDM, Raise-SL and Abel use di�erent three-valued logis. Typially

it is less easy to reason with them; for example, in Abel, impliation is not

re�exive; in VDM, the dedution theorem (see � 9.1) does not hold; in Raise,

onjuntion and disjuntion are not ommutative.

There are, nonetheless, some interesting ompromises, onsisting of �xing

a priori the domains of de�nition of funtions used. The most simple (multi-

sorted logi) onsists of deomposing the domain of interpretationD into several

disjoint domains D

1

; : : : D

i

; : : : Every n-ary funtion symbol is interpreted by a

total funtion D

i

1

� : : :�D

i

n

! D

i

0

. The key is that this partitioning of D an

be expressed in the syntax and then heked statially: for eah symbol used,

we delare a signature using sorts (i.e., domain symbols), father : person !

person, for example.

The interpretation naturally assigns one D

i

to eah sort. Interpretations

obtained in this way are heterogeneous algebras or �-algebras, and they play

a fundamental role in algebrai spei�ation languages.

M

In passing, we desribe a onept used in Chapter 11: given a vo-

abulary � of funtion symbols f

1

, f

2

: : : f

n

, the initial algebra over

� is the set of losed terms formed with f

1

, f

2

: : : f

n

. To be more preise, the

onept of a morphism introdued in � 3.4.5 must be used: an algebra is initial

as long as there exists a unique morphism between it and every other algebra

over �. Every algebra isomorphi to the algebra of losed terms is initial. Let

us take, for example, Peano arithmeti omitting addition, multipliation, om-

parison and indution: all that remains is the set of terms generated by 0 and

S, whih signi�es on the one hand that every natural number is represented by

a term of the form S(: : : (0) : : :), and on the other hand that two terms having

Classial Logi 89

a di�erent number of appliations of S represent di�erent integers. But if we

add an axiom suh as S(S(S(0))) = 0, with the intention of de�ning modulo 3

arithmeti, the algebra we get is no longer initial in the lass of algebras over �.

Frequently, the domains of de�nition of ertain operations are distint, but

not disjoint. For example, addition is de�ned over N�N , while division is only

de�ned over (N � f0g)� N ; the push operation is de�ned for all staks, while

the pop operation is only de�ned for non-empty staks. In these two examples,

we would like to express that for two domains D

i

and D

j

, we have D

i

� D

j

.

For that, ertain spei�ation languages suh as OBJ [GM00, JKKM92℄ permit

the delaration of an order between sorts. The underlying theory beomes more

omplex, and stati veri�ation may beome impossible: determining that an

expression has a non-null value is an undeidable problem in the general ase.

This leads to a restrition in the use of logial onnetors.

On the other hand, these extensions do not inrease the expressive power

of the ordinary (mono-sorted) �rst-order logi, in whih all the restritions

mentioned are expressible by well-hosen harateristi prediates. In fat, dif-

ferent logial onnetors o�er a great rihness of expression whih an be used

pro�tably in de�ning a varied range of harateristi prediates.

In summary, amongst the formalisms mentioned here, �rst-order logi of-

fers the greatest expressive power, while multi- or order-sorted languages per-

mit more stati heking and ease of formulation. In order to ahieve more

expressive power, we must go beyond the �rst-order.

5.5 Seond-order and Higher-order Logis

While expressing spei�ations and reasoning about their properties, we may

end up introduing mathematial funtions whose logial omplexity is arbi-

trarily great. This is partiularly the ase if we wish to express general priniples

in a uniform manner.

First-order quanti�ation holds only over variables from the domain of on-

stants D. This does not allow for the expression of properties or of funtions

ranging over other funtions or properties. Let us onsider, for example, the

omposition of two funtions. As we all know, this is de�ned as (g Æ f)(x) =

g(f(x)). This seems simple, yet the following assertions are not expressible in

�rst-order logi.

8f 8g 8x (g Æ f)(x) = g(f(x)) ;

8f f Æ Id = f ;

8f 8g 8h h Æ (g Æ f) = (h Æ g) Æ f ;

Here are other examples:

� if a property holds for 0 and if it is true for an integer then it is true for its

suessor, then it is true for all integers:

8P [P (0) ^ 8nP (n)) P (n+ 1)℄)8xP (x) :

90 Understanding Formal Methods

Similar indutive priniples an be written for a large range of data types in

omputer siene.

� An injetive funtion has a left inverse:

8f (8x8y x 6= y) f(x) 6= f(y)))9g8x g(f(x)) = x :

This property an be useful in re�ning to doubly-linked data strutures.

7

� Given P , Q, : : :, properties about individuals x, y, : : :, we de�ne P&Q as

the property of x whih is true if and only if x satis�es properties P and Q:

(P&Q)(x)

def

=

P (x) ^Q(x) :

This onept of a onjuntion is used in temporal logi, see � 8.5.1.

� If P is a hereditary property of x and if y is a desendant of x, then y also

has property P :

8P hereditary(P)) [8x8yP (x) ^ desendant(x; y)) P (y)℄ :

We note that Æ takes two funtions as its arguments and returns a fun-

tion, that & takes two prediates as its arguments and returns a prediate,

and that hereditary is a prediate over prediates. This feature is extremely

interesting as it permits the expression of general reusable priniples within

very varied ontexts. But here we must onsider Russell's paradox (see page

39, for a disussion of its seond version) if we begin to write formulas suh

as hereditary(hereditary). To avoid this, Russell proposed a distintion be-

tween two kinds of prediates: �rst-order prediates over �rst-order terms, and

seond-order prediates over �rst-order prediates (suh as hereditary). Sim-

ilarly, Æ is a seond-order funtion.

Seond-order logi introdues, in addition to �rst-order prediates, fun-

tions and variables, seond-order prediates, funtions and variables whih may

be universally or existentially quanti�ed. These quanti�ers are sometimes writ-

ten 8

2

and 9

2

to distinguish them from �rst-order quanti�ers. Seond-order

variables are interpreted by funtions from D

n

to D or from D

n

to B . Seond-

order prediates and funtions may take �rst-order prediates and funtions as

arguments.

Repeating this proess, we derive third, fourth and higher-order logis. In

higher-order logi, we have variables, funtions, prediates, and quanti�ers of

order n, for every integer n. We an re�ne this onept of an �order� and get

type systems, as shown in Chapter 11.

7

For example, in a hotel reservation system where every reservation r is for a room

f(r), one ould speify that two di�erent reservations are for two di�erent rooms. This

fat an be used at the spei�ation level to talk about the reservation for a given

room p, knowing that there is at most one. During a re�nement, this reservation might

be named g(p), representing f by a pointer to a room and g by an inverse pointer.

Classial Logi 91

M

If Prop denotes the type of propositions, the type of prediates over,

say, the natural numbers is nat! Prop, while the type of prediates

over suh prediates is (nat!Prop)!Prop. Therefore, it is no longer possible

to express Russell's paradox within a typed environment. Ensuring the total

absene of paradoxes in a pratial type system is not trivial, but has been

done for the most ommon ones.

In the semantis of programming languages, we often use higher-order fun-

tions or properties. This is typially the ase in denotational semantis where

the meaning S

P

of a program, or a program element, P , is a funtion from the

initial state to the �nal state. To give the semantis of language onstrutors

whih form omplex elements E, starting with simple elements E

1

, E

2

, . . . , we

are naturally inlined to onsider funtions giving S

E

from S

E

1

, S

E

2

: : : One

an also give the semantis of a program not as a transformation of states, but

as a transformation of prediates expressed over the state. This approah, ad-

voated by Dijkstra, for the spei�ation and onstrution of orret programs,

is also the basis of the B method.

These logis are onsiderably more expressive than �rst-order logi, but

ertain properties of deidability, whih are useful in automati proof, are lost.

Interative proof-assistant software has been developed using these logis, see

Chapter 12.

M

We mention here that seond-order monadi logi (in whih it is pos-

sible to quantify over unary prediates) possesses interesting proper-

ties of deidability relevant to omputing siene, espeially automata theory.

In this logi, we distinguish individual variables x, y, : : : and unary prediate

variables X , Y , : : : whih allows us to write formulas suh as X(x).

Equivalently, we an onsider that seond-order monadi logi is �rst-

order logi augmented with set variables X , Y , . . . ; instead of X(x) we then

write x 2 X . These variables are interpreted by parts of D.

Weak seond-order monadi logi is de�ned with the same lan-

guage, but the variables X , Y , : : : are interpreted by �nite parts of D. As

a pratial appliation, let us mention MONA [KM01℄, an environment using

weak seond-order monadi logi as its spei�ation language.

5.6 Model Theory

Model theory [CK90, Bar77℄ has seen substantial mathematial developments,

but seems to have little utility in the area of formal spei�ation. On the other

hand, the underlying ideas are often used, and are realled here. We are on-

erned with ompleting the voabulary introdued above with the idea of inter-

pretation. We onlude with an illustration of two theorems of model theory.

92 Understanding Formal Methods

5.6.1 De�nitions

We are given a �rst-order language L (most of the following de�nitions apply

to languages of any order).

A given interpretationM determines if an expression without free variables

P of L is true or false. We say that M is a model of P , or that M satis�es P

if P has the value true in M. We write this j=

M

P .

In the following, we use the expression losed formula to refer to a formula

without free variables. We note that a proposition is a losed formula without

quanti�ers. A theory is a olletion of losed formulas.

Let T be a theory over L. An interpretation M is a model of T , written

j=

M

T , if M is a model of every formula of T . A theory T is said to be

satis�able if it possesses a model, and unsatis�able otherwise.

A key idea in logi is the relation of onsequene. The fat that a losed

formula is a onsequene of other losed formulas does not depend on the

interpretation.

Given a losed formula P , and a olletion of losed formulas �, we say that

P is a logial onsequene or a semanti onsequene of � if every model of

� is also a model of P . We write this � j= P .

V

The relations j= and j=

M

are easily distinguished: j= expresses a

relationship between formulas, while j=

M

expresses a relationship

between a (mathematial) model and a formula.

Here are several properties of j=:

� if � j= P , a fortiori �; Q j= P ;

� if � j= P , and if P j= Q, then � j= Q ;

� � j= expresses that � is unsatis�able; if � j= P , then �;:P j=.

The onsequenes of � form a set of formulas alled the theory generated

by �. The elements of � are alled axioms of this theory. For example, the

theory generated by the axioms (5.1), (5.2) and (5.4) omprises the formula

is_subsribed(Claudio,tel27).

A statement suh as (5.4) is not true in all interpretations; however, it is

the ase of statements suh as:

(P ^Q)) P ;

(9x8yP (x; y))) (8y9xP (x; y)) :

A losed formula T whih is true in every interpretation is said to be valid,

written j= T ; the intuitive meaning is that T is a semanti onsequene without

assumption. A valid proposition is alled a tautology. We note that a valid

formula is a semanti onsequene of any theory; it is therefore not useful to

introdue valid formulas amongst axioms of a theory.

Classial Logi 93

5.6.2 Some Results of Model Theory;

Limitations of First-Order Logi

M

The ativity of modeling, whether in mathematis or omputer si-

ene, often neessitates the searh for a system of axioms hara-

terizing the model under onsideration. Oasionally, suh a system does not

neessarily exist within the given logi, typially �rst-order logi. Model theory

provides tools whih enable the detetion of this sort of situation.

To illustrate this proposition, here is a simple example drawn from

ommutative group theory. We onsider �rst the axioms, over the equational

�rst-order language formed from the onstant 0

g

and the binary funtion +,

written in in�x form:

8x8y x+ y = y + x ;

8x8y8z (x + y) + z = x+ (y + z) ;

8x x+ 0

g

= x ;

8x9y x+ y = 0

g

:

The following are two properties of ommutative groups, based on the onept

of a divisor, that we would like to haraterize axiomatially: we say that x is

a divisor of y of order n if x+ :::+ x

| {z }

n times

= y.

A ommutative group is of �nite order if every element is a divisor of 0. A

ommutative group is divisible if every element possesses a divisor of order n,

for all n. These onepts an be axiomatized in seond-order logi, quantifying

over the integer n. We an take

8x 9n nat(n) ^ (times(n; x) = 0

g

;

8n nat(n))8x9y times(n; x) = y ;

respetively for the axioms. The funtion times an be axiomatized by:

8x times(0; x) = 0

g

;

8n nat(n))8x times(S(n); x) = x+ times(n; x) :

The problem is that the prediate nat is not �rst-order: the �rst-order axioms

nat(0) and 8n nat(n))nat(S(n)), express that 0; S(0); S(S(0)), et. are natural

numbers, but it must be added that these are the only ones. We have the

following negative results:

� it is impossible to haraterize the lass of divisible groups by means

of a �nite number of �rst-order axioms;

� it is impossible to haraterize the lass of �nite order groups by

means of a set (even an in�nite set) of �rst-order axioms.

Moreover, we annot axiomatize the real numbers in �rst-order logi.

The proof of these results (see [Bar77, Ch. 1℄) involves the following two theo-

rems, whih no longer hold true at seond or higher orders.

Theorem 5.1 (Löwenheim)

Let T be a ountable set of axioms; if there is a model of T , then there is a

model of T whose set of elements is ountable.

94 Understanding Formal Methods

Theorem 5.2 (ompaity)

A �rst-order theory T admits a model if and only if every �nite part of T

admits a model.

M

We an adapt this reasoning for various data strutures of omputer

siene and obtain similar results of impossibility, expressing that

these strutures annot be haraterized by a �nite number of �rst-order ax-

ioms. A simple example mentioned in [Jon90℄ is Veloso's stak. It has been

known for a long time that normal �rst-order logi is not suitable for systems

having only �nite models [AU79℄. Logis with the onept of a �xed point were

oneived to remedy this.

5.7 Notes and Suggestions for Further Reading

Propositional logi, �rst-order logi, and other issues disussed in this hapter

are introdued in a number of texts. Partiularly useful are the two volumes

by Cori and Lasar [CL00, CL01℄, whih are entered around the onept of a

model. For a more detailed presentation of multi-sorted logi, see [Lal93℄ and

[Gal86℄. [GG90℄ address the issue from a philosophial point of view.

Referene works on model theory inlude [CK90℄. A good introdution to

this topi an also be found in the �rst two hapters of [Bar77℄.

6. Set-theoreti Spei�ations

This hapter is devoted to formal methods based on set theory. In set theory,

a system is modeled using sets whih are either onsidered to be primitive sets

(for instane, sets of individuals, of books, of keyboards, et.) or onstruted

by means of ombinations of primitive subsets using set-theoreti operations.

Spei� languages an be distinguished from eah other aording to the way

set-theoreti onepts are used, their underlying logi or how they assist in the

prodution of programs from spei�ations. In this hapter we will introdue

some well-known formal notations representative of the approah: Z, whih

appeared in the 1970s, VDM, whih was born in the 1960s, and B, whih was

developed in the 1990s.

6.1 The Z Notation

Z an be roughly desribed as a syntati envelope built on top of usual las-

sial set-theoreti notations. The onept of a set is used as a universal means

of expression. A �rst, and distint, advantage of this approah is uniformity:

the state spae of a system is modeled as a set, types are sets, even operations

are sets. Indeed, the latter are modeled as relations, that is, subsets of the

Cartesian produt of the set of states. Z provides symbols for various kinds of

relations (funtions, injetions, partial injetions, et.) and a number of oper-

ators allowing one to onstrut relations from previously known relations.

6.1.1 Shemas

In Z, the state spae and the operations of a system are delared by means of

tables alled shema. A shema is made of two parts. In the �rst part, we delare

�elds muh as we would delare variables in a language like Pasal. Eah �eld

has a type whih is onstruted from built-in sets (e.g. the set of integers) and

the usual set-theoreti operators (union, Cartesian produt, et.). The seond

part of the shema states onstraints on the possible values of the �elds by

means of logial assertions.

A shema is surrounded with a frame. Its name is written in the �rst line of

that frame. A horizontal line separates the delaration part and the prediate

part. When several prediates are present, they are impliitly onneted by a

onjuntion.

96 Understanding Formal Methods

Example_shema

x; y : Z

x � 0

y � 5

x+ y = 10

This simply denotes the de�nition of a set by omprehension, the usual math-

ematial notation is:

fhx; yi 2 Z�Z j x � 0 ^ y � 5 ^ x+ y = 10g ;

However, the shema notation beomes more interesting when the number of

�elds and the volume of assertions inrease.

Z provides mehanisms for shema omposition that allow one to struture

a spei�ation. For instane, the previous shema an be obtained through the

omposition of the two next shema.

�rst_piee

x : Z

x � 0

seond_piee

y : Z

y � 5

More preisely, we get the �rst shema by adding a onstraint on both x and y.

Shema_example

�rst_piee

seond_piee

x+ y = 10

This shema an also be regarded as a subset of:

fx 2 Z j x � 0g � fy 2Z j y � 5g ;

that is, a relation between �rst_piee and seond_piee. We an of ourse

introdue a shema that expresses the last onstraint separately:

onstraint

x; y : Z

x+ y = 10

The onjuntion of our three shema an simply be written:

Shema_example

def

=

�rst_piee ^ seond_piee ^ onstraint :

Set-theoreti Spei�ations 97

Other logial operators are allowed as well. Thus

other_shema

def

=

(�rst_piee _ seond_piee) ^ onstraint

represents:

other_shema

x; y : Z

x � 0 _ y � 5

x+ y = 10

Those ombinations onstitute the shema alulus. If S

1

and S

2

are two

shema and ? is a logial operator (_, ^, et.) the expression S

1

? S

2

rep-

resents the shema whose �rst part is the juxtaposition of delarations of S

1

and S

2

, and whose seond part is P

1

? P

2

where P

1

(respetively P

2

) is the

prediate present in the seond part of S

1

(respetively S

2

). For the �rst lause

to make sense, we must have no lash between the two delarations: ommon

identi�ers must have the same type.

6.1.2 Operations

The shema introdued up to now allow one to speify the state of a system.

In order to desribe an operation, two versions of the state are related: the

state just before the operation and the state just after the operation. Z uses

the following onvention: if the �rst state is de�ned by variables x, y, z . . . , the

seond is de�ned by variables x

0

, y

0

, z

0

. . .

state

x : Z

x > 4

state

0

x

0

: Z

x

0

> 4

(Atually we don't need to expliitly write state

0

.) In order to relate two su-

essive states, we naturally make use of the shema omposition notation in-

trodued above:

an_operation

state

state

0

P (x; x

0

)

We see that the prediate we have in the seond part of a state shema repre-

sents the invariant of the system we are desribing: it will be impliitly respeted

by all operations whih at upon the system.

98 Understanding Formal Methods

We an still use the shema alulus: here a omplex operation an be

deomposed into several simpler ases (using a disjuntion of shema); or, it an

result from the onjuntion of several onstraints on before-and-after relations

on the state of the system.

6.1.3 Example

Let us try to formalize the searh for an element in a table. We need a prede�ned

set whih ontains all elements that are, or ould be, present in the table. We

all this set U . Formally, we delare it using square brakets:

[U ℄ :

The urrent state of the table is a subset of U , we represent it by a variable T

whih is a member of P(U).

Let us now onsider the prediate P . In Z, a natural thing to do is to onsider

Ptrue, the set of elements verifying P , with Ptrue 2 P(U). This prediate is

not neessarily de�ned everywhere, hene we introdue the set Pdef , whih

ontains Ptrue and represents the domain where P is de�ned. In other words,

we agree that

� P (x) is true if x 2 Ptrue,

� P (x) is false if x 2 Pdef and x 62 Ptrue,

� P (x) is unde�ned if x 62 Pdef .

The system state is represented by the following shema.

Table

Ptrue;Pdef : P(U)

T : P(U)

Ptrue � Pdef

T � Pdef

However, we have to ensure that Ptrue and Pdef are kept onstant. Then we

onsider only omposed operations built up from the following.

Allowed_op

Table

Table

0

Ptrue

0

= Ptrue

Pdef

0

= Pdef

The operation we aim at returns an element of T verifying P if there is one. In

order to take failure into aount, we use a variable b as indiated on page 20.

Its domain is ftrue; falseg, and it is delared as follows:

bool ::= true j false :

Set-theoreti Spei�ations 99

[U ℄

bool ::= true j false

Ptrue ;Pdef : P(U)

Ptrue � Pdef

Table

T : P(U)

T � Pdef

Searh

�Table

x! : U

b! : bool

b! = true) x! 2 T ^ x! 2 Ptrue

b! = false) 8x 2 T � x 62 Ptrue

Figure 6.1: Z spei�ation of a table searh

The spei�ation of the searh operation indiates the expeted values of x and

b, and it states that T does not hange.

Searh

Allowed_op

x : U

b : bool

T

0

= T

b = true) x 2 T ^ x 2 Ptrue

b = false) (8x 2 T)x 62 Ptrue

Remarks. In some ases, the atual notation in Z slightly di�ers from set

theory. Here P(U) and (8x 2 A)P (x) should be written P(U) and 8x 2 A �

P (x). In Z, the symbol � represents strit inlusion, whereas we should use �.

Moreover, lexiographi rules of Z allow identi�ers to end with a question mark

or an exlamation mark. In Z, it is understood that they represent input and

output arguments of an operation, respetively. For onsisteny then, here we

should replae x and b with x! and b!.

It is also possible, in Z, to de�ne onstants with axioms. It is then better

to introdue Ptrue and Pdef in this way and to remove Allowed_op. Finally,

the abbreviation �Table an be used for operations that do not modify the

table. This is equivalent to delaring Table, Table

0

and to stating that nothing

hanges (that is, T

0

= T). A omplete spei�ation of the searh for an element

in a table using this notation is given in Figure 6.1.

6.1.4 Relations and Funtions

M

In Z, as in set theory, the onept of relation is more primitive than

the onept of a funtion. Let us see what happens with an assertion

100 Understanding Formal Methods

as simple as f(x) = y. Reall that, in �rst-order logi, f would be interpreted

as a total funtion, thus the expression f(x) would make sense. In Z, one often

manipulates partial funtions or even relations instead of total funtions.

In fat the Z type system leads one to onsider f from A to B as

an element of P(A � B), i.e. a relation from A to B. The notation f(x) is

then questionable and a number of authors prefer to avoid it. For instane, the

assertion f(x) = y may be represented by another one whih states that x is in

the inverse image by f of the singleton fyg � the funtion from P(B) to P(A)

that maps any subset Y of B to the set of elements a of A suh that f(a) 2 Y ,

denoted by f

�1

[_℄, is always total funtion:

x 2 f

�1

[fyg℄ :

The prie to pay is that notations beome heavy in many situations

where it is straightforward to use funtions. A spei�ation style using rela-

tional ombinators (operators for onstruting omplex relations from simpler

ones) helps to avoid this problem. But the notation beomes more di�ult to

understand.

6.1.5 Typing

M

Z semantis are based on the Zermelo�Fraenkel system, without the

axiom of hoie (whih is not used here) and without the replaement

shema (f. � 7.2) [Spi88, CGR93a℄. Within ZF, the latter restrition ensures

the existene of a lass of ompartmentalized sets, thus providing a notion of

type.

First, we have built-in sets like Z (positive, null or negative integers)

and other sets whih are appliation-spei�. We denote these sets by B

1

, B

2

, ...

in what follows, and we onsider that they are disjoint. Z inludes appropriate

restritions on the use of [that prevent us from forming the union of B

i

and

B

j

with i 6= j or onstruting a set made of elements taken in di�erent built-in

sets. Then the type of a simple element x an be taken as the set B

i

of whih

it is a member. The type of x is also the maximal set S suh that x 2 S.

The property of ompartmentalization is preserved when we intro-

due sets of subsets and Cartesian produts of previously formed maximal sets.

Then B

i

an be regarded as base types from whih we an form omposed types

P(B

i

), P

i

� P

j

, P(P

i

� P

j

), et. The type of a ompound element is again the

maximal set of whih it is a member. Thus it is not too di�ult to hek that

a Z spei�ation is well typed. Critiisms of this type system will be addressed

in � 10.2.10.

M

In � 2.3.4, we showed that it is important to be able to onstrut sum

types. This onept is available in Z and is referred to as a free type.

We have already seen a simple example of free type: bool ::= true j false. This

statement amounts to the delaration of a set (bool), two members in this set

Set-theoreti Spei�ations 101

(true and false), and assertions that the latter are distint elements and are the

sole members of bool. Let us onsider a more signi�ant example: binary trees.

This example is also more omplex beause it is a reursive data struture.

We delare it in Z as follows: tree ::= leafhhNii j binhhtree � treeii. Here, leaf

and bin are injetions (respetively from N to tree and from tree� tree to tree)

that have disjoint ranges and, taken together, over tree. Simple onstrutors,

like true and false, an be seen as injetions from a singleton set. The essential

ideas ome from algebra and type theory (see Chapters 10 and 12). The point

is to guarantee that the axioms indued by a free type are onsistent (they

don't entail the absurd). To this e�et, onstrutors (i.e. bin, leaf, true and

false in our examples) must respet a number of rules. Roughly speaking, as

onstrutors are injetions, their domain annot have a larger ardinality than

their range, that is, the free type we want to de�ne; for instane their domain

annot be the powerset of the free type. In the Z framework, there is a further

tehnial ompliation beause onstrutors are basially relations rather than

funtions.

6.1.6 Re�nements

Re�ning a spei�ation onsists of systematially transforming abstrat on-

epts (sets, relations, non-deterministi onstruts, et.) into features available

in programming languages: arrays, hained data strutures, usual ontrol stru-

tures, funtions, et.

Re�nement is more di�ult in Z than in other formal methods beause there

is no onvenient notation for usual programming onstruts suh as loops and

reursive funtions. These onepts are not very easy to handle in Z. However,

it is possible to onsider data re�nement, that is, to relate an abstrat data

model to a onrete one loser to programming language data strutures. For

example, in order to represent a set of elements of U by an array (like T in

our table example), we an introdue a funtion t from I to U , where I is an

interval of integers.

6.1.7 Usage

Z is above all a notation for writing spei�ation douments. Sine its very be-

ginning, its development was oriented towards inluding riher mathematial

notations, e.g. relation ombinators. It was not designed with the intention of

being supported by software tools. One may quite reasonably guess that this

would, in any ase, have been beyond the apaities of tehnologies available

in the 1970s. Support tools appeared in the 1990s, mainly for editing and type

heking. A reent proof assistant for Z is Z/EVES [Saa97℄. On the other hand,

many introdutory and more avaned books are available (see the bibliographi

notes at the end of this hapter) and there is an ative user ommunity, espe-

ially in Great Britain where a number of industrial projets were developed

102 Understanding Formal Methods

or re-engineered with Z. Some of these are reported in [CGR93b℄, [HB95℄ and

[HB99℄.

Z is mainly used for speifying data and transformations of data. In prin-

iple, we an expet to go further, thanks to general set-theoreti onepts

inluded in Z. For instane, an we study interations between software om-

ponents running in parallel on di�erent mahines? Trajetories of suh om-

ponents an be formalized in Z. However, we are still a long way from the

mathematis needed for speialized formalisms suh as labeled transitions or

proess algebra (see Chapter 8). Moreover, the behavior of suh systems is very

omplex and annot be fully understood without automated support tools.

6.2 VDM

6.2.1 Origins

VDM (Vienna Development Method) was initially a language desription

method inspired by denotational semantis. Brie�y, reall that denotational

semantis interprets programs by mathematial funtions (f. � 2.6).

M

We know that a program may not terminate for ertain input data.

In the general ase, a program is then modeled as a partial funtion

� see the onept of partial reursive funtion in � 3.3.4 and � 3.7.3. On the

other hand, total funtions are muh easier to handle in mathematis. In order

to reover total funtions, basi sets of values (integers, Booleans and so on)

are augmented by an additional value denoted by ?, whih represents the

unde�ned.

? an be seen as an approximation of all other values in some sense.

The rough idea is that ? represents a value we know nothing about. To for-

malize the notion of approximation, we onsider a relation < suh that ? < v

for all �ordinary� v and suh that two �ordinary� values are not related by <.

At the moment we have only two levels of approximation: a very bad one (?)

and a perfet one (the value itself). But for pairs we have more possibilities:

either we know nothing (h?;?i, whih an be onsidered equivalent to ?), or

we know one of the two omponents (hv

1

;?i or h?; v

2

i), or we know both of

them (hv

1

; v

2

i). We have ? < hv

1

;?i < hv

1

; v

2

i and ? < h?; v

2

i < hv

1

; v

2

i but

hv

1

;?i and h?; v

2

i are inomparable. In the ase of funtions de�ned over an

in�nite set suh as N, the struture of approximations beomes riher and we

need onepts of limits oming from topology.

Spaes endowed with a relation < satisfying adequate properties are

sometimes alled domains. Introdued by Dana Sott in 1969 they play a en-

tral role in denotational semantis and their theory has been studied in depth.

A pedagogial referene is the book of Stoy [Sto77℄. In this book we never use

the terminology domain in the tehnial meaning mentioned above, but in the

ordinary sense of set.

Set-theoreti Spei�ations 103

The developers of VDM hose to use the usual set-theoreti onept of fun-

tion rather than the more omplex onept introdued in Sott domains. The

notation used in the Vienna method was �rst alled Meta-IV, then VDM-SL

(VDM Spei�ation Language). Nowadays, we often use VDM for both the

method and the language, and we follow this onvention in what follows.

A onsequene of the denotational semantis bakground of VDM is that the

onept of (partial) funtion is more primitive here than the onept of relation.

If we need a relation fromA to B, we an represent it by a funtion fromA�B to

bool. Z operators for manipulating relations (sequential omposition, domain

or range restrition, et.) are still present in VDM but apply to funtions.

6.2.2 Typing

Compound objets of VDM are similar to Z shema. Typing is onsidered from

a di�erent perspetive, however: in VDM, a piee of logial information delared

as the invariant of a ompound objet is onsidered as a part of its type, while

in Z the type would have been the largest set ontaining the objet. It is

thus possible, in VDM, to onstrut sets having elements of di�erent kinds as

members, but type heking is no more deidable: it yields proof obligations,

that is, assertions that an be automatially stated but that in general an be

disharged only with human support.

6.2.3 Operations

Operations desribe hanges in the objet state. They an be spei�ed in an

impliit or an expliit manner. The impliit manner onsists of providing a

preondition

1

and a postondition on objets manipulated by the operation.

This is similar to operation desriptions in Z, up to a notational variation: in

Z the new state gets a deoration (�

0

�) while in VDM it is the previous state

(�

(

�). For example, inrementing x an be spei�ed by x =

(

x

+1. The expliit

manner for de�ning operations is loser to re�nement than to spei�ation. It

onsists in desribing an algorithm by means of usual onstrutions (sequene,

seletion, loop, et.). In that ase, however, the omputation steps should be

annotated by logial assertions.

6.2.4 Funtions

In addition to operations, it is possible to de�ne funtions in VDM. In ontrast

with VDM operations and with funtions we �nd in imperative programming

languages, VDM funtions do not involve any state hange. In fat, we are

enouraged in VDM to generously use funtion de�nitions in spei�ations. As

for operations, funtions an be de�ned in an impliit manner, by means of a

1

Note that preonditions have a di�erent status in Z and VDM: in VDM they are

given in the VDM spei�ation, whereas they are alulated in Z.

104 Understanding Formal Methods

preondition on the arguments, and of a postondition relating the arguments

with the result, or in an expliit (algorithmi) manner. Reursive de�nitions of

funtions are allowed.

Allowing reursive or even algorithmi de�nitions of funtions at the spei-

�ation level may seem surprising at �rst sight. However, a number of funtions

an hardly be desribed otherwise: think of the fatorial funtion or alulating

inome tax.

6.2.5 Three-valued Logi

In VDM, funtions are de�ned and then used in the spei�ation of operations

or of other funtions, inluding impliit de�nitions. In other words, a logial

assertion (an invariant, a preondition or a postondition) an ontain our-

renes of funtions whih are de�ned in another part of the spei�ation. This

provides interesting opportunities for struturing VDM spei�ations. At the

same time, this has signi�ant onsequenes for the underlying logial system.

Indeed, funtions de�ned reursively or in an algorithmi way are often partial

funtions. Then the usual framework of two-valued logi turns out to be too

narrow.

Let us onsider for example an assertion suh as:

2

8a; b b > 0) div(a; b)�b � a < div(a; b)�b+ b ; (6.1)

telling us that div performs an Eulidian division. It is quite easy to �nd an

expliit de�nition of div that does not terminate when b is null. In this ase

div(a; b) has no value, hene it beomes impossible to give the value true or

false to the logial expression a � div(a; b)� b < a+ b. However, we feel that

(6.1) should be given the value true, sine the value of b > 0 is preisely false in

the litigious ase: we know that the value of f) P is true whihever the value

true or false of P .

In order to deal with suh situations, VDM makes use of a three-valued

logi. Besides false and true, we have ? whih denotes the unde�ned value.

We reognize here ideas oming from denotational semantis, whih are at the

roots of VDM. Truth tables are adequately extended, for example the value of

f)? is true. However, several three-valued logis are possible. Seleting one

of them was a design deision of VDM, and unusual dedution rules ould not

be avoided (f. � 5.4).

6.2.6 Usage

A number of VDM appliations an be found in language de�nitions. Despite

its name, VDM is more a notation than a method. It is supported by a num-

ber of tools. An experimental proof assistant is desribed in [JJLM91℄. Later

on, protyping and simulation tools were developed. In the family of VDM, we

2

Of ourse, x � y < z is an abbreviation for x � y ^ y < z.

Set-theoreti Spei�ations 105

an ite Raise, whih ombines the VDM desription of data, operations and

funtions, with CSP, a proess algebra for desribing message exhanges and

synhronization between parallel proesses.

6.3 The B Method

The B method an be regarded, to some extent, as a desendant of Z: it was

designed by one of the founders of Z, J-R. Abrial, and it maintains the set-

theoreti notations used in Z. One of the big di�erenes is that B provides

a development proess overing spei�ation, re�nement, and implementation

steps. The way data and operations are presented and strutured is also quite

di�erent: it is lose to imperative programming languages suh as Pasal. More

preisely, we have the language of guarded ommands of Dijkstra (f. � 4.3.3)

enrihed with data strutures expressed in the set-theoreti notations of Z,

providing a uniform framework for spei�ation and development. The main

features of B are:

� a spei�ation language (alled abstrat mahines);

� a re�nement and implementation tehnique;

� proof obligations assoiated with eah development step;

� struturing mehanisms for deomposing abstrat mahines;

� tools for supporting and ontrolling the di�erent tasks.

The B method has been used in industry for several years, notably for

railway equipment and signalling [SDM92, BBFM99℄.

6.3.1 Example

In Figure 6.2 we show a B spei�ation of a variation on the problem of searh-

ing for an element in a table. As in � 2.4.4.1 (see the third spei�ation on

page 28) we onsider here the ase of the searh for an integer in an interval.

The role of U in the previous Z spei�ation is played here by N, denoted

3

by

NAT. The role of Pdef is played by the interval [minD::maxD [and the role of

T by [min::max [. The prediate P here is alled

4

Pr and the operation Searh

returns two results, bb and xx. Note that in Z, P was represented by the set

Ptrue whereas here we take a prediate, seen as a mapping from [min::max [to

B (this set is denoted by BOOL in B).

Intuitively, we an imagine that the work spae of this mahine is an array of

Booleans (Pr) having min and max as bounds, whih are themselves between

minD and maxD. The latter are �xed one and for all, while min and max

3

In B, NAT atually represents a �nite subset of N that an be written [min..max℄

(with min < 0 < max), where min and max are �xed parameters depending on the

hardware arhiteture to be used at the implementation level.

4

Lexiographi detail: identi�ers must begin with at least two letters.

106 Understanding Formal Methods

mahine table(minD;maxD)

onstraints

minD 2 NAT ^ maxD 2 NAT ^

0 < minD ^ minD � maxD

variables

min, max, Pr, bb, xx

invariant

min 2 NAT ^ max 2 NAT ^

minD � min ^ min � max ^ max � maxD ^

Pr 2 min::max � 1 ! BOOL ^

bb 2 BOOL ^ xx 2 NAT

initialization /* without interest here */

operations

Searh

def

=

if 9tt � tt 2min::max� 1 ^ Pr(tt) = true

then

bb := true jj

any tt

where tt 2 min::max� 1 ^ Pr(tt) = true

then xx := tt

end

else

bb := false jj

any tt where tt 2NAT then xx := tt end

end

end

Figure 6.2: Table searh spei�ation in B

ould vary during alloation or disposal operations beyond the sope of this

hapter.

Here we hose a fairly low abstration level for the spei�ation of data

strutures. But nothing is deided about the searh algorithm itself.

6.3.2 Abstrat Mahines

In B, a spei�ation is strutured into units alled abstrat mahines. They

enapsulate the state of a subsystem as well as operations modifying it or

returning a view of it. The idea of enapsulating data and related operations

together is well known in omputer siene, it has most notably been formalized

by abstrat data types. The main omponents of a B abstrat mahine are:

� parameters delaration, onstants delaration (none in our example) and

above all variables delaration � they onstitute the internal state of the

mahine;

� the statement of an invariant, a logial assertion relating the variables, pa-

rameters and onstants just delared; their type is inluded in the invariant

(the onept of type in B is the same as in Z); the part of the invariant

Set-theoreti Spei�ations 107

whih relates only parameters and onstants is delared separately (in the

onstraints lause) and there is also a spei� lause for onstants only;

� the de�nition of the initial state;

� operations, expressed with generalized substitutions, whih are a generaliza-

tion of guarded ommands.

Proof obligations are automatially generated in order to ensure that the ini-

tial state as well as operations respet the invariant. This is in ontrast with

Z where, as a simple onsequene of the shema alulus, the invariant is nat-

urally inluded in the postondition of operations. In some sense B seems less

delarative.

5

However, the new state returned by an operation an be spei�ed

in a fairly abstrat way using logial and set-theoreti notations. Moreover, we

an say that B ahieves a separation of onerns: we have the opportunity to

establish invariant preservation in abstrat terms, before going into low level

details. It is indeed possible in B to adopt a spei�ation style where the in-

variant is automatially preserved. But this amounts to delaying the work until

later development steps: re�nement proof obligations will be more omplex. It

is far better to work on proof obligations as early as possible. They are an

opportunity to hek the onsisteny of the spei�ation and often to orret

it, hene the global orretness proof is divided into smaller units.

We see that design deisions for B proof obligations take the whole devel-

opment yle (from spei�ation to implementation) into aount. Generalized

substitutions have been designed with the same onern in mind.

6.3.3 Simple Substitutions and Generalized Substitutions

A simple substitution is simply an assignment x := E. Indeed we know from

� 4.3.3 that the weakest preondition for this transformation to establish the

postondition Q is [x := E℄Q, that is, the formula Q where E is substituted

for all ourrenes

6

of x.

Generalized substitutions are ombinations of simple substitutions. Among

these ombinations we have the sequene and the loop, in the language of

guarded ommands; however, these onstruts are allowed only in re�nement

stages. At the level of spei�ation the following ombinators are available:

� parallel omposition, orresponding to simultaneous substitutions; for exam-

ple x := E jj y := F orresponds to x; y := E;F ;

� the seletion if C then S

1

else S

2

end, whih has the expeted intuitive

meaning; from a logial perspetive, it transforms the prediate Q into C)

[S

1

℄Q ^ :C) [S

2

℄Q;

5

A delarative language states what should be done, while a presriptive language

states how it is done. One an onsider that we have a spei�ation in the �rst ase

and a program in the seond ase. This distintion was devised in the 1970s in the

framework of programming languages, beause very high level programming languages

like Prolog ould be presented as exeutable spei�ation languages.

6

Atually, only free ourrenes, i.e. ourrenes whih are not in the sope of a

quanti�er, see Chapter 5.

108 Understanding Formal Methods

Searh

def

=

pre 9tt � tt 2min::max� 1 ^ Pr(tt) = true

then

any tt

where tt 2 min::max� 1 ^ Pr(tt) = true

then xx := tt

end

end

Figure 6.3: Strengthening a preondition in B

� unbounded hoie any v where P (v) then S end, where S depends on

the dummy variable

7

v, sometimes shortened in �v P (v)! S . This substi-

tution behaves like S where the hoie of v is arbitrary, provided P (v) is

true. Nothing is said about the intended implementation of this statement: a

pseudo-random hoie between the di�erent permitted values of v is only one

possibility among many others, and in pratie it will never be hosen be-

ause it is ompliated and ine�ient! In fat one often re�nes this onstrut

using a loop, as would be the ase in the table searh example;

� introdution of a preondition P : pre P then S end, sometimes shortened

to P j S . This substitution is purposely de�ned only for states verifying P . Its

pratial use is for stating onditions whih guarantee that a given operation

an be performed suessfully. Ensuring that the operation is alled when the

aforementioned preondition is true must be done by its user. For example,

Figure 6.3 gives a weaker spei�ation of table searh, whih onforms to the

suggestion of � 2.3.5 on page 22.

M

The onstrut if C then S

1

else S

2

end is desribed using two

primitive onstruts, whih are:

� the guard G! S , whih behaves like the substitution S from a state

where the property G is true;

� the hoie between two substitutions S

1

2 S

2

.

Their logial de�nition is simple:

[G! S ℄Q

def

=

G) [S ℄Q ; (6.2)

[S

1

2 S

2

℄Q

def

=

[S

1

℄Q ^ [S

2

℄Q : (6.3)

Then we take:

if C then S

1

else S

2

def

=

C ! S

1

2 :C ! S

2

:

note that Dijkstra's non-deterministi alternative onstrut

if B

1

! S

1

2 B

2

! S

2

fsi ;

7

The name of this variable is of onern only inside the blok any . . . end under

onsideration.

Set-theoreti Spei�ations 109

where B

2

is not neessarily the negation of B

1

, orresponds here to

B

1

_ B

2

j B

1

! S

1

2 B

2

! S

2

(see equation (4.16) on page 73).

Unbounded hoie any ... end is a generalization of S

1

2 � � � S

n

to

an arbitrary number (it an be in�nite) of substitutions. Its formal de�nition

is:

[�v P (v)! S ℄Q

def

=

8v P (v)) [S ℄Q ; (6.4)

whih is quite natural if one regards 8 as an in�nite onjuntion.

6.3.4 The B Re�nement Proess

At the spei�ation stage, abstrat mahines use non-deterministi onstruts

and the whole power of set-theoreti notations, while algorithmi onstruts

(sequenes, loops) are not allowed. During re�nement stages, set-theoreti data

strutures are progressively replaed with data strutures loser to program-

ming language data strutures, non-determinism is eliminated and generalized

substitutions orrresponding to sequenes and loops are introdued.

refinement table1(minD;maxD)

refines table

variables

min1, max1, Pr1, xx1

invariant

min1 = min ^ max1 = max ^

Pr1 = Pr ^ xx1 = xx ^

min1 � xx1 ^ xx1 � max1 ^

xx1 = max1 () bb = false

initialization /* Without interest here */

operations

Searh

def

=

if 9tt � tt 2min1::max1 � 1 ^ Pr1(tt) = true

then

any tt

where tt 2 min1::max1 � 1 ^ Pr1(tt) = true

then xx1 := tt

end

else

xx1 := max1

end

end

Figure 6.4: B re�nement of table searh

110 Understanding Formal Methods

Data re�nement is illustrated in Figure 6.4 for the example of table searh.

This re�nement step aims essentially at eliminating bb. In the re�ning abstrat

mahine we delare a new spae of variables, whose link with original variables

is de�ned by the invariant. In a seond stage we ould re�ne the remaining

non-deterministi hoie by a loop, along the lines indiated on page 31.

Re�nement steps are under the ontrol of proof obligations ensuring that

invariants are preserved and that a re�ning mahine onforms to the more ab-

strat mahine that it re�nes. Proof obligations are ompletely de�ned in the

underlying theory of B and they an be automatially generated. The support

tools for B inlude syntax and type hekers, proof obligation generators, ode

generators and ad ho automated proof assistants able to deal with proposi-

tional logi, �rst order logi and a huge number of set-theoreti algebrai rules.

The target of ode generators is a minimal and simple subset of languages

like C, Modula or Ada. Suh subsets an reasonably be onsidered as seure,

sine only the easiest parts of the ompilers are onerned. Indeed, this is made

possible beause high-level features of programming languages an be onsid-

ered as redundant here: they are the onern of the spei�ation, whereas the B

development yle starts from truly abstrat spei�ations. At the implemen-

tation stage, only low-level data strutures and instrutions are needed.

6.3.5 Modularity

If we want to develop a whole real-sale system, starting from a huge monolithi

spei�ation would be unmanageable. In B it is possible � and reommended!

� to deompose a spei�ation into several mahines. The big win is that

re�nement stages are then performed onsistently and independently. In par-

tiular, proof obligations beome smaller, they an be dealt with separately,

and maintenane is made easier.

6.4 Notes and Suggestions for Further Reading

Many textbooks present Z and VDM in a manner that is within the reah of

every one, for example [PST91, Wor92, WL88℄ for Z and [Jon90℄ and [JS90℄

for VDM. Mike Spivey's referene book on Z is still very useful, though the

language has evolved sine its publiation [Spi89℄. The book Understanding Z

[Spi88℄ by the same author is not a pedagogial introdution, but gives an early

de�nition of the Z semantis. Free types of Z are desribed in [Spi89℄, [Art91℄

and more reently in [Art98℄ and [TVD00℄.

The referene book on B by J.-R. Abrial [Abr96℄ is both a desription of

its theoretial foundations and a very detailed de�nition, illustrated with many

examples.

The reader interested in re�nement tehniques may onsult the artile by

Gardiner [GM91℄ and the book by de Roever [dRE98℄.

7. Set Theory

Set theory has a strong in�uene on formal methods. A straightforward reason

for this is that the spei�ation languages onsidered in the last hapter rely

diretly upon set theory. More signi�antly, set theory has strong links with

logi:

� as a metalanguage,

1

it provides a semantis for logi via the onept of a

model; as an interesting onsequene for the use of formal methods, we obtain

a means of interpreting logial spei�ations (f. � 3.3.1 and � 5.6);

� the axiomatized version(s) of set theory is (are) a �rst order theory that an

be studied as a formal system; for instane, one an try to show that it is

onsistent (without ontradition). Even more important for us, formaliza-

tion tehniques used in the development of a number of important onepts

from set-theoreti primitive onepts an be adapted to the pratie of spe-

i�ation methods.

We onentrate here on the Zermelo�Fraenkel axiomatization of set theory.

This will be a good opportunity to present a typial tehnique for enrihing

a language. Other tehniques, e.g. for handling funtions, are similar to the

ones used in Z and in B. We also omment on how we may deal with indutive

or imprediative de�nitions (orresponding to so-alled reursive de�nitions of

programs or data strutures).

7.1 Typial Features

7.1.1 An Untyped Theory

A number of set-theoreti operations, suh as intersetion and union, take ar-

guments sets that, intuitively, have elements of the same kind as members. In

ontrast, the Cartesian produt an be onstruted on sets of di�erent kinds

and it returns a set having yet another kind. The powerset of a set is not of

the same kind as the set itself. Distinguishing the kinds � or what we all the

types � of sets or elements provides an exellent protetion mehanism against

many mistakes and errors. But this would exessively hamper the development

of set theory. Just think of the way natural numbers are represented in set the-

ory (we will revisit it in � 7.3.1). Moreover, what type should be given to the

1

See page 152.

112 Understanding Formal Methods

empty set? Or to the identity funtion? The answers to these simple questions

are not all that simple.

2

Thus set theory is essentially an untyped theory. The

development of the theory illustrates that it is atually harmful to deompose

the universe into elements on the one side and sets on the other. Any item an

our on the left and on the right of the 2 symbol. Hene, it is simpler to deide

that all items are sets, jumbled together.

7.1.2 Funtions in Set Theory

Reall that funtions are not a primitive onept in set theory. A funtion from

E to F is a partiular relation, that is, an element of P(E � F), satisfying a

number of properties (uniqueness of the result, and with a domain equal to E if

the funtion is total). To be rigorous, it raises a notational issue: if f and x are

two symbols (i.e. two sets), f(x) makes sense only if we have proved beforehand

that f satis�es the neessary properties and that x is in the domain of f .

The development of set theory involves a mehanism of theory extension,

that allows one to enrih the language step by step with new funtion symbols or

new prediate symbols. There is a similar proess well known amongst omputer

sientists, viz. enrihing a programming language with user-de�ned proedures.

7.1.3 Set-theoreti Operations

A very onvenient feature of set theory is the olletion of operations provided

for onstruting omplex sets from simple sets. Moreover, union, intersetion,

set di�erene (symmetri or otherwise), and Cartesian produt satisfy many

interesting algebrai properties: [, \ and n are ommutative and assoiative;

[and \ are idempotent; ? is an identity element of both [and of n, and an

absorbing element of \. One an also identify (X � Y)�Z with X � (Y � Z)

by means of a natural bijetion, and X � f?g and f?g � X with X , whih

amounts to saying that � is assoiative as well as admitting f?g as an identity

element.

M

These identi�ations an be seen as abuses of notation, but they

are justi�ed from the viewpoint of ategory theory: intuitively, a

produt is onsidered as an objet of the theory � a set here � endowed with

projetions allowing one to retrieve the omponents of a tuple.

Let p

1

and p

2

denote the two projetions in the ase of 2-uples (ou-

ples), t

1

, t

2

and t

3

the three projetions in the ase of 3-uples (triples); rep-

resenting X � Y � Z by (X � Y) � Z amounts to taking t

1

def

=

p

1

Æ p

1

,

t

2

def

=

p

2

Æ p

1

and t

3

def

=

p

2

; hoosing X� (Y �Z) amounts to taking t

1

def

=

p

1

,

t

2

def

=

p

1

Æ p

2

and t

3

def

=

p

2

Æ p

2

. The hosen representation itself matters little

beause triples are manipulated only through t

1

, t

2

and t

3

. We now atually

have a kind of abstrat data type.

2

Typing is good beause it prevents us from expressing meaningless things. The

problem is that it ould equally well prevent us from expressing perfetly good and

meaningful things. Designing a good type system is then a signi�ant issue. We revisit

this question in Chapter 11.

Set Theory 113

But if we want to deal with these operations on the same footing as with

usual algebrai operations, we ome up against an obstale. Our operations take

sets as arguments and return a set. The role of the referene set would then be

played by the set of all sets, an inonsistent notion (see Russell's paradox in

� 3.1.3).

This leads set theorists to distinguish two kinds of olletions, sets and

lasses. Thus the universe U of all sets is not a set but a lass. Operations

an then be de�ned over members of a lass suh as U . This works, but the

distintion between lass and set an be onsidered to be somewhat arti�ial.

7.2 Zermelo�Fraenkel Axiomati System

The are quite a few Zermelo�Fraenkel axioms (ZF in the following). They are

de�ned over a very simple language, without symbols for the union, the inter-

setion, nor the Cartesian produt of sets. The latter an be de�ned by means

of lever enodings. Apart from equality, the only primitive onept is member-

ship. In summary, Zermelo�Fraenkel set theory is a �rst-order theory de�ned

over an equational language having basially only one prediate symbol (2)

apart from =, and no funtion symbol.

M

All items are taken from the same grouping. If one looks for a

model of set theory, in the sense of � 5.1.3, this grouping or jumble is

interpreted as the domain, that is a set, but at the metalanguage level. Items

in turn are interpreted as sets, as intuitively intended, only at this seond level

of interpretation. This is the so-alled standard interpretation, but there is

nothing to prevent us from imagining other interpretations. We even know, by

an appliation of Löwenheim's theorem (� 5.6.2), that a denumerable model of

ZF exists.

We now brie�y present the system of Zermelo and Fraenkel, as desribed

in [Sho77℄. This material an be ompared, for example, with the underlying

theories of Z and B, whih are lose to, but not exatly, ZF.

7.2.1 Axioms

First, reall that from an axiomati viewpoint, �set� is nothing but a word, just

like �point� or �line� in the axiomati presentation of geometry. Explaining the

meaning of manipulated objets is beyond the sope of an axiomati theory; its

only aim is to let us know the onsequenes of formulas taken as axioms. The

relevane of an axiomati theory to the real world is a matter of experiene

and not of formal logi. Here, it is ruial to be able to express in a onvenient

way that we an form a set y with the elements x satisfying a given property

P . This is not always the ase, as evidened by Russell's paradox. The axioms

aim preisely at de�ning when this is the ase. A formula expressing this fat

is

114 Understanding Formal Methods

9y 8x (x 2 y () P)

and we will use the following abbreviation:

Set

�

x j P

	

:

Here is the list of axioms.

Extensionality: two sets x and y are equal if they have the same elements:

8x8y 8z (z 2 x() z 2 y)) x = y :

An important onsequene of this axiom is the following: if there exists a y suh

that 8x (x2 y () P), then y is unique. Thus, as soon as a property Set

�

x j P

	

is proved, a set is de�ned. We say that this set is de�ned by omprehension,

and it is denoted by

�

x j P

	

. Most of the remaining axioms determine the

possible forms of P for whih we admit that

�

x j P

	

exists.

Powerset: the set of subsets of x is a set denoted by P(x):

8x Set

�

y j 8z (z 2 y) z 2 x)

	

:

Union: the union of elements of x is a set denoted by

S

(x) �the notation

[

y2x

y would be loser to usual onventions:

8x Set

�

z j 9y (y 2 x ^ z 2 y)

	

:

Shema of separation: extrating from a given set x the elements y satisfy-

ing a property '(y) yields a set:

8x (8y '(y)) y 2 x)) Set

�

y j '(y)

	

:

Shema of replaement: applying an operation F to the elements of a set x

yields a set:

8x Set

�

z j 9y y 2 x ^ z=F (y)

	

:

In order to de�ne an operation F , one has to extend the language in

the following way. One must �rst take a formula �(u; v) suh that for all y,

there is a unique z suh that �(y; z). (Formally, one proves 8y9z �(y; z) and

8y 8z8z

0

(�(y; z) ^ �(y; z

0

)) z = z

0

.) Then one introdues a new symbol F

and adds the axiom 8y �

�

y; F (y)

�

. A formula ontaining F (u), say P (F (u)),

is handled as an abbreviation for 8v �(u; v)) P (v).

The two last axioms are shemas: any instane of the formula ' (respe-

tively, of the operation F) provides a orresponding separation (respetively,

replaement) axiom. The separation shema an be dedued from the replae-

ment shema but is very important in its own right.

Set Theory 115

In�nity: there exists a set x whih has the empty set as a member and suh

that for all y whih are members of x, there is another member z of x ontaining

the members of y and y itself:

3

9x

�

? 2 x

�

^

�

8y y 2 x) y [fyg 2 x

�

:

This statement is easier to understand if ? is seen as a representation of 0

(zero) and y [fyg as a representation of the suessor of y. We will ome bak

to this later.

Regularity (or foundation): a non-empty set x ontains an element y whih

is disjoint from x:

8x (9y y 2 x))

�

9y y 2 x ^ 8z z 2 y):(z 2 x)

�

:

This is equivalent (given previous axioms) to stating that the relation 2

is well founded. This prevents the onstrution of in�nite hains x

0

... x

n

...

with x

i+1

2 x

i

for all i. In partiular there is no set x suh that x 2 x. But it

would be mistaken to think that this axiom aims at avoiding paradoxes: later

in this hapter we will mention another axiomatization of set theory without

the regularity axiom, and whih is just as onsistent as ZF.

The system omposed of the previous axioms is alled ZF. It allows one

to reover usual onepts of set theory. In mathematis, a further axiom, the

axiom of hoie, due to Zermelo, is needed. The ZF system together with the

axiom of hoie is alled ZFC. We state here an informal version of this axiom,

whih �rst neessitates the introdution of the onept of a funtion.

Axiom of hoie: for all families x of non-empty sets, there exists a total

funtion from x to

S

(x) mapping every element y of x to an element of y.

More simply, given a (�nite or in�nite) family of sets, this axiom allows one

to hoose an element in eah of them. This axiom played a key role in our

justi�ation of the priniple of well-founded indution in � 3.5.3.

7.2.2 Reonstrution of Usual Set-theoreti Conepts

We see that the empty set, singletons, pairs, intersetion, and Cartesian produt

are not primitive onepts of ZF. Even binary union is not primitive � we

have �only� the generalized union. It an of ourse be reovered, as an the

other onepts. Reall that the Cartesian produt is needed in order to de�ne

relations and funtions.

One proeeds step-by-step in a systemati manner: one shows the existene

and the uniqueness of an appropriate set, then one introdues a orresponding

symbol (this is another appliation of language extension, previously desribed

in the replaement shema). Uniqueness is shown using the axiom of extension-

ality. For existene, one almost always uses the shema of separation, whih

allows us to de�ne a set by omprehension provided we have already found one

3

The following formalization uses the abbreviations ? and [desribed below.

116 Understanding Formal Methods

in whih it is inluded. This is the key for losing the door on Russell's paradox:

we ome bak to this in � 7.3.3.

Let us illustrate the proess of �nding the intersetion of x and y. We an

separate (selet) the elements of x whih happen to be members of y, beause

we have:

8z (z 2 x ^ z 2 y)) z 2 x :

The shema of separation allows us to infer:

Set

�

z j z 2 x ^ z 2 y

	

:

Then we are entitled to de�ne:

x \ y

def

=

�

z j z 2 x ^ z 2 y

	

:

The di�erene an be de�ned in the same way, but the union annot. Here are

the main steps, without going into the details:

� The empty set ? is onstruted through the separation of elements satisfying

f in an arbitrary existing set; then one an sequentially form P(?) and

P

�

P(?)

�

whih is a 2-element set;

� given x and y, one an then form the pair fx; yg using the shema of replae-

ment on P

�

P(?)

�

where the operation F satis�es F (?) = x and F (u) = y

if :(u = ?);

� the union of x and y is de�ned by x [y =

S

(fx; yg); it is only at this stage

that we have Set

�

z j z 2 x _ z 2 y

	

,

with x [y =

�

z j z 2 x _ z 2 y

	

;

� other set operations (intersetion, di�erene, et.) are de�ned diretly by

separation;

� the onept of an ordered pair is represented by an enoding:

hx; yi =

�

fxg; fx; yg

	

;

the Cartesian produt a � b is obtained by separating elements of the form

hx; yi in P(P(a [b)), with x 2 a and y 2 b.

7.2.3 The Original System of Zermelo

The �rst system proposed by Zermelo inluded all previous axioms, with one

notable exeption: the shema of replaement. The onstrution of fx; yg was

diretly postulated by the axiom of the pair.

Pair: the pair made of two sets x and y is a set fx; yg:

8x8y Set

�

z j z=x _ z=y

	

:

But a number of set-theoreti developments (e.g. about ordinal and ardinal

numbers) ould not be reovered in the original system of Zermelo.

Set Theory 117

7.3 Indution

7.3.1 Reonstrution of Arithmeti

Peano arithmeti an be enoded in ZF. The number 0 is represented by ?, the

suessor operation is represented by S(x) = x[fxg. Then one an prove Peano

axioms. The axiom of regularity an be used to show that S(x)=S(y)) x=y

for arbitrary x and y (not only for sets representing natural numbers).

The ase of the shema of indution is very interesting. Let us �rst de�ne

N. To this e�et we onsider the prediate supnat de�ned as follows:

supnat(e)

def

=

? 2 e ^ 8x x 2 e) S(x) 2 e :

That is, we have supnat(e) if and only if e ontains 0, S(0), ...; intuitively, this

means that e is a superset of N. The axiom of in�nity preisely states that

suh an e exists; let us all it N

0

. In order to de�ne N, we still have to separate

the appropriate elements of N

0

. This amounts to �nding a prediate nat whih

haraterizes natural integers. We observe that the set N we want will be the

smallest (in the sense of set inlusion) e suh that supnat(e). The prediate

nat turns out to be �be a member of all e suh that supnat(e)�:

nat(n)

def

=

8e supnat(e)) n 2 e :

Taking x = N

0

in the shema of separation, we an de�ne:

N

def

=

�

n j nat(n)

	

:

The left member of the shema of indution is similar to the de�nition of

supnat:

P (0) ^ [8x P (x)) P (S(x))℄ :

Separating in N the elements x suh that P (x)^x2N, we get a set e satisfying

supnat(e), that is, whih both inludes N and is inluded in N, providing a

justi�ation for proofs by indution. In some respet, the de�nition of N via

supnat ontains the shema of indution, while the ultimate justi�ation omes

from the shema of separation.

In what follows, we use the notations 1, 2, 3, et. for S(0), S(S(0)), S(S(S(0))),

et.

Remarks on Typing. Beause of the absene of typing, one an write formu-

las suh as 2 = h0; 0i or 3 = 1 [h0; 1i without blinking an eye... they are even

theorems! It is not di�ult to �nd variants of the previous enodings

4

that do

not satisfy these equations (but satisfy other meaningless ones).

4

To be more preise, we an work with variants of the enoding of ordered pairs,

of 0, of S, and in general of onstrutors. Note, however, that the axiom of in�nity is

formulated with a spei� enoding of integers in mind.

118 Understanding Formal Methods

7.3.2 Other Indutive De�nitions

We an attempt to reuse the same proess for de�ning �reursive� data stru-

tures of omputer siene � here we prefer to use the term �indutive�:

5

lists,

trees, ontext-free languages, et.

Let us illustrate the idea with integer binary trees. We onsider a version

of binary trees where only leaves are labelled with integers. Here is the orre-

sponding indutive de�nition:

A = fng j hA;Ai :

Informally,

� if n is an integer, fng is a tree;

� if a

1

and a

2

are two trees, ha

1

; a

2

i is a tree;

� all trees an be onstruted by appliation of the two previous lauses.

We represent the two �rst lauses by a prediate suptree(e), laiming that the

set e ontains all trees:

suptree(e)

def

=

[8n n 2 N)fng 2 e℄

^ [8a

1

8a

2

(a

1

2 e ^ a

2

2 e)) ha

1

; a

2

i 2 e℄ :

With the goal of formalizing the third lause, let us introdue the prediate

saying �to be in all the sets ontaining all trees�:

tree(A)

def

=

8e suptree(e))A 2 e ;

and we would like to de�ne:

A

def

=

�

a j tree(a)

	

:

Then we ome up against an obstale: the previous version of the axiom of

in�nity at our disposal does not diretly provide a set A

0

that ontains all trees.

In fat, suh a set an ertainly be onstruted, by ompleting the union of

P(N), P(N) �P(N),

�

P(N) �P(N)

�

�P(N), et. Construting A

0

turns out to

be omplex, probably muh more omplex than A . On the other hand, tree,

the harateristi prediate of A , ould be de�ned without signi�ant problems.

This may be an argument in favor of working with prediates rather than with

sets or models. We onsider below another representation of trees.

The previous problem is not raised if we onsider the indutive de�nition of

a subset of N (for example f2

n

j n2Ng), or the indutive de�nition of a funtion

from N to N, beause it an be separated from N � N. Let us take the example

of the sequene of Fibonai, seen as a set of ordered pairs hn; fibo(n)i with

n 2 N. All supersets e of this set satisfy supfibo(e) with:

5

Reall that the meaning of �reursive� in omputer siene di�ers from its meaning

in logi.

Set Theory 119

supfibo(e)

def

=

h0; 1i 2 e

^ h1; 1i 2 e

^ [8n8x8y (hn; xi 2 e ^ hn+ 1; yi 2 e)

) hn+ 2; x+ yi 2 e℄ :

By the axiom of separation we an de�ne:

fibo

def

=

�

 j 8e supfibo(e)) 2 e

	

:

7.3.3 The Axiom of Separation

Observe in previous examples that for a set E to admit an indutive de�nition,

we make use of a quanti�ation on a olletion of sets of whih E is a member.

Suh a formulation is said to be imprediative. One may see that a kind of

viious irle exists, and one must be very areful to ensure that no paradox is

generated. However, this onstrution proess turns out to be very useful, so

useful indeed, that it is not lear we ould do without it (see, for example, the

introdution to [Lei91℄).

Formally, an imprediative de�nition follows the shema:

E

def

=

�

x j 8e '(e)) (x; e)

	

; where '(E) is true.

Intuitively, if (x; e) is x2 e, E is the smallest set satisfying '. In the previous

examples, the role of ' was played by supnat or supfibo.

We an de�ne a �nite set in an imprediative way. Here is a trivial example:

�

x j 8e (1 2 e ^ 3 2 e)) x 2 e

	

;

whih is a pedanti de�nition of f1; 3g.

The appliation ondition of the axiom of separation plays a key role for

avoiding paradoxes. An imprediative de�nition like the one given above for E

is admitted only if a set F ontaining all e suh that '(e) has been exhibited

beforehand. Otherwise paradoxes like Russell's an be reprodued, taking t for

'(e) and e 62 e) x2 e for (x; e). Similarly, there is no set of all sets in ZFC.

If suh a set U ould exist, we ould take e 2 U for '(e) and (x; e) as before.

However, the appliation ondition of the axiom of separation implies that,

exept in the speial ase of natural numbers, muh additional work is needed

in the onstrution of indutive data strutures.

7.3.4 Separation of a Fixed Point

Fixed points are a traditional devie in omputer siene for explaining in-

dutive de�nitions. Let us illustrate the idea in the ase of N. Intuitively, the

indutive de�nition n = 0 j S(n) an be represented by:

N = f0g [S(N) ; (7.1)

120 Understanding Formal Methods

where S(X) is the set resulting from the appliation of S to all elements of X .

Of ourse replaing = with

def

=

in (7.1) would make no sense, sine the objet

to be de�ned ours on the right-hand side. Hene (7.1) must be regarded as

an equation of the form x = f(x) where x is the unknown. In this situation x

is alled a �xed point of f (see � 3.6). In our example N is the smallest solution

for:

X = F (X) ; (7.2)

with F (X)

def

=

f0g [S(X) :

In order to state and solve this equation, we need a referene set R where

X varies and we have to hek that F is monotone, that is

X � Y) F (X) � F (Y) :

M

The tehnique introdued in � 3.6 onsists of showing that the set

of post-�xed points of F (the X of R satisfying F (X) � X) is non-

empty, then that the intersetion of all post-�xed points is the smallest �xed

point of F , whih is the solution of (7.2) we are looking for. The referene

set we an take here is P(N

0

), where, as before, N

0

is provided by the axiom

of in�nity. This axiom atually stipulates that N

0

is a post-�xed point, whih

ensures that the set of post-�xed points is non-empty. The set N we look for

is then the smallest X of P(N

0

) suh that F (X) � X . Though it does not

expliitly appear, suh a de�nition is in fat imprediative, beause we have to

state the following when details are worked out (using the axiom of separation):

Ens

�

X j X 2 P(N

0

) ^ F (X) � X ^

8Y (Y 2 P(N

0

) ^ F (Y) � Y))X � Y

	

:

This set is atually a singleton, whih is preisely de�ned to be fNg. The axiom

of separation is used here in a somewhat more involved way than before, beause

it ats on P(N

0

) instead of N

0

.

7.3.5 Ordinals

The onstrution of ordinal sets was skethed in � 3.5. They play a key role in set

theory and it was absolutely neessary that the axiomati version of set theory

should be able to reover them. Let us just add here that the replaement

shema turns out to be essential in this respet (whereas it is sarely used

in regular mathematis, at least not diretly). Let us also mention that the

axiom of in�nity stated above is rih enough: ombining N, the shema of

replaement and the axiom of union give all the neessary ingredients needed

for onstruting ordered sets muh �larger� than N.

Set Theory 121

7.4 Sets, Abstrat Data Types and Polymorphism

7.4.1 Trees, Again

A model of trees more eonomial than the one given in � 7.3.2 an be on-

struted. Instead of an in�nite union of Cartesian produts, we use, intu-

itively, an address spae that assigns the integer 1 (written with binary dig-

its) to the root, the integer 10 to the �rst left subtree, the integer 11 to the

�rst right subtree, and so on. We de�ne the ordering relation � over N by

8n (n � 2n) ^ (n � 2n+ 1). A branh B is a subset of N that ontains 1 and

that also ontains, for all x of B, a unique y satisfying x � y (for example

a branh an start with 1, 2, 5, 10, 20). A set of leaf addresses is a set L of

integers that ontains a unique element in every branh. In order to onstrut

a tree of integers from a set of leaf addresses L, we map eah member of L to

an integer (alled its label). The set B of branhes and the set L of L have to

be provided by an appropriate use of the axiom of separation in P(P(N)). The

set of trees is then L ! N, the set of total funtions from L to N.

7.4.2 Algebrai Approah

M

The previous model of trees is quite similar to an enoding that

would be used in a software implementation. But one needs some

onvining that it orresponds to the expeted onept of tree. Of ourse, no

formal proof an be given for suh a subjetive proposition. But, admittedly,

our �rst (attempted) model based on suptree is muh more natural.

We onsider an abstrat data type

6

tree. This type has two on-

strution operations leaf and bin; leaf onstruts an elementary tree whih

is just a leaf labelled by an integer, bin onstruts a new tree from two existing

trees. This yields the signatures:

leaf: N ! tree

bin: tree� tree! tree :

In addition, we have axioms stating that all trees are produed by repeated

appliation of leaf and bin, and that two trees are equal if and only if they are

onstruted by appliation of the same onstrutors (on the same arguments).

Here is one of these axioms:

8m8n leaf(m) = leaf(n) () m = n :

Clearly, the representation we gave in � 7.3.2 is a model of that abstrat data

type, where leaf and bin are respetively interpreted by the funtions n 7! fng

and ha

1

; a

2

i 7! ha

1

; a

2

i.

6

In the remainder of this setion we employ the terminology introdued in � 10.3.1.

122 Understanding Formal Methods

M

In ontrast, the seond representation requires more work. The on-

strutor leaf is simply interpreted by the funtion n 7! fh1; nig. In

order to interpret bin, we need two funtions g and d from N to N, that map

the addresses of a tree to addresses of a tree having the same shape, whih is

the left (or right) subtree of a new tree. We know that every integer an be

written in a unique way, either 2n or 2n + 1 depending on its parity. We an

then indutively de�ne g and d by

8

>

<

>

:

g(1) = 2

g(2n) = 2g(n)

g(2n+ 1) = 2g(n) + 1

and

8

>

<

>

:

d(1) = 3

d(2n) = 2d(n)

d(2n+ 1) = 2d(n) + 1 ;

bin is then interpreted by the funtion from P(N�N)�P(N �N) to P(N�N)

that, given two trees a

1

and a

2

returns the tree

bin

I

2

(a

1

; a

2

) =

�

hg(x); yi j hx; yi 2 a

1

	

[

�

hd(x); yi j hx; yi 2 a

2

	

:

We still have to show that, on the one hand, we reover the same interpretation

as before (in terms of B and L) and, on the other hand, the axioms of leaf

and bin are satis�ed. This is left as an exerise for the reader.

7.4.3 Polymorphism (or Generiity)

The onept of address we use is generi, in the sense that we say nothing about

the kind of leaves (more preisely: leaf labels). A soon as L is onstruted, it

an be used for building trees that are labelled by elements of any given set

X , inluding a set of trees. For instane, the set of trees of trees of integers is

L ! (L ! N).

The importane of generiity � also alled parametri polymorphism �

has been aknowledged for a long time. To de�ne a generi onept of tree, one

would like to onsider a funtion tree that maps every set X to L !X . But

tree would then be a member of U !U , where U is the lass of all sets. Then

it is not a set. We previously had a similar remark about the operations \, [,

et. One ould look for a more astute proess allowing one to interpret types

by sets, inluding polymorphi types. This indeed seemed almost possible to a

number of researhers, but then J. Reynolds demonstrated that the answer is

negative [Rey85℄. We go bak to this point in Chapter 11.

7.4.4 The Abstrat Type of Set Operations

Just as for trees, one an de�ne an abstrat type for sets. This is a well-known

example, generally desribed using two basi onstrutors: the onstrution of

the empty set and the insertion of an element into a set. Two axioms are intro-

dued in order to stipulate that inserting an element that is already ontained

Set Theory 123

in the set has no e�et, and the insertion order of elements is irrelevant.

7

The

membership prediate and operations suh as [and \ are then spei�ed using

additional axioms � intuitively, they are written with a �reursive� exploration

of their arguments in mind. One an then easily prove the algebrai properties

one expets on these operations (assoiativity, et.).

The same ideas arise when programming with sets. However, let us point

out that only �nite sets are dealt with in this way. Moreover, it is usually

aepted that elements of suh sets are typed and have the same type. Then a

notion of polymorphism is needed if we want to handle Cartesian produts or

powersets in a natural manner.

7.5 Properties of ZF and ZFC

From a tehnial viewpoint ZFC is without doubt a great suess, beause it

provides all of the kinds of sets, numbers and strutures needed in mathematis.

Clearly, limitations oming from the inompleteness theorems of Gödel annot

be avoided. Thus, the onsisteny of ZF annot be proven. But there are other

results, alled relative onsisteny results. In partiular, the axiom of hoie,

whih is very non-onstrutive, was initially the ause of many disputes. In

1938, Gödel showed that if ZF is onsistent, then ZFC is onsistent as well. In

1963, Cohen proved that the negation of the axiom of hoie does not introdue

ontraditions in ZF as well. This amounts to saying that the axiom of hoie,

or its negation, annot be dedued from axioms of ZF.

Another important onjeture about the ardinality of R, alled the on-

tinuum hypothesis (see page 57), was also proved to be independent from ZF

at the same time. Hene one might think of set theory as somewhat arbitrary.

In ontrast with N, set theory does not have a well-understood onept of a

�standard model�. For instane, the syntati model of set theory is ertainly

not the intended one, beause it is denumerable.

7.6 Summary

What is the impat of set theory on formal spei�ation and programming teh-

niques? The most obvious is the universal use of the language of sets. Informal

reasoning is sometimes e�iently guided by Euler�Venn's diagrams.

8

There are

several opinions regarding set theory itself. Advoates of Z may highlight that

ZF has been thoroughly tested as a foundation for mathematis, and hene is

a �rm basis for designing a spei�ation language. Other researhers prefer to

avoid the systemati use of sets, beause unexpeted ompliations spoil the

initial simpliity of basi onepts (some of them were illustrated above), or

beause of the intrinsi lak of typing in this theory.

7

We proeeded this way in � 10.5 for representing a table.

8

The idea of representing what we nowadays all sets by irles goes bak to Euler.

124 Understanding Formal Methods

Axiomati set theory is su�iently powerful to allow one to represent any

idea that is needed, for example the data strutures of omputer siene. How-

ever, in many ases we end up with quite an arbitrary enoding; then axiomati

set theory may seem loser to an assembly language than to a high level lan-

guage.

7.7 Notes and Suggestions for Further Reading

So-alled �naive� set theory is developed in the book of Halmos [Hal60℄. Another

well-known referene is Enderton [End77℄. The axioms of Zermelo�Fraenkel are

presented and disussed in a hapter of the Handbook of Logi of Mathematial

Logi [Bar77℄ written by Shoen�eld [Sho77℄.

Further developments are desribed in Devlin [Dev93℄, spei�ally the arith-

meti of ordinals and ardinals. At the end of the book there is also a presenta-

tion of non-well-founded sets, a variant of ZF without the axiom of regularity.

Non-well-founded set theory is used in omputer siene as a basis for bisim-

ulation and o-indution, whih are reasoning tehniques relevant to in�nite

proesses and irular data strutures. On this topi one may onsult the very

onise and readable artile by Milner and Tofte [MT91℄.

8. Behavioral Spei�ations

The table example that we used in previous hapters an be quali�ed as fun-

tional: looking from the outside, we an view it as a funtion that returns an

answer when it is alled. We don't have any onerns or get distrated by its

internal omputation and internal workings. In ontrast, we an hardly under-

stand systems whih onstantly reat to their environments if we don't study

the series of ations they perform. This is the ase for ommuniation pro-

tools, operating systems or ommand-and-ontrol equipment. For protools

for instane, we have to onsider synhronization, to prevent deadloks, unde-

sired arrival of messages, et. The omplexity of suh protools is by and large,

onentrated in these aspets.

Appropriate tehniques onsist of modeling suh systems by, essentially, a

graph whose verties and edges respetively represent possible states and tran-

sitions between states, and then haraterizing expeted behaviors by safety

and liveness properties that are expressed over this graph � this is the realm

of temporal logi � and �nally, verifying that these properties are satis�ed.

The following presentation is entered on the general formalism of (labeled

or otherwise) transition systems, whih will be the semanti pivot between

languages suh as Unity, CCS or TLA and di�erent variants of temporal logi,

inluding the �-alulus. At the end of the hapter we mention appropriate

veri�ation tehniques, spei�ally model heking.

8.1 Unity

Unity [CM89℄ was �rst designed in order to elaborate programs that ould take

advantage of parallel omputations that are available on non-von Neuman ma-

hines. Suh opportunities vary to a onsiderable extent from one arhiteture

to the other, and so it is better to make no assumptions about ontrol. A Unity

program is essentially de�ned by:

� a state spae;

� an initial state, or a set of initial states;

� a set of transitions between states.

Transitions are de�ned by simultaneous assignments, sometimes with an addi-

tional ondition whih is true by default. Assignments are generally separated

by the symbol [℄. In the original de�nition of Unity, the state is given by means

126 Understanding Formal Methods

of delarations similar to those in Pasal, but this is not essential: we ould

onsider variations inluding data types suh as lists, or using more abstrat

onstruts, e.g. set operators or higher-order types. Here we use the term �eld

for omponents of the state rather than variable, in order to avoid any onfu-

sion with the logial onept of a variable.

8.1.1 Exeution of a Unity program

Exeuting a Unity program onsists of hoosing in an undetermined way

1

one

of the assignments, then, if the orresponding ondition is true, applying it to

the urrent state and repeating the same yle again and again. The main idea

is that eah assignment may ontribute to the �nal result and eventually has

the opportunity to be applied. Unity stands for Unbounded Nondeterministi

Iterative Transformations. The freedom underlying the exeution of Unity pro-

grams gives them a spei�ation status, all the more so sine we will not refrain

from using arbitrary mathematial means for de�ning the spae state. We will,

however, ontinue to all them programs.

Let us observe that a Unity program ould easily be represented by a B

mahine, eah assignment being enoded by an operation of the form: if ondi-

tion then multiple substitution else skip. As in B, the weakest preondition

alulus introdued in � 4.3 plays an important tehnial role. The big di�er-

ene is that in B operations are marosopi and are exeuted on external alls,

whereas in Unity assignments are rudimentary and they exeute spontaneously

and perpetually.

Program T

onstant p; q : integer

delare x; y : integer; t; r : boolean

initially x=p ^ y=q ^ t=false

assign

r; t := P (x); true if x 6= y ^ :t

[℄ y; t := x; false if r ^ t

[℄ x; t := x+ 1; false if :r ^ t

end

Figure 8.1: Table searh in Unity

8.1.2 The Table Example

Reovering strit ontrol over the evaluation order is not very di�ult: we just

have to take a �eld as the program ounter. We proeed in this way with t

in Figure 8.1, where the table searh program already presented on page 31

is written in Unity. The �eld t an even be given a logial interpretation: �r

1

We will see later, however, that this hoie must respet a fairness ondition.

Behavioral Spei�ations 127

ontains the result of the evaluation of P (x)�. When x = y the exeution reahes

a stable state: further assignments leave the state unhanged.

But this approah is far from optimal in the spirit of Unity. Figure 8.2

proposes a solution with muh more opportunities to take advantage of paral-

lelism. The idea is to have a ontrol �ow (or thread) for every possible value of

the index. These threads are modeled by the array t. As soon as the result is

found, the �eld f is set to true, with the intention of stopping other exeuting

alulations � a more orret phrasing would be: in order to make the state

stable.

Program P

onstant p; q : integer

delare x; n : integer; b; f : boolean;

r : array of boolean; t : array of 0::2;

initially n; f= p; false ^ 8i : p � i < q) t[i℄=0

assign

h[℄ 8 i : p � i < q ::

r[i℄; t[i℄ := P (i); 1 if t[i℄=0 ^ :f

[℄ x; f; b; t[i℄ := i; true; true; 2 if r[i℄ ^ t[i℄=1 ^ :f

[℄ n; t[i℄ := n+1; 2 if :r[i℄ ^ t[i℄=1 ^ :f

i

[℄ f; b := true; false if n=q

end

Figure 8.2: Parallel table searh in Unity

A good method for designing suh programs and reasoning about them

onsists of onsidering a state that hanges in suh a way that it progressively

satis�es the desired properties, whatever happens. From a methodologial per-

spetive, one distinguishes safety properties, whih guarantee that every reah-

able state is aeptable (in other words, nothing bad an happen) from liveness

properties, whih state that a desired state is eventually reahed (something

good will happen).

In the example in Figure 8.2, safety properties are similar to the invariants

I

1

, I

2

and I

3

given on page 31: we introdue the subset C of integers i in [p; q[

yielding a negative answer (the value of r[i℄ is false and the value of t[i℄ is

2). The invariant says that the ardinality of C is n � p. The main liveness

property we expet here is f = true. This is also alled a progress property.

However, we must not forget that, at a given time, the hosen assignment may

well leave the state unhanged. Assume in our example that p < q; an exeution

ontinuously hoosing the last assignment (f; b := : : : if n = q) would never

progress. In order to avoid suh a situation, Unity imposes a fairness ondition:

eah assignment is hosen in�nitely many times during an exeution.

Other ategories of properties have been identi�ed for qualifying system

behaviors, suh as to be deadlok free, or reahability. The latter expresses

that the system always has the hane of reahing a given situation, for instane

128 Understanding Formal Methods

Program H

1

onstant � : integer

delare l

1

; d

1

; v

1

; v

2

: integer; p

1

; p

2

: boolean

initially l

1

=0 ^ d

1

=� ^ p

1

=false ^ p

2

=false

assign

l

1

:= l

1

+ 1 if l

1

< d

1

[℄ v

2

; p

2

:= l

1

; true

[℄ d

1

; p

1

:= max(d

1

; v

1

+�); false if p

1

[℄ d

1

:= max(d

1

; v

1

+�) if p

1

[℄ p

1

:= false

end

Figure 8.3: A synhronization protool in Unity

to return to the initial state. Note that being deadlok free does not make muh

sense in Unity, sine exeutions are in�nite by onstrution.

8.1.3 A Protool Example

Let us onsider another program that doesn't aim at omputing a result, but

at providing a servie. Figure 8.3 represents a small lok synhronization pro-

tool.

2

Two stations endowed with a loal lok l

i

, i 2 f1; 2g send their own

urrent time through an unreliable medium (messages an be lost, dupliated

and their order is not preserved) from time to time. The protool ensures that

the distane between the values of l

1

and l

2

is never greater than the stritly

positive onstant �. Figure 8.3 ontains the assignments of the program run-

ning in station 1. The medium is represented here by two Booleans p

i

, i 2 f1; 2g

telling us whether or not a message for station i is present and by the integer

v

i

whih holds the value of the message if there is one. The apaity of the

medium we are onsidering is then just one message in eah diretion. Assign-

ments represent, respetively, inrementing the loal lok, sending the urrent

time, reeiving the time from the distant lok, dupliating, and losing the

arriving message. We get the omplete system by a parallel omposition of

program P

1

with program P

2

(written P

1

[℄P

2

), where P

2

is idential to P

1

up

to an exhange of indies 1 and 2. To put it another way, the state of P

1

[℄P

2

is

made up of the �elds of P

1

and of the integers l

2

and d

2

; its assignments are

the assignments of P

1

and the symmetrial assignments we get by exhanging

1 and 2; �nally its set of initial states is the onjuntion of the two lauses

introdued by the keyword initially.

If we take a version of Unity where bags are allowed, we an easily model

a medium whih does not preserve message order (Figure 8.4). This program

an be omposed with the program in Figure 8.5 (and its symmetrial ounter-

parts): we get a medium with message losses and dupliations. We expet that

the protool satis�es the following properties:

2

The author of this protool is Gérard Rouairol.

Behavioral Spei�ations 129

Program HM

1

onstant � : integer

delare l

1

; d

1

: integer;

1

;

2

: bag of integer

initially l

1

=0 ^ d

1

=� ^

1

=? ^

2

=?

assign

l

1

:= l

1

+ 1 if l

1

< d

1

[℄

2

:=

2

[fl

1

g

[℄ 8v

1

d

1

;

1

:= max(d

1

; v

1

+�);

1

�fv

1

g if v

1

2

1

end

Figure 8.4: Synhronization protool using an unbounded hannel

Program C

1

delare

1

: bag of integer

initially

1

= ?

assign

[℄ 8v

1

1

:=

1

[fv

1

g if v

1

2

1

[℄ 8v

1

1

:=

1

�fv

1

g if v

1

2

1

end

Figure 8.5: Unbounded hannel with losses and dupliations

� safety: jl

1

� l

2

j � � is always true;

� progress: loks inrease to arbitrary large values.

In this ase, progress does not express that exeutions get loser to a desired

situation, but that there are no deadloks: no state is stable (� is non-null).

We an also verify a reahability property: from any state (derived from the

initial state) one an reah a state where l

1

= l

2

. An interesting onsequene

is that we an hope to augment the previous protool with additional �elds

and transitions that would model the arrival of an external request and then

onstrain assignment hoies in suh a way that l

1

and l

2

would onverge to

the same value. This is left as an exerise for the reader.

We will see in � 8.5 how to formalize all these properties in temporal logi.

We �rst present an elementary but very general model for desribing behaviors.

8.2 Transition Systems

The systems we model are always presented, to a greater or lesser degree, in

the form of a state whih hanges under the e�ets of various ations. The

state an be thought of at di�erent abstration levels. It an be the olour (or

ombination of olours) of a tra� light; the memory spae of a real mahine;

the memory spaes of several mahines, with the ontents of ommuniation

hannels of the network that links them together; the tuple of values taken by

the �elds delared in a program � whih may be written in Unity � or as a B

spei�ation, an algebrai term, et.

130 Understanding Formal Methods

State hanges an be ontinuous, for analog systems, or disrete, for the sys-

tems we onsider here: we all them transitions. Most methods adopt a purely

observational standpoint, that is, no importane is attahed to the internal or

external ause that determines the hoie between transitions. However, tran-

sitions are sometimes assoiated with events that we want to remember, e.g. a

printing request or a message. Then we give them a name, also alled a label

or an ation. We use the term �Kripke model� when transitions are not labeled

� we an equivalently onsider that all transitions have the same label � and

�labeled transition system� or simply �transition system� in the general ase.

8.2.1 De�nitions and Notations

A Kripke model is an ordered pair hS;Ri where S is a (�nite or in�nite) set,

alled the set of states and R is a binary relation on S, alled the transition

relation.

A transition system (or labeled transition system) T is a triple of the form

hS;A; (R

a

)

a2A

i where S is a (�nite or in�nite) set of states, A is a (�nite or

in�nite) set, alled the set of ations and eah R

a

is a binary relation on S.

Equivalently, the family (R

a

)

a2A

an be presented as a subset R of A�S�S.

The reader may like to hek that we reover the onept of a Kripke model if

A is a singleton set.

We also use the term automaton or state mahine for a transition system,

espeially when S and A are �nite.

For the transition relation of a Kripke model K one often uses an in�x

notation suh as ��!

K

or more simply �! when there is no ambiguity about K.

Similarly the transition relation labeled by a of a transition system T is denoted

by the in�x symbol

a

��!

T

or

a

�! when the ontext is lear. Thus s

a

�! t

b

�! u

simply expresses that exeution goes from state s to state t using transition a,

then to state u using transition b.

8.2.2 Examples

When the number of states of the system is small, we onveniently represent it

in a graphial form. Figure 8.6 represents a transition system for a simpli�ed

drink vending mahine.

S A

R

1E

20

a

reset

Figure 8.6: A very simple drink vending mahine

Behavioral Spei�ations 131

The standard behavior onsists of going from state S (start) to state A

(again) when a one euro oin is inserted into the mahine (label 1E), then to

state R (ready) when a 20 ents oin is inserted (label 20), then bak to the

start state when the �aept� button is pressed (label a) � and a drink is

delivered. The ustomer an also, from state R, push the reset button � then

the inserted oins are returned to him/her.

S A

R

F

1E

20

20

a

reset

reset

Figure 8.7: A �ltering drink vending mahine

The vending mahine modeled in Figure 8.7 has an additional feature:

bad 20 ents oins are rejeted. A transition 20 an then lead to state F

(failure), where the ustomer has no other hoie but to reset. Formally,

this system is de�ned by the state set S = fS; A; R; Fg, the ation set A =

f1E; 20; a; resetg, and transition relations

1E

��!= fhS; Aig ,

20

���!= fhA; Ri;

hA; Fig ,

a

���!= fhR; Sig and

reset

����!= fhR; Si; hF; Sig.

S A

R

F

1E

reset

20

20

a

reset

reset

reset

Figure 8.8: A more omplete vending mahine

The previous model an be augmented by further stipulating that one an

push the reset button in every state. This is easy to state in a formal way, by

writing

reset

����!= fhs; Si j s 2 Sg. Note in Figure 8.8 that the graphial repre-

132 Understanding Formal Methods

sentation beomes fairly ompliated. The reader is invited to invent variants

of the above system, where, among possible suggestions, one an insert oins

in an arbitrary order, or push the aept button in any state (of ourse, the

mahine should only perform a state hange from state R).

In the model desribed above, labels happen to orrespond to ations initi-

ated by the external environment. This is not neessary. Atually, if our mahine

delivers a drink as soon as one euro and 20 ents are inserted, without waiting

for a on�rmation, the label a is interpreted by a spontaneous ation. But

this does not matter to the transition system: as already indiated, the latter

just desribes possible sequenes of ations without a priori interpretation of

their meaning.

8.2.3 Behavior of a Transition System

Given a transition system T , a trajetory on T represents a possible behavior

of T . One an imagine that T de�nes a state spae and motion rules; as in

mehanis, a trajetory is a funtion of time that returns the state of the system

at eah instant. Sine our transitions are disrete, time will be represented by

N. Formally, a trajetory on T is a pair of two sequenes (s

n

)

n2N

and (a

n

)

n2N

where:

1. For all integers n, s

n

is a state and a

n

is an ation.

2. For all integers n, s

n

a

n

��! s

n+1

.

The omponent (a

n

)

n2N

is alled the trae. In the ase of Kripke models,

it is of ourse super�uous. In the literature trajetories are also referred to

as senarios, exeutions or paths. We agree that the pre�x of a trajetory

h(s

n

)

n2N

; (a

n

)

n2N

i will be represented in the form s

0

a

0

��! s

1

a

1

��! s

2

: : :

A trajetory example for the transition system of Figure 8.7 starts with

S

1E

��! A

20

���! F

reset

����! S

1E

��! A

20

���! R

a

���! S .

V

The systems modeled in Figures 8.6 and 8.7 have the same set of

traes, but have di�erent behaviors: in the former, a is always

allowed after 20 whereas this is not the ase of the latter. Traes simply do not

provide the relevant piees of information that would enable us to distinguish

between them.

When the system inludes deadloks (also alled bloking states, i.e. states s

suh that for any ation a, fs

0

2 S j s

a

�! s

0

g = ?), the de�nition of trajetories

must be made more general. Trajetories are maximal sequenes satisfying the

above onditions: either they are in�nite, or their last state is a bloking state.

8.2.4 Synhronized Produt of Transition Systems

Formalizing more ompliated examples using �at transition systems quikly

turns out to be quite laborious. It is better to speify the prodution of a

transition system by indiret means, notably:

Behavioral Spei�ations 133

� the omposition of (smaller) systems, as will be onsidered here;

� the use of higher level onepts or languages, for example Unity or CCS; we go

bak to this approah in � 8.2.6 and in � 8.3; then transition systems provide

an operational semantis for those languages.

Consider n transition systems that we put together: T

1

= hS

1

; A

1

;��!

T

1

i, T

2

=

hS

2

; A

2

;��!

T

2

i ... T

n

= hS

n

; A

n

;��!

T

n

i. A omplete state of the system is obtained

by the synhronized produt [AN82℄, whih ontains a omponent ranging over

S

1

, a omponent ranging over S

2

... a omponent ranging over S

n

. The state

spae of the synhronized produt of T

1

, T

2

... T

n

is then the Cartesian produt

S

1

� S

2

:::� S

n

.

Saying that the whole system goes from state hs

1

; s

2

; ::: s

n

i to state hs

0

1

; s

0

2

;

::: s

0

n

i amounts to saying that eah omponent goes from state s

i

to state s

0

i

using an ation taken in ��!

T

i

. This orresponds to the fat that a transition is

passed simultaneously in eah subsystem, what we all a synhronization. In

general we want to restrit the set of possible synhronizations. Typially, an

ation send a of a system will only be synhronized with an ation reeive a of

another system. The ation set of the synhronized produt will then be given

by a subset Y of A

1

� A

2

::: � A

n

, whose elements are alled synhronization

vetors.

In the general ase, we write the synhronized produt in the form hT

1

jj

T

2

::: jj T

n

;Y i. It orresponds to the transition system whose state set is S

1

�

S

2

:::�S

n

, whose ation set is Y and where transition relations are de�ned by:

hs

1

; :::s

n

i

ha

1

; :::a

n

i

���������!

hT

1

:::jjT

n

;Y i

hs

0

1

; :::s

0

n

i i� s

i

a

i

��!

T

i

s

0

i

for all i in[1; n℄:

8.2.5 Stuttering Transitions

In order to represent so-alled asynhronous systems that advane in an in-

dependent manner, it is onvenient to assume that eah of them possesses a

waiting ation e suh that exeuting e leaves the state unhanged. Leslie Lam-

port uses the term stuttering transitions:

e

�! = fhs; si j s 2 S

i

g:

For example, a synhronization vetor ha

1

; e; :::ei allows T

1

to exeute ation

a

1

whereas other systems do nothing. A synhronization vetor ha

1

; a

2

; e; :::ei

allows T

1

and T

2

to synhronize without being disturbed.

Note that introduing stuttering transitions in eah state from the outset

is good from the modularity viewpoint. A system spei�ed in this way an be

embedded in an environment while keeping its own behavior. However, this

approah leads one to make a fairness hypothesis on allowed trajetories, in

order to disallow trajetories where a system remains inde�nitely in the same

state even though a hange is possible.

134 Understanding Formal Methods

8.2.6 Transition Systems for Unity

The delare lause of a Unity program U de�nes its state set S

U

(the �elds

delared are projetions of S

U

in their respetive domain; for example in Fig-

ure 8.4, l

1

is a projetion of S

U

into N). The initially lause de�nes a subset

I of S

U

. In order to onstrut the assoiated transition system, we give a name

a

1

, a

2

... to every assignment introdued after the assign lause. Reall that

eah of them is in the form s := f

i

(s) if

i

(s) and reads: �if s veri�es ondition

i

, then the next state is f

i

(s) else the next state is still s�. Then we de�ne

a

i

��! = fhs; f

i

(s)i j s 2 S

U

^

i

(s)g [fhs; sii j s 2 S

U

^ :

i

(s)g:

The semantis of the initially lause is given by an ation i, a pre-

initial state � whih is not in S with

i

�! = fh�; si j s 2 Ig. Finally we

onsider A

U

= fi; a

1

; a

2

; :::g, the system transition assoiated with U is then

T

U

= hS

U

; A

U

; (

a

�!)

a2A

U

i.

M

One an follow a slightly di�erent point of view where, when the

ondition

i

evaluates to false, the orresponding label is replaed

with the stuttering ation e, (see � 8.2.5). In this version,

a

i

��! = fhs; f

i

(s)i j s 2 S

U

^

i

(s)g and A

U

= fi; e; a

1

; a

2

; :::g:

8.3 CCS, a Calulus of Communiating Systems

In the Unity model, entities ooperate by sharing a ommon memory. In on-

trast, approahes based on proess algebras put the emphasis on ommunia-

tion. CCS (Calulus of Communiating Systems), due to Robin Milner, is one

of the most elegant [Mil89℄. We are given a set of ations A = f�; a; �a; b;

�

b; :::g.

Proesses are onstruted as follows: 0 is the proess that an do nothing (it is

in a deadlok state and annot ommuniate); if P and Q are proesses and if

� is an ation, then �:P , P j Q, P +Q and PnL are proesses. � :�, � j� and �+�

are respetively the pre�x operator, the parallel omposition operator and the

hoie operator.

Intuitively, � is the silent ation; if � is an ation di�erent from � , � an

synhronize with �� (and reiproally, onsidering that

�

�� = �). The proess �:P

performs the ation � and then behaves like P . Thus the proess a:b:(a:0+:b:0)

orresponds to the transition system:

a
b

a

b

One also an write mutually reursive proess de�nitions in the form P

1

def

=

E

1

, P

2

def

=

E

2

, : : : where E

1

, E

2

, : : : represent proess expressions in whih P

1

,

P

2

, : : : an our. Thus the proess P

def

=

a:b:(a:P + :b:0) orresponds to the

transition system

Behavioral Spei�ations 135

P

a b

a

 b

and the systems desribed in Figures 8.6 and 8.7 an be expressed in CCS

respetively by:

S

def

=

1E:20:(a:S + reset:S) and by

S

def

=

1E:(20:(a:S + reset:S) + 20:reset:S) :

Formally, the state set of the transition system de�ned by CCS proesses

P

1

, P

2

, : : : is made up of algebrai subexpressions of P

1

, P

2

, : : :, its ation set

is A and we get its transition relations by appliation of the following rules:

� pre�x:

�:P

�

�! P

;

� hoie:

P

�

�! P

0

P+Q

�

�! P

0

and

Q

�

�! Q

0

P+Q

�

�! Q

0

;

� parallel omposition without ommuniation :

P

�

�! P

0

P j Q

�

�! P

0

j Q

and

Q

�

�! Q

0

P j Q

�

�! P j Q

0

;

� ommuniation:

P

�

�! P

0

Q

��

�! Q

0

P j Q

�

�! P

0

j Q

0

;

� de�nition:

A

�

�! E

0

P

�

�! P

0

for every de�nition P

def

=

A.

Note that the parallel omposition operator is asynhronous: eah omponent

evolves regardless of the other so long as they are not involved in a ommon

ation. Stuttering transitions indiated in � 8.2.5 are no more essential in this

approah, where modularity is dealt with in a di�erent way (using expliit om-

muniation). In the transition systems onsidered in previous setions, states

were expliitly de�ned and were onsidered as always being observable through

the onept of trajetory. Properties of behaviors onsidered in � 8.5 are ex-

pressed over trajetories and over states. In CCS only transitions are onsidered

as observable; a CCS term (proess) an be seen as representing an impliit

state, but only its apaity to propose transitions and to ontinue is important.

M

CCS also inludes the restrition operator �n�: if P is a proess and

L is a set of ations di�erent from � , then PnL is the proess that

behaves like P but where ations of L are disallowed; P an progress on a

branh starting with an ation � of L only if this ation an be synhronized

with the omplementary ation �� of a parallel branh of P .

Choie generalizes to an in�nite number of proesses. If (P

x

)

x2N

and

(a

x

)

x2N

are respetively a family of proesses and of ations and if Q is a

proess, the proess ((�

x2N

a

x

:P

x

) j �a

5

:Q)nfa

x

j x 2 Ng evolves neessarily to

136 Understanding Formal Methods

P

5

j Q: this spei�es that the seond omponent ommuniates the value 5 to

the �rst.

A language quite lose to CCS alled CSP (Communiating Sequential Pro-

esses) was proposed by C.A.R. Hoare [Hoa85℄. The design of LOTOS, a stan-

dardized language for teleommuniation protools, was inspired by CCS and

CSP [isob℄. However, SDL turned out to be more suessful from an industrial

perspetive, partly beause it is founded on more familiar onepts (automata

ommuniating via asynhronous messages transmitted on queued hannels)

and partly beause it bene�ts from well-developed tool support.

8.4 The Synhronous Approah on Reative Systems

When a system is omposed of several subsystems evolving in an asynhronous

manner, possible interleavings of events yield a ombinatory explosion of the

number of situations to be taken into aount. Thus understanding phenomena

beomes more ompliated, as well as modeling tasks and, of ourse, veri�-

ation. However, under a number of onditions, one an follow the so-alled

synhronous approah, whih is well illustrated by the Esterel language [BG92℄.

The main idea is to onsider in�nitely fast systems, so that outputs are syn-

hronous with the inputs that ause them. This hypothesis is quite audaious,

but it an be interpreted in two ways:

� if one onsiders a reative system, that is, a system reating to stimuli from

its environment, it amounts to assuming that the reation time of the system

is smaller than the duration separating two stimuli; it is then essential to be

able to bound the reation time, and ontrol strutures of Esterel have been

designed aordingly (it is an imperative language with sequenes, loops and

interrupt mehanisms);

� if one onsiders subsystems of a synhronous system whih has been deom-

posed in a modular way, it means that the response time of a subsystem with

respet to a stimulus provided by another subsystem is null or an safely be

onsidered as null; the big di�erene with the previous ase is that modules

and interations between them are known � sophistiated ompilation teh-

niques an be used � whereas the system may have little or no ontrol over

its environment.

Another important synhronous language is Lustre [CPHP87℄. It is a data-

�ow language: eah synhronization point is represented by the sequene of

values suessively present at that point and the system is de�ned by equations

relating suh sequenes. For instane, in the simple ase of an or logial gate,

we an state the equation s

n

= e

n

_ f

n

in order to express that at eah time

n, the output s

n

is the disjuntion of inputs e

n

and f

n

(this is the idea; the

syntax of Lustre avoids the use of indies). Note that here again, outputs are

synhronous with inputs. The ase of a looping iruit (e.g. a lath) is more

interesting: the output at time n also depends on the output at time n�1, so

we have an equation in the form s

n

= :::s

n�1

:::

Behavioral Spei�ations 137

The synhronous approah is partiularly suited to embedded appliations

subjet to hard and non-trivial temporal onstraints.

8.5 Temporal Logi

Intuitively, temporal logi handles propositions whose truth value evolves over

the ourse of time. Using it for qualifying program behaviors goes bak at least

to Pnueli [Pnu77℄. The idea is quite natural: the state of a system hanges

during the exeution of a program; as a onsequene, properties of the state

hange as well. This is easy to represent in regular logi: if visited states are

suessively s

0

, s

1

, : : : a proposition p whih is suessively false, true, : : : is

represented by a prediate p̂ over N verifying p̂(0) = false, p̂(1) = true : : :

However, the additional argument introdued everywhere turns out to be um-

bersome. Moreover it is not su�ient, beause the integer 0, 1, : : : makes sense

only with respet to a given sequene of states. Temporal logi enapsulates

the maneuvers we need thanks to a small number of operators.

V

Temporal logi is about disrete time. Durations measured with real

numbers are beyond its sope.

8.5.1 Temporal Logi and Regular Logi

Most presentations of temporal logi are based on model theory

3

(see � 3.3.1):

the meaning of temporal logi formulas is diretly de�ned on models. However,

the onept of model used here is somewhat di�erent from the onept used

in � 5.1.3 and in � 5.6.1. More preisely, we are given a transition system and

eah state is mapped to a model in the lassial sense. Thus, a proposition or a

formula P may be true in some states and false in other states. A formal way to

do that onsists of introduing a set of elementary propositions P = fP; Q; : : :g

and in mapping eah state s to the subset of P of propositions whih are true

at s. Equivalently, we an see P , Q, : : : as denoting state prediates. We take

here the latter standpoint. We will also need trajetory prediates ', , : : :

(We an even onsider that P , ', : : : are formulas onstruted in a �rst-order

or a higher-order language, rather than just a propositional language.)

If we look at syntax, temporal logi formulas ombine suh prediates as

propositions. For example, P)AF�Q expresses that if P is true in the urrent

state, then Q is eventually true on every trajetory starting from the urrent

state. Note that state s does not our in the above formula and that we do not

form P (s). This is done only at the level of semantis, realling that the truth

of �propositions� is relative to a state: it makes it expliit that prediates are

hidden behind a propositional notation (more generally, that n+1-ary prediates

are hidden behind n-ary prediate notation).

3

A notable exeption is the temporal logi of Unity, whih is axiomatially de�ned

in [CM89℄. See also � 8.5.5.

138 Understanding Formal Methods

In order to simplify the exposition, we limit ourselves to Kripke models

without bloking states: a trajetory is then a sequene of states (s

n

)

n2N

suh

that for all n, s

n

�! s

n+1

. In the following, we �x a given Kripke model K:

all states and trajetories are impliitly about K. Moreover, s and � always

represent a state and a trajetory, respetively.

The semantis of the state prediate P (respetively the trajetory prediate

') is denoted by K; s P or by abuse of notation, sine K is �xed, s P

(respetively � ').

8.5.1.1 Elementary Formulas. We are given atomi formulas P ; their truth

value P (s) depends a priori on the state s. We do not say more about the

language de�ning suh formulas. What matters is that our ability to determine

P (s) when s is known. We have, not surprisingly:

� s P

def

=

P (s) for P atomi.

For example, in the initial state s

init

of the transition system orresponding to

the protool desribed in � 8.1.3, we have l

1

= 0 and l

2

= 0, whih allows us to

state s

init

 jl

1

�l

2

j��.

The simplest trajetory prediates are onstruted by appliation of the

start operator � on a state prediate. In the following �(i) refers to the ith

element of �.

� � �P

def

=

�(0) P : P is true at the beginning of trajetory �.

Coming bak to the example of � 8.1.3, we have � �(jl

1

� l

2

j � �) for all

trajetories � beginning with s

init

.

8.5.1.2 Logial Connetors. Temporal logial onnetors ^, _, et., are not

applied to propositions, but to state prediates (suh as P and Q), or to tra-

jetory prediates (suh as ' and). Their semantis are de�ned using orre-

sponding onnetors of regular logi, and we proeed similarly for quanti�ers:

� s P ^Q

def

=

s P ^ s Q (similarly for _, et.),

� s 8x P

def

=

8x s P (similarly for 9),

� � ' ^

def

=

� ' ^ � (similarly for _, et.),

� � 8x '

def

=

8x � ' (similarly for 9).

M

The meaning of �^�, �_�, et., is not the same on the left and on

the right of �

def

=

�. On the right, onnetors link propositions whereas

they link prediates on the left: in the latter ase we have (monadi) seond-

order logi as seen in � 5.5. Trajetory quanti�ers introdued in � 8.5.2.2 for

translating branhing operators are also seond-order.

8.5.2 CTL*

Besides �^�, �_�, et. we have spei� operators. They an be divided in two

groups in the temporal logi we onsider now, alled CTL*.

Behavioral Spei�ations 139

8.5.2.1 Temporal Operators. The �rst group inludes temporal operators

X (next), F (future or �eventually�), G (globally), W (weak until) and U (until)

whih build a trajetory prediate from one or two trajetory prediates. In

order to de�ne them we need the su�x of � obtained by removing the k �rst

elements of �: �

k

def

=

(�(k+n))

n2N

.

� � X'

def

=

�

1

 ' : ' will be true on the next step of �.

� � F'

def

=

9n �

n

 ' : ' will eventually be true on �.

� � G'

def

=

8n �

n

 ' : ' will always be true on �.

� � 'W

def

=

8n (8i�n �

i

 :)) �

n

 ' :

' is true on � while is not true.

� � 'U

def

=

9n (�

n

) ^ (8i<n �

i

 ') :

 will eventually be true on � and until then ' will be satis�ed.

Operators W and U are stritly more general than F and G, for example G' is

equivalent to 'Wf . Moreover, 'U is equivalent to 'W ^ F .

Let us point out that temporal operators are applied to trajetory predi-

ates and not to state prediates. It is therefore possible to ombine them, for

example in GF' (' will be in�nitely often true) or in FG' (eventually, ' will be

ontinuously true). However, one often needs to apply them to state prediates

as well. To this end we use

4

the start operator �.

8.5.2.2 Branhing Operators. Operators of the seond group, E (exists)

and A (all), build a state prediate by quantifying a trajetory property over

trajetories starting from the onsidered state:

� s E'

def

=

9� �(0)=s ^ � ' : there exists a trajetory starting from s

whih veri�es ';

� s A'

def

=

8� �(0)=s) � ' : every trajetory starting from s veri�es

'.

8.5.2.3 True Formulas Everywhere. In order to say that a state prediate

P is true in all states of the system, we employ the notation 88P . Symbol 88

an be seen as an operator whih builds a proposition from a state prediate.

It is not part of CTL*: reall that logial onnetors of CTL* do not link

propositions.

8.5.2.4 Examples. Invariane properties are expressed by formulas of the

form AG�P , whih is true in state s if and only if: 8� �(0)=s) 8n P (�(n)).

Thus, in our �rst Unity program in Figure 8.1, the formula stating that x is less

than y forever is AG�(x < y). However, x < y is true only for states that an

be reahed from an initial state. Initial states are haraterized by a prediate

I , whih is the onjuntion of formulas delared after the initially lause.

Then we should onsider the formula I) AG�(x < y). In order to state that

this formula is true in all states, we write 88(I) AG�(x<y)).

4

Experiened users will prefer a lightened notation where � is omitted, onsider-

ing that we have impliit onversions in that ase. Indeed, the � operator is absent

from most presentations. It is made expliit here for a better understanding of the

underlying mathematial model.

140 Understanding Formal Methods

AG AF

EG EF

Figure 8.9: The operators of CTL

Similarly, the safety property we expet from the synhronization protool

desribed in � 8.1.3 is 88(I) AG�(jl

1

� l

2

j � �)).

Liveness properties are expressed by operator F, generally just after A. Thus,

in the system given in Figure 8.7, we have AF�(s=S), and in the program given

in Figure 8.2, we have 88(I) AF�(f = true)).

The progress property on loks of the protool given in � 8.1.3 is more

ompliated. For example, I) AF�(l

1

� 10

100

) states only that l

1

will be

very large. In order to get arbitrarily large, the natural statement is: 8n 2

nat I) AF�(l

1

� n). This formula is allowed in a version of CTL* whih

inludes arithmeti. In the usual version, based on propositional logi, we have

to enode progress in a di�erent way, from the idea: �l

1

will always beome

larger�. Assume we have a state prediate inr at our disposal; we arrange

things in a way suh that this prediate is true if and only if during the last �red

transition, l

1

was inremented. To this e�et, one an insert appropriate �elds

in the state and update them adequately, without disturbing the rest of the

program. (This simple exerise is left to the reader.) Now the progress property

says that along every trajetory, inr is true in�nitely often: 88(I)AGF�inr).

Reahability properties are obtained by ombining E with F: if one ontrols

exeution � the hoie among ompeting transitions at eah step � a state sat-

isfying the desired property will be reahed. Let us onsider again the synhro-

nization protool of � 8.1.3: the reahability of a state where the two loal loks

are equal is expressed by EF�(l

1

= l

2

). The statement 88(I) AG�EF�(l

1

= l

2

))

tells us that this equality is reahable from every state of every trajetory

starting from the initial state.

Behavioral Spei�ations 141

8.5.3 CTL

CTL (omputation tree logi) is the fragment of CTL* obtained when every o-

urrene of a temporal operator (X, F, G, W or U) is immediately preeded by

a branhing operator (A or E). All allowed ompound operators (AX, EF, et.)

build state prediates. They are then neessarily applied to sub-formulas sys-

tematially headed by the start operator �. In pratie this operator is impliit.

Thus, one an say that in CTL formulas are obtained by repeated appliation of

AX, EF, et. on state formulas. This simpli�ation makes automated veri�ation

via model heking muh easier [BBF

+

01℄.

Safety, liveness and reahability properties like the ones desribed in � 8.5.2.4

are of this kind, but not the progress property I) AGF�inr . Fairness prop-

erties, in the form AGF�P are exluded as well. In general one annot express

properties about events whih are along the same trajetory.

Typial ombinations AG �P , AF�P , EG �P and EF�P are illustrated on

diagrams in Figure 8.9, where the tree-like harater of CTL properties is easy

to see. A �lled irle represents a state where P is true.

8.5.4 LTL and PLTL

LTL (linear temporal logi) is the fragment of CTL* where only trajetory pred-

iates are onsidered, that is, prediates built using temporal operators. The

idea is that formulas obtained in this way should be veri�ed on all trajetories.

Formally, it amounts to putting a unique (and, in pratie, impliit) universal

quanti�ation A at the beginning of the formula. Thus LTL does not provide

a means for onsidering the existene of di�erent possible behaviors starting

from a given state. This is why this logi is alled linear. For instane, the

reahability property expressed by AG�EF' has no equivalent formulation in

LTL. More generally, this logi does not allow one to distinguish between two

transition systems having the same trajetories.

Automated veri�ation researh is onentrated on PLTL (propositional

LTL), whih is the fragment of LTL where non-temporal onnetors are those

of propositional alulus (�rst-order quanti�ers are forbidden).

Let us mention in passing a traditional notation oming from the modal

logi S4, whih uses 2 for G (forever) and 3 for F (eventually). This notation

is used in TLA, as we will see in � 8.6.

8.5.5 The Temporal Logi of Unity

The very design of Unity involves two ingredients: the programming language

presented in � 8.1 and a linear temporal logi endowed with the following parti-

ulars: its operators take state prediates as arguments and they return a propo-

sition: they are then weaker than LTL operators (whih build a trajetory

prediate from trajetory prediates); in partiular they annot be embedded.

142 Understanding Formal Methods

In ontrast, propositions obtained in this way an be ombined with logi on-

netors ^, _, et. The latter an then have �lassial� ourrenes (as in � 5.1)

as well as �temporal� ourrenes (as in � 8.5.1.2) in the same formula.

The two basi operators of Unity are o and leadsto (denoted here by ;).

The proposition P o Q (for P onstrains Q) is de�ned by 88(P) AX�Q): Q

omes immediately after a state verifying P . The original version of Unity used

a kind of weak until : P unless Q, whih is de�ned by (P ^ :Q) o (P _ Q)

and turns out to be equivalent to 88AG(�P W �Q). The proposition P ; Q

expresses that every trajetory where P is initially true eventually reahes a

state verifying Q; it is equivalent to 88AG(�P) F�Q).

For instane, a way to formalize the progress property of l

1

in the synhro-

nization protool of � 8.1.3 is:

8n 2 nat (l

1

=n); (l

1

=n+ 1) : (8.1)

The logi of Unity is originally de�ned in an axiomati way by dedution

rules. Other rules an be derived, suh as the following. It is the set of suh

rules that makes Unity of pratial interest as a veri�ation tehnique.

P ; Q _ B B ; R

P ; Q _ R

:

8.5.6 Hennessy�Milner Modalities

It is sometimes useful to state properties whih refer to transition labels.

5

It is

even essential if we work with a language like CCS. To this end, one an use the

modalities [�℄ and h�i where � is a label, as in Hennessy�Milner logi [HM85℄.

They apply to a state prediate P and give new state prediates [�℄P and h�iP .

The latter is true in every state s from whih a state satisfying P an be reahed

through a transition labeled by �: h�iP (s) if and only if 9s

0

s

�

�! s

0

^ P (s

0

).

Equally, [�℄P is true in every state s from whih every transition labeled

by � leads to a state satisfying P : [�℄P (s) if and only if 8s

0

s

�

�! s

0

) P (s

0

).

For example, in the system given in Figure 8.7 page 131 we have:

� R hait^hresetit: from the state R one has the option of getting a drink

and the option of asking for reimbursement;

� A [20℄hresetit: from the state A, after paying 20 ents, one an still ask

for a reimbursement;

� A h20i(hait^hresetit): from the state A one an pay 20 ents and then

hoose between getting a drink or asking for a reimbursement;

� A h20i(:hait ^ hresetit): from the state A one an pay 20 ents and

then be in position to ask for a reimbursement without having the option of

getting a drink.

5

In � 8.5.6 and also in � 8.5.7, the model, that properties are about, is a transition

system rather than a Kripke system.

Behavioral Spei�ations 143

V

Given that only proessed ations are taken into aount, one might

think that Hennessy�Milner logi is limited to expressing properties

of traes, as LTL is limited to properties of trajetories. This would be a mistake.

The last property stated above is not true of the �rst vending mahine desribed

in Figure 8.6 whereas both systems have the same traes, as seen previously.

In fat modalities [�℄ and h�i are lose to branhings expressed by AX and EX.

It is easy to extend the previous modalities by replaing � by a set of ations:

s

K

��! s

0

an then be onsidered as an abbreviation for 9� 2 K s

�

�! s

0

. In this

ontext, we agree that ��� denotes the set of all ations of the system. Thus

[�℄P is true in any state from whih all transitions lead to a state satisfying

P . In our example, we have A [�℄h1Eit.

8.5.7 Mu-alulus

The properties just mentioned would also be satis�ed by a vending mahine

that stops working after delivering its �rst drink or paying money bak. The �-

alulus based on Hennessy�Milner logi allows one to speify omplex iterative

behaviors thanks to the introdution of least �xed points �X:�(X) and of

greatest �xed points �X:�(X), where �(X) represents a state prediate in

whih the state prediate variable X an our.

For example, let us onsider the formula P

def

=

�X:hreseti ^ [�℄[�℄[�℄X .

In a �rst approximation it an read: P is true if reset an be �red and if,

after �ring three transitions, reset an again be �red and if, after �ring three

transitions again, reset an again be �red, and so on. Here, P desribes a

ylial behavior with period 3. In the system of Figure 8.7, P is true in states

P and F.

More preisely, P is the greatest solution of the �xed-point equation X =

hreseti^[�℄[�℄[�℄X , that is, the greatest prediateX satisfyingX)hreseti^

[�℄[�℄[�℄X . Aording to � 3.6, this solution is obtained by suessive iterations

P

0

= t, P

1

= hreseti ^ [�℄[�℄[�℄P

0

, P

2

= hreseti ^ [�℄[�℄[�℄P

1

, et. but we

have already P

2

() P

1

. To see that, let jZj denote the set of states satisfying

Z, we have jP

0

j = fS; A; R; Fg, jP

1

j = fR; Fg and jP

2

j = fR; Fg.

This de�nition by �xed points makes use of the theorem of Knaster�Tarski

whih asks for a monotony ondition. In the �-alulus, the latter is ensured

using a syntati devie: �xed-point variables (like X above) must our only

under an even number of negations.

Terms in the form �X:f(X) express properties about full trajetories and

then are related to safety. Dually, least �xed points �X:f(X) are related to

liveness properties.

Fixed points provide a onvenient means for de�ning the semantis of CTL.

For example E(�P U �Q) is true in state s if Q is true in s, or if P is true

and there exists a next state in whih E(�P U �Q) is true. More preisely,

jE(�P U �Q)j is the smallest set of states X ontaining jQj and ontaining states

s suh that P (s) and s �! s

0

with s

0

2 X . This idea is represented in a syntheti

144 Understanding Formal Methods

way in the formula �X:Q_ (P ^h�iX), and is the basis of the �rst veri�ation

algorithms for CTL by model heking.

M

Muh more omplex properties an be formulated by alternating �s

and �s. For instane �X:(�Y: P _h�iY) ^ h�iX represents the CTL

formula EG�EF�P (there exists a trajetory along whih one always has the

option, branhing o� if neessary, of reahing a state satisfying P), whereas

�X:�Y:(P _h�iY ^ h�iX) represents the CTL* formula EGF�P (there exists

a trajetory along whih P is in�nitely often true), whih is beyond what CTL

and LTL an express. The �rst formula an be analyzed as follows: �Y:P_h�iY ,

whih is equivalent to EF�P , is embedded in �X:Q^h�iX , whih is equivalent

to EG�Q. The seond formula is more subtle: it ontains a �true� alternation of

�xed-point operators � the two variables X and Y are within the sope of the

seond �xed-point operator(�). Still more omplex (and deliate) properties

an be stated, using additional �xed-point operators alternations, so that we

an go beyond the expressive power of CTL*. The interested reader may onsult

the literature ited at the end of this hapter.

8.6 TLA

With TLA (temporal logi of ations), Leslie Lamport proposed to speify both

the expeted properties of the behavior of a system and the system itself, all

within the framework of a linear temporal logi. To this end, temporal operators

are applied to transitions. The latter are desribed by a binary relation between

the urrent state and the next state using the same onvention as in Z: for

example, inrementing l

1

is desribed by a relation A

1

whih an be de�ned by

l

0

1

= l

1

+1 or by l

0

1

�l

1

= 1. Suh a relation in TLA is alled an ation. A system

that perpetually inrements l

1

is spei�ed as follows: A

1

def

=

2(l

0

1

�l

1

=1). To

speify the initial state, we just need a state formula, for example Init

1

def

=

l

1

=0.

The onjuntion Init

1

^ 2A

1

makes up our �rst TLA system.

From a mathematial perspetive, one an onsider that a TLA formula 2A

de�nes a Kripke model hS;Ri, by stating a onstraint on S and on R. As a

�rst approximation, S is de�ned by the voabulary employed in A, whih is

just l

1

in our example.

6

Eah word of the voabulary denotes a �eld of S, that

we translate to a projetion as in � 8.2.6 for Unity. In the ase of A

1

, at the

moment we have S = N while l

1

boils down to the identity funtion.

7

The

formula A then de�nes the transition relation R. This yields in example A

1

:

R

1

= fhs; s

0

i 2 S � S j l

1

(s)� l

1

(s

0

) = 1g

= fh0; 1i; h1; 2i; h2; 3i; : : :g :

6

l

0

1

must be onsidered as a term obtained by appliation of the post�x operator

0

to l

1

; this operator is similar to X introdued in � 8.5.2, but it is applied to a term

instead of a formula.

7

Let us mention that aording to Lamport, the domain of �elds should not be

spei�ed. This point is not essential here.

Behavioral Spei�ations 145

However, as a TLA spei�ation is the onjuntion of several formulas hav-

ing, in general, di�erent voabularies, but whih an overlap � as in Unity,

ooperation is modeled by �eld sharing � one agrees that S is only partially

spei�ed by the voabulary of A. In our example we would have S = : : :�N�: : :

and l

1

would be the appropriate projetion. The transition relation R is de-

�ned as before by formula A, but with the extended interpretation of S. Thus,

R

1

beomes, assuming that l

1

is the �rst projetion and that we have another

Boolean �eld:

R

1

= fhh0; fi; h1; fii; hh0; fi; h1; vii; hh0; vi; h1; fii; hh0; vi; h1; vii;

hh1; fi; h2; fii; hh1; fi; h2; vii; hh1; vi; h2; fii; hh1; vi; h2; vii;

hh2; fi; h3; fii; hh2; fi; h3; vii; hh2; vi; h3; fii; hh2; vi; h3; vii;

: : :g

Now, if we augment the previous spei�ation with a seond formula A

2

def

=

(l

1

�1 ^ b

0

2

= f)_(l

1

>1 ^ b

0

2

= v), the onjuntion A

1

^A

2

yields the transition

relation:

R

1

\R

2

= fhh0;�i; h1; fii; hh1;�i; h2; fii; hh2;�i; h3; vii; : : :g

where the joker ��� represents the two values f and v. The important point

to remember is that the transition relation we get by omposition is no longer

the Cartesian produt of transition relations, but their intersetion.

M

It is possible to present the omposition using a more general on-

strut alled the �bered produt. The produt and the intersetion

are two speial ases of �bered produts. We will not expand this remark here.

V

The terminology of TLA is di�erent from that employed for transition

systems in � 8.2.1: in the former ase an ation is a subset of S � S,

in the latter an ation is a label (assoiated to a subset of S � S).

As with the produt, omposition by onjuntion entails a synhronization

of transitions of all omponents. If we want A

1

to evolve as well as another

system that does not mention l

1

, the remedy is the same as in � 8.2.5: o�ering

a hoie between modi�ation and stuttering. In order to simplify the writing,

in TLA we have the notation [R℄

hzi

for R _ (z

0

= z). One would then write:

2[l

0

1

� l

1

= 1℄

hl

1

i

.

One of the main points of TLA is that behaviors are spei�ed by stuttering

invariant formulas : formulas suh that, if they are satis�ed by a trajetory �,

they are also satis�ed by any trajetory we get by inserting or removing state

repetitions in �. For this, formulas are essentially in the form 2[R℄

hzi

.

Let us illustrate the idea on Rouairol's protool written in Unity in Fig-

ure 8.4. The �rst omponent performs three ations at will:

�N

1

def

=

l

1

<d

1

^ l

0

1

�l

1

=1 inrementation,

�E

1

def

=

0

2

=

2

[fl

1

g sending,

�R

1

def

=

: : : reeiving, not detailed here.

146 Understanding Formal Methods

Note that the �ring ondition ofN

1

is represented by a onjuntion with l

1

<d

1

.

One would de�ne ations N

2

, E

2

and R

2

in a symmetrial manner. The desired

behavior 	 is then spei�ed as follows (be warned that ations relative to

hannel

i

are put together; their behavior ould be augmented by losses and

dupliations):

C

1

def

=

R

1

_E

2

C

2

def

=

R

2

_ E

1

HM

1

def

=

N

1

_ C

1

_ C

2

HM

2

def

=

N

2

_ C

2

_ C

1

	

def

=

2[HM

1

℄

hl

1

;d

1

;

1

;

2

i

^ 2[HM

2

℄

hl

2

;d

2

;

2

;

1

i

M

We still have to ensure progress and fairness of the behavior, us-

ing a onjuntion with a suitable formula, and without introduing

any parasiti safety property. To this end one uses partiular formulas noted

WF

f

(A) or SF

f

(A). They are de�ned by means of 3 and 2, and they express

that ation A (HM

i

in our example) is fairly �red and modi�es �elds listed in

f . They represent stuttering invariant properties.

Reasoning is performed in TLA using about �fteen dedution rules. Some

of them are as simple as

P)Q

2F)2Q

, but rules on fairness properties are more

omplex. The reader may onsult [Lam94℄ and [Aba90℄.

8.7 Veri�ation Tools

Previous setions presented di�erent approahes for aurately speifying sys-

tems omposed of several entities evolving at the same time, as well as the

properties we expet them to satisfy.

8.7.1 Dedutive Approah

For verifying these systems, one an proeed by deomposition and formal de-

dutions, notably in the framework of Unity or TLA. The user then has to

properly organize his or her understanding of the phenomena under onsidera-

tion and to master formal reasoning to a good extent. Proof environments an

then provide valuable assistane. A good speialized tool is STeP [BBC

+

95℄.

Libraries on top of general proof assistants suh as LP, Isabelle and Coq, are

also available or in development, see for example the work of Crégut and Heyd

[HC96℄. The strong point of this approah is that the user may use powerful

mathematial devies for struturing spei�ations and proofs, and for explain-

ing when and why the system works.

8.7.2 Veri�ation by Model Cheking

Considering that the number of possible senarios for a system omposed of

several entangled subsystems inreases very quikly, inluding for small sys-

tems, a di�erent approah was invented in the 1980s and transpired to be quite

Behavioral Spei�ations 147

e�ient and e�etive: building the Kripke model of the whole system (labels

are generally ignored), that is, the graph of all global states and possible tran-

sitions between them, then omputing the truth value of expeted propositions

on eah state � hene the namemodel heking. This is possible provided that

the graph is �nite (hene extendable data strutures like unbounded queues or

trees are not allowed), and that properties are expressed in a propositional

temporal logi.

Without going into detail, the veri�ation of a CTL formula is based on

�xed-point omputations (see � 8.5.7). It is linear in the size of the graph and

in the size of the formula. However, the number of states is itself essentially

exponential: introduing a one byte variable in the two protool entities is

enough to make the number of global states explode by 32,000. This approah

has atually proven to be really suessful sine the introdution of tehniques

for representing graphs and formulas in a ompat way where ommon parts

are shared, in partiular thanks to the use of BDDs (binary deision diagrams).

M

The automated veri�ation of a PLTL formula � is more omplex be-

ause it is expressed about a path instead of a state. One translates

its negation :� into an observer automaton and then omputes the synhro-

nized produt of the latter with the system to be veri�ed. The property is

satis�ed if and only if the language reognized by the produt is empty. The

veri�ation remains linear in the size of the graph but beomes exponential in

the worst ase in the size of the formula.

Moreover, note that in a number of environments, the property to be

veri�ed has to be diretly expressed in the form of an automaton, without using

temporal logi. A similar idea is used in proofs by bisimulation, though in a

tehnially very di�erent way. The basi priniple there is to hek that a given

automaton (e.g. a CCS proess) has the same observable behavior (in terms of

labels) as a seond automaton, the latter being onsidered as an abstrat view

of the former.

From the user perspetive, model heking an relieve him or her of an

exhaustive amount of reasoning on a huge number of speialized situations.

Another valuable aspet of this approah is that if a property is not satis-

�ed, model heking algorithms produe a ounter-example senario. The main

di�ulties are in the modeling steps of the system and of expeted proper-

ties. Automated veri�ation is made possible by adequate limitations in the

languages (propositional logi, bounded data strutures). Remaining means of

expression have to be used very leverly.

8.8 Notes and Suggestions for Further Reading

The general formalism of transition systems is desribed in [Arn94℄. The lan-

guages Unity and TLA are respetively de�ned in [CM89℄ and [Lam94℄. The

proess algebras CCS and CSP are dealt with in [Mil89℄ and [Hoa85℄, respe-

tively.

148 Understanding Formal Methods

The synhronous approah is desribed in [Hal93℄. Interested readers may

also onsult papers on Esterel [BG92℄, Lustre [CPHP87℄ and Signal [BLJ91℄.

Exellent syntheses on temporal logi an be found in [Eme90℄ and [Sti92℄;

however, Unity and TLA are not overed. Let us also mention that some tem-

poral logis inlude modalities about the past, they are for instane exploited

in Lustre for safety properties. The referene manual for the STeP environment

is [BBC

+

95℄. The �-alulus is studied in [Bra92℄ and in [AN01℄.

Referene books on veri�ation tehniques through model heking are also

available. MMillan's book is still very valuable [MM93℄, while [CGP99℄ is

entered on underlying theory and implementation tehnologies. [BBF

+

01℄ is

more syntheti and provides useful pratial advie, as well as an overview of

the main software tools available. Two of the most prominent are SMV [Bert℄,

whih is based on CTL, and SPIN, based on LTL [Hol97℄. Original papers on

model heking are [QS82℄ and [CES83℄. The relative merits of branhing as

opposed to linear time temporal logis have been a matter of debate sine the

early 1980s. For a reent paper on this issue, the reader is referred to [Var01℄.

9. Dedution Systems

In the propositional ase, a formula P has only a �nite number of interpreta-

tions: there are exatly 2

n

of them, where n is the number of atomi propositions

used in P . The truth table method makes it easy to determine whether P is

satis�ed, is a tautology, or is a logial onsequene of a �nite set of propositions.

This is a semanti tehnique: it is based on a study of models of P .

In ontrast, the topi of proof theory is to know the onsequenes of a set

of axioms by purely syntati means. The entral onept is then the dedutive

onsequene relation, denoted by a. This relation is a priori di�erent from

the semanti relation j=. It is de�ned by so-alled logial axioms (for example,

(P ^ Q)) P) and rules alled inferene rules or dedution rules. Reall that

in model theory, the symbol j= an also be used to state that a formula P is

valid (j= P). In a similar way, ` P denotes that P is a theorem.

M

We will need to express syntatial manipulations on the dedutive

onsequene relation itself. To this e�et we will introdue ordered

pairs � a � alled sequents. Then we will have proof trees made of sequents

and having a sequent as their onlusion. This yields a more general onept

of a theorem and leads us to use di�erent symbols for stating theorems and

for representing dedutive onsequenes, so that we ould write ` � a �.

Aording to [Gal93℄, the symbol a omes from Girard.

Logial axioms are always true. They should not be onfused with axioms

whih are proper to a given theory and de�ne the latter. A well-known exam-

ple are Peano axioms, whih de�ne arithmeti. Suh axioms are alled proper

axioms, or non-logial axioms.

There are three main approahes for de�ning a: Hilbert's approahes, whih

uses many axioms and very few inferene rules and two approahes due to

Gentzen (natural dedution and sequent alulus) whih have the onverse

features: few axioms and many dedution rules. We start with these three

methods.

We will also sketh two other tehniques for alulating onsequenes. The

�rst was developed by Dijkstra and Sholten in the framework of their al-

ulational approah to programming. The seond is rewriting systems, whih

provide e�ient tools for equational reasoning � prosaially: replaing equals

with equals.

The hapter ends with the relationship between truth and provability. One

would expet that provable formulas are true and onversely. This is orret

for �rst-order logi, but arithmeti makes the situation more ompliated. The

150 Understanding Formal Methods

main results ome from works originally motivated by the foundations of math-

ematis, onsidered as the typial plae for studying formal reasoning. The

pratie of formal methods is mainly onerned by intrinsi limitations related

to fully automati proof searh tehniques.

9.1 Hilbert Systems

The impat of Hilbert systems seems less important than the other approahes

for omputer siene. Therefore we limit ourselves to propositional logi.

The notation ` P states that the proposition (or the formula) P is proved.

In partiular, axioms will be noted in this way.

In the framework of propositional logi, a Hilbert system has only one de-

dution rule, alledmodus ponens. It an read, P and Q being arbitrary propo-

sitions: if P)Q is proved and if P is proved, then Q is a theorem as well:

P)Q P

Q

:

First-order logi inludes a seond inferene rule, the generalization rule whih

reads: if P is a theorem, then 8xP is a theorem as well. For example, from

x>0) 2:x>0 we dedue 8x x>0) 2:x>0:

P

8xP

:

The onstrution of proofs is quite simple. The intuitive idea is to present

a proof in the form of a tree

1

where nodes are labeled by an instane of an

inferene rule and where leaves are labeled by an axiom. The proved theorem

is on the root. The preise de�nition of a proof is as follows:

� if ` A is an axiom,

A

ax

is a proof with onlusion A;

A

ax may be regarded as a rule without

premise;

� if D

1

and D

2

are two proofs with respetive onlusions C

1

and C

1

) C

2

,

then the tree

D

2

C

1

) C

2

D

1

C

1

C

2

mp

with root modus ponens, where P and Q are respetively instantiated by C

1

and C

2

, with immediate left subtree D

2

, and with immediate right subtree

D

1

, is a proof with onlusion C

2

.

1

The onept of a tree an itself be formalized, see page 83.

Dedution Systems 151

A formula P is a theorem if there exists a proof tree with onlusion P .

Note that we will sometimes indiate expliitly, on proof trees, the name of the

rules we use near the orresponding fration lines.

The main part of information is atually ontained in the axioms. These

axioms, on whih we agree independently from any theory (in the sense de�ned

in � 5.6.1), are alled logial axioms. They are hosen in a way suh that all

valid formulas an be dedued. Many axiom systems satisfy this ondition. All

these systems are equivalent (that is, the axioms of one system are theorems

of any other axiom system). For illustration purposes, here are some axioms of

a well-known system due to Hilbert and Akermann [HA28℄:

` P) (Q) P) ;

` (P) (P)Q))) (P)Q) ;

` (P)Q)) ((Q)R)) (P)R)) :

This system inludes twelve additional axioms about ^, _,() and : onnetors

[GG90, p. 112℄. They are atually axiom shemas: real axioms are obtained if

we substitute any proposition of the onsidered language for the symbols P ,

Q, R. For example, from the shema ` P) (Q) P), we get, in a language

inluding the proposition symbol P:

` P^P) (:P) P^P) :

Now we an provide a proof of P) P, using the two �rst axioms:

(P) (P) P))) (P) P)

ax

P) (P) P)

ax

P) P

mp

.

The presentation of this tree an be simpli�ed, beause we know that the

formulas displayed at the level of leaves are neessarily axioms and that modus

ponens is used in all other plaes:

(P) (P) P))) (P) P) P) (P) P)

P) P

.

We will see below more varied proof trees, where it is better to keep expliitly

the name of the rules whih are used.

It is regrettable that Hilbertian axiomati systems are somewhat ontrived.

Axioms are sometimes ompliated. It is a shame that the proof of P) P is

not trivial. It is hard to laim that this formalization of logi represents usual

logial reasoning. The situation gets even worse in Hilbert systems invented

with the purpose of minimalizing the number of axioms. In pratie, no proof

assistant is based on this approah.

In mathematis (group theory, topology, geometry, et.) a system of (proper)

axioms plays an important role; for a given theory; there is few room for al-

ternative systems. In ontrast, logi already o�ers a large number of possible

systems, this is already the ase for propositional logi. This atually suggests

that no one tautology is more fundamental than the others.

152 Understanding Formal Methods

However Hilbert systems are quite onvenient for the mathematial study of

logi, in order to know whether every provable proposition is true and onversely

� these properties are respetively alled soundness and ompleteness. In this

respet a partiular relation turns out to be important: the deduibility relation.

The axioms of a theory (in the sense given in � 5.6.1) are alled proper

axioms, or non-logial axioms. Let � be a set of losed formulas. A losed

formula P is a dedutive onsequene of � (we also simply say that P is

deduible from �), whih we note � a P , if P an be proved using modus

ponens � and the generalization rule in the ase of �rst-order logi � from

logial axioms and formulas of �.

Let � be an axiom system allowing one to prove P) Q; if we insert the

hypothesis P in �, we observe (thanks to modus ponens) that �; P a Q. The

onverse property seems natural and an atually be proved, but more work is

required.

Theorem 9.1 (dedution)

If �; P a Q then � a P)Q.

M

This theorem is proved by indution on (the length of) the proof

trees orresponding to �; P a Q, by inspeting the di�erent possible

ases. Warning: it is important to distinguish the proof of the previous theorem

and the objets it talks about, whih are themselves proofs and theorems. There

are two language levels, and the �rst is the metalanguage of the seond.

The metalanguage is the language we use for de�ning, ommenting

or explaining another language. It is a natural language in most ases, suh

as English. In the present ase the metalanguage involves basi mathematial

onepts in order to explain the syntax of logi as well as onepts related to

dedution. In this respet, Theorem 9.1 is a metatheorem.

We will see that natural dedution and sequent alulus take the opposite

view with relation to Hilbert systems: the meaning of impliation will be based

on the two last (and symmetri) properties formalized by modus ponens and

the dedution theorem. Other onnetors will also be systematially treated in

a symmetri way.

9.2 Natural Dedution

With natural dedution, Gentzen introdued a formalization more faithful to

regular reasoning.

9.2.1 Informal Presentation

Let us start with a simple example. We want to show that the square of an

even number is even, given that the produt of an even number by an arbitrary

number is even. The formula to be proved is:

Dedution Systems 153

[8x even(x))8y even(x:y)℄) [8a even(a)) even(a:a)℄ : (9.1)

This example has no mathematial interest, but it allows us to illustrate the

meaning of quanti�ers and impliation. As in usual reasoning, our �rst step is

to prove that, from the hypotheses 8x even(x)) 8y even(x:y) and even(a),

we an dedue even(a:a).

We then assume 8x even(x)) 8y even(x:y) and we onsider for x an

arbitrary a. We then have even(a))8y even(a:y). Let us now assume that a

is even. We an dedue that for all y, a:y is even, then that a:a is even. Hene

we have even(a)) even(a:a), for any a. We dedue 8a even(a)) even(a:a).

This formula was proved under the hypothesis 8x even(x)) 8y even(x:y),

hene we onlude (9.1).

Let us split up this reasoning into its omponents. First we prove that, from

the hypotheses:

8x even(x))8y even(x:y) and (9.2)

even(a) (9.3)

we an dedue:

even(a:a) : (9.4)

Let us take an arbitrary a for x in (9.2). We have then:

even(a))8y even(a:y) : (9.5)

Let us now onsider the hypothesis (9.3): a is even. From (9.5) and (9.3) we

get that a:y is even for all y:

8y even(a:y) ; (9.6)

then (9.4) if we take a for y. This onlusion depends on the hypothesis (9.3),

so we have:

even(a)) even(a:a) ; (9.7)

and this for an arbitrary a, that is for an a on whih we don't have any hy-

pothesis. We dedue:

8a even(a)) even(a:a) ; (9.8)

whih was proved under the hypothesis (9.2), hene (9.1).

The inferenes used in the previous example have one of the following

shapes:

� if from P we an prove Q, we have a proof of P)Q, more preisely a proof

of P) Q without the hypothesis P ; to put it otherwise: in order to prove

P) Q it is enough to prove Q under the hypothesis P ; thus we got (9.6)

from (9.3), hene (9.7);

154 Understanding Formal Methods

� if we proved P) Q on the one hand and proved P on the other, then we

have a proof of Q; for instane we dedued (9.6) from (9.5) and (9.3);

� if we proved P (P may ontain free ourrenes of x) without any hypothesis

on the variable x then we have a proof of 8xP ; in our example, see how we

dedued (9.8) from (9.7); however, we ould not dedue 8a even(a:a) from

(9.4), beause a hypothesis on a was still present!

� if we proved 8xP then we have a proof of [x := t℄P where t is an arbitrary

term; for example, we dedued (9.4) from (9.6).

We observe that eah onnetor ? is de�ned by an introdution rule and an

elimination rule. An introdution rule determines how we an get a formula

having ? as its main onnetor, while an elimination rule shows how, from suh

a formula, we an get one of its immediate subformulas. This orresponds to

a general thought line: in the framework of natural dedution, the behavior of

eah onnetor is de�ned by introdution and elimination rules. Here are the

rules for onjuntion and disjuntion:

� if we proved P and we proved Q, then we have a proof of P ^Q;

� if we proved P ^Q, then we have a proof of P (similarly, we also have a proof

of Q);

� if we proved P (similarly, if we proved Q), then I have a proof of P _Q;

� if we proved P _Q, and if in eah ase we an prove R, then we have a proof

of R.

Natural dedution inludes no logial axiom; but one manipulates dedu-

tions under hypotheses. The typial way to disharge these hypotheses is to

use introdution rules for). A proof is a speial ase of dedution in whih

no hypothesis is left; �nally, as in Hilbert systems, a theorem is a formula for

whih there exists a proof.

The example of even numbers illustrated this proess. One of the simplest

examples is the proof of P) P . First we put the hypothesis P , and we have

a trivial dedution of P under this hypothesis. Using the introdution rule for

), we immediately get a dedution of P) P without hypothesis.

9.2.2 Formal Rules

The formalization of natural dedution inferene rules takes the shape of fra-

tions, as in Hilbert systems. Eah rule is identi�ed by a name suh as ^

i

(introdution of ^), ^

e1

or ^

e2

(respetively left and right elimination of ^).

The rules of the system NJ of Gentzen are given in Figure 9.1. We omment

on them now.

In a proof, hypotheses are identi�ed by a number between parentheses.

When a hypothesis is disharged, its number is realled on the orresponding

inferene rule (introdution of), elimination of _ or of 9). When one of these

three rules is applied, it is possible to disharge one, several (see the example of

Figure 9.2) or zero ourrenes of the same hypothesis; all ourrenes marked

by the appropriate number are disharged. A given formula may be used several

Dedution Systems 155

P Q

^

i

P ^Q

P ^Q

^

e1

P

P ^Q

^

e2

Q

(n)

z}|{

P

.

.

.

Q

)

i(n)

P)Q

P)Q P

)

e

Q

?

?

e

P

P

8

i

8x P

8xP

8

e

[x := t℄P

P

_

i1

P _Q

Q

_

i2

P _Q

P _Q

(m)

z}|{

P

.

.

.

R

(n)

z}|{

Q

.

.

.

R

_

e(m;n)

R

[x := t℄P

9

i

9x P

9x P

(n)

z}|{

P

.

.

.

Q

9

e(n)

Q

Figure 9.1: The system NJ of Gentzen

times as a hypothesis and then have several ourrenes. These ourrenes may

be marked by the same number or by di�erent numbers. In the latter ase, they

will be disharged on di�erent logial steps.

In order to apply the rule 8

i

, it is neessary that no hypothesis where x is

free is left, as we have seen above: suh a hypothesis would onstrain x, while

we want x to be arbitrary! By a similar reasoning, a side ondition for applying

the rule 9

e

is that in all hypotheses exept P , x annot our free.

The symbol ? denotes here the absurd, like f in � 5.1.2, and not the unde-

�ned value we introdued on page 88 for 3-valued logis. Of ourse, there is no

introdution rule for ?. In order to use this onstant, we an onsider it as a

hypothesis. For example, Figure 9.3 ontains a proof of P) ((P)?))?).

The negation :P is not a primitive onept in natural dedution, it is

onsidered as an abbreviation for P) ?. For example, we have a proof of

P)::P in Figure 9.3. Similarly, P () Q is onsidered as an abbreviation for

(P)Q) ^ (Q) P).

156 Understanding Formal Methods

(1)

z }| {

P ^Q

^

e2

Q

(1)

z }| {

P ^Q

^

e1

P

^

i

Q ^ P

)

i(1)

P ^Q) Q ^ P

Figure 9.2: Commutativity of onjuntion

(1)

z}|{

P

(2)

z }| {

P)?

)

e

?

)

i(2)

(P)?))?

)

i(1)

P) ((P)?))?)

(1)

z}|{

P

(2)

z}|{

:P

)

e

?

)

i(2)

(:P))?

)

i(1)

P)::P

Figure 9.3: Introdution of a double negation

(1)

z }| {

8x even(x))8y even(x:y)

8

e

even(a))8y even(a:y)

(2)

z }| {

even(a)

)

e

8y even(a:y)

8

e

even(a:a)

)

i(2)

even(a)) even(a:a)

8

i

8a even(a)) even(a:a)

)

i(1)

[8x even(x))8y even(x:y)℄) [8a even(a)) even(a:a)℄

Figure 9.4: Example of even numbers

9.2.2.1 Formalized Examples. Figure 9.2 presents a half of the proof of

ommutativity of ^, while Figure 9.3 etablishes P) ::P . The example of

even numbers is formalized in Figure 9.4.

These proof trees an be read in two ways. The easiest is from the top to the

bottom. Reading a proof in this diretion orresponds to the way semi-formal

proofs are usually presented. The explanation given above for even numbers is

an example of this kind. The reader has just to hek that all steps are orret.

Figure 9.2 ould then read: assume P ^Q; using ^

e

twie, we dedue Q on the

one hand and P on the other, hene Q^P by ^

i

; we onlude P ^Q) Q^P

by)

i

.

In ontrast, when we want to onstrut a proof tree, it is generally easier to

start from its root. One is then onstantly guided by the shape of the urrent

goal. Thus, in order to prove P ^ Q) Q ^ P we have to prove Q ^ P , that

Dedution Systems 157

is, Q and P separately, from the hypothesis P ^Q. We will see below (� 9.2.5)

how this strategy is supported by software tools.

Let us revisit the total orretness of the linear searh algorithm, whih was

proved on page 25. One of the properties of the loop variant was based on the

fat that x � N was a loop invariant:

�We still have to show that the property v � 0 (...) x � N [is left

invariant℄. At the beginning of an iteration step, we have neessarily

:P (x) whih yields x 6= N , sine N satis�es P (N); hene x � N boils

down to x < N ; after the assignment x:=x+1, this yields x � N as

expeted, sine N and x are integers.�

The property to be proved an be formulated as follows

P (N) ^ :P (x) ^ x�N) x+1�N : (9.9)

It is neessary to make preise the theory we work with. An option would be to

onsider a theory of relative integers, but in order to avoid the introdution of

additional material, let us keep Peano arithmeti. Thus we just need a onstant

N, a prediate symbol P and we assume P(N). The expression x+1 is represented

by S(x); as in � 5.3.2.2, x�y is de�ned as x<S(y). Our goal is then to prove,

under the hypothesis P(N):

:P(x) ^ x<S(N)) S(x)<S(N) : (9.10)

We will use the following axiom for equality:

x=N) [P(N)) P(x)℄ : (9.11)

On this example we will onstrut the proof tree in the bottom-up diretion.

If we look at the shape of the goal (9.10), a natural strategy is to attempt

to prove S(x)<S(N) under the additional hypothesis :P(x) ^ x<S(N). The

urrent goal boils down to x<N if we admit that we have the following lemma:

8x8y x<y) S(x)<S(y) : (9.12)

This lemma is available on any deent proof tool, however a formal proof is

given below. At this stage we have the following partial tree:

8x8y x<y) S(x)<S(y)

8

e

8y x<y) S(x)<S(y)

8

e

x<N) S(x)<S(N)

(1)

z }| {

:P(x) ^ x<S(N)

.

.

.

o

to be provided

x<N

)

e

S(x)<S(N)

)

i(1

.

)

:P(x) ^ x<S(N)) S(x)<S(N)

We still have to show x<N under the hypotheses P(N) and :P(x) ^ x<S(N).

As the goal is atomi, we now proeed from the top to the bottom: let us split

158 Understanding Formal Methods

the seond hypothesis into :P(x) and x<S(N). Both of them are atomi as well,

but a Peano axiom (see � 5.3.2.1 on page 85) happens to state that x < S(N)

implies x<N_x=N. Eliminating _ allows us to onsider the two ases x<N and

x=N separately. The branh to be onstruted then has the following shape:

x<S(N)

)

e<

x<N _ x=N

(2)

z }| {

x<N

.

.

.

x<N

(3)

z }| {

x=N

.

.

.

x<N

_

e(2;3

.

)

x<N

Proving x<N from x<N is trivial. We are left with proving x<N from x=N...

and the additional hypotheses :P(x) and P(N), whih yield the absurd thanks

to the equality axiom:

:P(x)

(3)

z }| {

x=N P(N)

)

e=

P(x)

)

e

?

?

e

x<N

.

The notation)

e=

is an abbreviation for two onseutive eliminations of) from

the equality axiom (9.11). We proeed in a similar manner for the omparison

axiom. Note that onstruting a proof using additional axioms does not raise

any speial di�ulty. This amounts to working under the hypothesis that these

axioms are satis�ed. The proof of x<N is then:

(1)

z }| {

:P(x) ^ x<S(N)

^

e2

x<S(N)

)

e<

x<N _ x=N

(2)

z }| {

x<N

(1)

z }| {

:P(x) ^ x<S(N)

^

e1

:P(x)

(3)

z }| {

x=N P(N)

)

e=

P(x)

)

e

?

?

e

x<N

_

e(2;3

.

)

x<N

9.2.2.2 An Arithmetial Example. In order to illustrate how we an for-

malize reasoning by indution, let us prove the property (9.12) we used earlier:

8x8y x<y) S(x)<S(y) : (9.12)

This formula is proved by indution on y. It means that we prove:

8y x<y) S(x)<S(y) (9.13)

using the axiom of indution (5.7) on page 86 that we reall here:

Dedution Systems 159

(x<0) S(x)<S(0)) ^

(8y (x<y) S(x)<S(y))) [x<S(y)) S(x)<S(S(y)) ℄)

) 8y x<y) S(x)<S(y) :

(9.14)

We get (9.12) from (9.13) by applying the rule 8

i

. All hypotheses on x must be

removed. The formula (9.13) is a trivial onsequene of (9.14) as soon as:

x<0) S(x)<S(0) and (9.15)

8y (x<y) S(x)<S(y))) [x<S(y)) S(x)<S(S(y)) ℄ (9.16)

are proved. We entrust the reader with the task of heking it by means of a

su�iently wide sheet of paper (hint: use)

e

, ^

e1

and ^

e2

).

We will need Peano axioms onerning <. They were given on page 85, but

we reall them here:

8x :(x<0) ; (9.17)

8x8y x<S(y) () x<y _ x=y : (9.18)

It is easy to prove (9.15) by reduing it to the absurd and using (9.17).

8x :(x<0)

8

e

:(x<0)

(1)

z }| {

x<0

)

e

?

?

e

S(x)<S(0)

)

i(1

.

)

x<0) S(x)<S(0)

Proving (9.16) boils down to proving S(x) < S(S(y)) from x < y) S(x) < S(y)

� this is the indution hypothesis � and from x < S(y):

(2)

z }| {

x<y) S(x)<S(y)

(3)

z }| {

x<S(y)

.

.

.

o

to be provided

S(x)<S(S(y))

)

i(3)

x<S(y)) S(x)<S(S(y))

)

i(2)

(x<y) S(x)<S(y))) [x<S(y)) S(x)<S(S(y)) ℄

8

i

8y (x<y) S(x)<S(y))) [x<S(y)) S(x)<S(S(y)) ℄

.

The seond omparison axiom (9.18) tells us that, in order to prove S(x) <

S(S(y)), it is enough to prove:

S(x)<S(y) _ S(x)=S(y) : (9.19)

On the other hand, the same axiom yields x<y _ x= y from x< S(y), whih

allows us to reason on two ases. When x<y the indution hypothesis allows us

160 Understanding Formal Methods

to onlude S(x)<S(y). In the seond ase (x=y) an equality axiom provides

S(x)=S(y). In order to simplify the tree we replae (9.19) with S(x)�S(y) on

two ourrenes. This is a harmless presentation trik.

(3)

z }| {

x<S(y)

)

e<

x<y _ x=y

(2)

z }| {

x<y) S(x)<S(y)

(4)

z }| {

x<y

)

e

S(x)<S(y)

_

i1

S(x)�S(y)

(5)

z }| {

x=y

)

e=

S(x)=S(y)

_

i2

S(x)�S(y)

_

e(4;5)

S(x)<S(y) _ S(x)=S(y)

)

e<

S(x)<S(S(y))

9.2.2.3 Some Remarks About Axioms. In Hilbert systems, the meaning

of logial onnetors is enoded in ad ho axioms, so that one ould get the

impression that logi is just a somewhat arbitrary game of symbols [GLT89℄. In

ontrast, natural dedution embeds the meaning of logial onnetors in infer-

ene rules orresponding to regular reasoning. This makes the latter approah

muh more satisfatory.

The symmetry introdution-elimination we have for eah onnetor is rem-

inisent of the relation onstrutor-destrutor of algebrai abstrat data types.

It turns out to be very important in the development of the theory, espeially

for its relationship with type systems and �-alulus. We will revisit it in Chap-

ter 11.

Finally, let us remark that though NJ does not inlude any axiom on logi-

al onnetors, nothing prevents us from introduing axioms about non-logial

symbols. In our examples axioms about equality and arithmeti are employed.

9.2.3 Toward Classial Logi

Something is missing in the system NJ: one annot prove all tautologies in it!

To this e�et it is neessary to add the law of exluded middle, or, equivalently,

an elimination rule for double negations:

EM

P _ :P

::P

::

e

P

.

The system we get is alled NK, it is omplete (f. � 9.8) for �rst order lassial

logi. In fat, the system NJ represents exatly intuitionisti logi, a logi we

already talked about on page 42.

Adding a law suh as EM is entirely ompatible with usual reasoning. Com-

bined with _

e

, one gets the form �if P entails Q and :P entails Q as well,

then Q is proved�. But EM (as well as ::

e

) breaks the symmetry and the ohe-

sion of the system, and then ompliates the study of NK. Therefore, Gentzen

introdued another system whih is perfetly symmetrial and is muh more

satisfatory for lassial logi: the sequent alulus.

Dedution Systems 161

However, it is important not to onfuse this alulus with natural dedution

presented with sequents. This way of presenting natural dedution is sometimes

the most onvenient. In passing, note that a formalism inspired from natural

dedution, whih aims at de�ning the semantis of programming languages,

and is therefore alled natural semantis [Kah87℄, is usually presented with

sequents.

9.2.4 Natural Dedution Presented by Sequents

A sequent is an ordered pair omposed of a �nite sequene of formulas � and

of a formula P , noted � a P . Suh a sequent represents the judgement �P is

derivable under the hypotheses of ��.

� a P an be seen as a dedution tree of the previous presentation, where we

keep only the leaves (non-disharged hypotheses) and the root (the onlusion).

Everything goes on as if one takes a snapshot of the simpli�ed dedution tree

at eah step, and then displays these snapshots along a tree.

The sequene of formulas �may inlude di�erent ourrenes of a hypothesis

H , so that H an be disharged at di�erent stages. Two ontexts �

1

and �

2

whih are idential up to the order of formulas they ontain an be onsidered

as equivalent. In other word, ontexts an be onsidered as multisets rather

than sequenes.

Examples. The simplest proof one an onstrut in natural dedution is the

derivation of P under the hypothesis P . With sequents, we get the judgement

P a P , whih is an axiom in this presentation. More generally, axioms are all

sequents having the shape � a P where P is a member of �. (In the frame-

work of NK, one has to add the exluded middle or the elimination of double

negations.) Inferene rules indiate how we go from a sequent to the next. For

instane, Figure 9.5 gives the rules about onjuntion and impliation. Observe

that every formula in the ontext � orresponds to a bundle of hypotheses to

be disharged simultaneously; we no longer need to use a mark whih links a

bundle to the step where it is disharged; this is the main advantage of this

presentation of natural dedution. The two styles an be ompared in Figure

9.6.

� a P � a Q

^

i

� a P ^Q

� a P ^Q

^

e1

� a P

� a P ^Q

^

e2

� a Q

�; P a Q

)

i

� a P)Q

� a P)Q � a P

)

e

� a Q

Figure 9.5: Rules of NJ presented with sequents

162 Understanding Formal Methods

(1)

z }| {

P ^Q

^

e2

Q

(1)

z }| {

P ^Q

^

e1

P

^

i

Q ^ P

)

i(1)

P ^Q)Q ^ P

P ^Q a P ^Q

^

e2

P ^Q a Q

P ^Q a P ^Q

^

e1

P ^Q a P

^

i

P ^Q a Q ^ P

)

i

a P ^Q)Q ^ P

Figure 9.6: Commutativity of onjuntion (2 styles)

9.2.5 Natural Dedution in Pratie

Searhing a formal proof is muh easier in natural dedution than in a Hilbert

system. Most dedution steps are guided by the struture of the formula to be

proved. But the size of formal proofs remains large. Moreover, when we write

everything expliitly, we see that a given subformula has to be written several

or many times. Using suh tehniques by hand quikly beomes tedious � then

error prone! � for realisti proofs.

However, natural dedution is well suited to interative automated proof

assistants. For example, it is used in HOL and Coq. At eah stage, the urrent

sequent is displayed, then the user alls a dedution rule and a new sequent

or set of sequents is displayed. In pratie, it is generally better to speify a

ombination of dedution rules by means of a language of tatis.

Let us see how the example of Figure 9.6 is proved with Coq. We introdue

the goal

P ^Q) Q ^ P :

As this goal has the shape A)B, we naturally try the rule)

i

. This is imple-

mented by the tati alled Intro. A new hypothesis P ^Q will be generated

and we an provide its name, say h1, as a parameter of Intro. The system then

displays the sequent h1:P ^Q a Q^P . In order to prove the onjuntion Q^P

we try the rule ^

i

, whih is alled Split. Two subgoals are generated, the �rst

displayed by Coq is h1:P ^Q a Q. We then want to use the hypothesis h1 by

eliminating its main onnetor. To this e�et we use the tati Elim, with h1

as a (mandatory) parameter. The seond subgoal is solved in the same way.

Several steps an be put together into a sequene of tatis, whih is written

in our example:

Intro h1; Split; Elim h1.

Note that fully automati tatis an also be used for suh simple formulas.

V

Eah basi tati represents a dedution rule, but in the general ase,

a tati just states instrutions aiming at arrying on the onstru-

tion of the proof tree. In some ases, an automated tati an elaborate a full

branh. Thus the real proof we obtain is not the visible sript of tatis (whih

is also the thing one edits and keeps in a �le), but the internal proof tree, that

Dedution Systems 163

is built by the system.

2

This objet is heked by a very small kernel, whih

has only one task: inspeting whether, or not, rules are orretly applied. This

tehnology allows one to design and implement proof assistants whih are both

reliable and open. We go bak to this point in � 12.5.

Note in passing that the size of sripts is generally smaller than the size of

the orresponding proof trees. To give a rough idea, here is a detailed sript

(shorter ones an be found, but they use advaned features) for the proof given

above for (9.10), under the assumption P(N).

:P(x) ^ x<S(N)) S(x)<S(N) : (9.10)

Intro h1; Apply su_monot.

Elim h1; Intros h1l h1r;

Case ax_omp2 with h1r introduing h2 h3.

Trivial.

Elim h1l; Rewrite h3; Assumption.

The �rst line introdues :P(x) ^ x<S(N) as a hypothesis named h1 and then

applies a lemma named su_monot, whih states that the suessor funtion

is monotoni (9.12). This yields the new subgoal x<N. In the seond line, h1 is

split into :P(x) and x<S(N), respetively alled h1l and h1r. Then we reason

on the two ases we get when we apply ax_omp2 (the seond omparison

axiom (9.18)) to h1r. The fourth line orresponds to the trivial ase x<N (h2

is automatially used behind the sene). The last line proeeds by elimination

of the onlusion of h1l whih is ?; we are left with the subgoal P(x) whih

boils down to the hypothesis P(N), thanks to the equality h3.

9.3 The Sequent Calulus

In natural dedution, the onept of a theorem beomes of seondary impor-

tane with relation to the deduibility relation. This is still more true with

sequent alulus. The main di�erene between the intuitionisti sequent alu-

lus (alled LJ by Gentzen) and natural dedution (NJ) is the replaement of

elimination rules, governing how the main onnetor of the onlusion an be

eliminated, with left introdution rules, governing what an be dedued from a

ompound hypothesis, given what is dedued from its omponents. On the other

hand, lassial logi (LK) is no longer obtained by the introdution of an ad

ho axiom, but by using an entirely symmetri onept of a sequent. A lassial

sequent is a ouple of two �nite sequenes of formulas � and �, noted � a �.

As we did before, we agree that sequenes whih are the same up to a permu-

tation are onsidered as idential. Intuitively, the sequent � a � an read: �the

onjuntion of hypotheses ontained in � entails the disjuntion of formulas

ontained in ��. For example, A;B a C;D is similar to A ^ B) C _D.

2

By the way, it is possible to print the tree in natural language [TBK92℄.

164 Understanding Formal Methods

It is more natural to start the study of sequent alulus with the lassial

system LK. We get the intuitionisti alulus LJ from LK by on�ning deriva-

tions within the spae of intuitionisti sequents, whih are sequents where the

right part has at most one formula.

Another di�erene between natural dedution and sequent alulus stands

in the status of negation, whih is no longer an abbreviation built upon) and

?, but a plain onnetor: it is even the vault key of the symmetry of the system.

Indeed, a formula an pass from one sequent side to the other by means of a

negation: see the introdution rules for : in Figure 9.9.

9.3.1 The Rules of the Sequent Calulus

The rules of LK an be divided into three groups: a group of strutural rules

(Figure 9.7), a group on identity (Figure 9.8) and a group of logial rules

(Figure 9.9). These rules an all be read top down (if the premises are good,

3

so is the onlusion), or bottom up (searhing to prove the onlusion redues

to searhing a proof of the premises).

The strutural rules tell us something about the struture of sequents and

not about the struture of formulas. They de�ne how the stok of hypothe-

ses and onlusions is handled. Although no logial onnetor is involved in

these rules, essential properties of the logi they formalize are determined by

them [GLT89℄. Thinning (or weakening) rules allow us to introdue �useless�

formulas and to onsider as axioms only sequents in the form P a P . Contra-

tion rules, when read bottom up, allow us to repeat a formula that may be used

in several ways. They orrespond to the building of pakets of hypotheses in

natural dedution (when ourrenes of several hypotheses are gathered, that

is, identi�ed by the same number in our �rst presentation in � 9.2.2).

� a �

aff

l

P;� a �

� a �

aff

r

� a �; Q

P; P;� a �

tr

l

P;� a �

� a �; Q;Q

tr

r

� a �; Q

Figure 9.7: Strutural rules of LK

The identity group onsists of two rules: the axiom A a A, where we an

without loss of generality restrit ourselves to the ases where A is atomi, and

the ut rule whih formalizes the usual onept of a lemma. Everybody an

intuitively onvine themselves that the ut rule is sound when � is empty: P

3

Understand: provable or valid ; the �rst alternative remains valuable in the ase

of LJ.

Dedution Systems 165

plays the role of a lemma derived from �, the �onsequene� �

0

an then be

dedued from � and �

0

. The general ase where � is non-empty boils down to

this speial ase if one onsiders that formulas of � an be freely transferred

to the left-hand side, then put bak to the right-hand side.

ax

A a A

� a �; P P;�

0

a �

0

ut

�;�

0

a �;�

0

Figure 9.8: Identity group of LK

M

The prie to pay for eah double transfer is a double negation (see

the logial rules) whih osts nothing in lassial logi. The problem

is not raised in intuitionisti logi sine � is neessarily empty. Moreover the

previous reasoning an be made symmetrial for LK: let us make �

0

empty in

a similar way, P a �

0

expresses that �

0

refutes P (this is, as we ould say, an

anti-lemma) and � a P expresses that P refutes �. Let us also remark that,

if we regard � and �

0

as formulas, the ut rule states that a is a transitive

relation.

Most logial rules (^, _

D

1

, _

D

2

,), 8 and 9

r

of Figure 9.9) are on-

struted by analogy with intuitionisti natural dedution. Rules _

l

and 9

l

are

onstruted by duality with ^

r

and 8

r

. As a result, we get a kind of left/right

symmetry for eah onnetor on the one hand, and a duality between ^ (re-

spetively 8) and _ (respetively 9) on the other.

At �rst sight, one may wonder that)

l

distinguishes two ontexts � a �

and �

0

a �

0

, and then does not seem to be reduible to a ombination of _

l

and

:

l

. It is atually possible to identify �

0

= � and �

0

= � in LK; this variant is

disussed below (Figure 9.11). The version presented here is ompatible with

the intuitionisti ase: as in all rules where� omes with an additional formula,

it is enough to impose that � is empty. �

0

onsists of at most one formula.

The self-duality of negation expressed in :

l

and :

r

provides an interpre-

tation of sequents in terms of refutation and of proof. Proving a sequent is,

depending on one's preferene, to refute a formula on the left-hand side or, to

prove a formula on the right-hand side, in the ontext made of the remainder

of the sequent. In other words, if we have a sequent P;� a �; Q, we an equally

well say that we prove Q in the ontext P;� a �, or that we refute P in the

ontext � a �; Q.

9.3.2 Examples

In order to illustrate a number of the previous rules, we give in Figure 9.10 the

proof of the exluded middle law (note the use of a ontration on the right),

and the example of even numbers already presented in natural dedution.

166 Understanding Formal Methods

� a �; P

:

l

:P;� a �

P;� a �

:

r

� a �;:P

P;� a �

^

l1

P ^Q;� a �

Q;� a �

^

l2

P ^Q;� a �

� a �; P � a �; Q

^

r

� a �; P ^Q

P;� a � Q;� a �

_

l

P _Q;� a �

� a �; P

_

r1

� a �; P _Q

� a �; Q

_

r2

� a �; P _Q

� a �; P Q;�

0

a �

0

)

l

P)Q;�;�

0

a �;�

0

P;� a �; Q

)

r

� a �; P)Q

[x := t℄P;� a �

8

l

8xP;� a �

� a �; P

8

r

�

� a �; 8xP

P;� a �

9

l

�

9xP;� a �

� a �; [x := t℄P

9

r

� a �; 9xP

Rules 8

r

and 9

l

must respet the restrition already disussed in NJ: x

annot possess free ourrenes in the ontext (that is, in � or in �).

Figure 9.9: Logial rules of LK

9.3.3 Cut Elimination

The major theorem of sequent alulus is:

Theorem 9.2 (Gentzen's Hauptsatz)

Every provable sequent an be proved without the ut rule.

The proof of Gentzen is onstrutive: it provides an algorithm for eliminating

uts. This theorem is interesting beause ut-free proofs enjoy properties whih

are not satis�ed in the general ase. One of the most important is the subfor-

mula property: all formulas whih our in a ut-free proof are subformulas

of the formula (or of the sequent) to be proved. This is lear beause no rule

but the ut rule has a formula (P) in its premises whih does not our in its

onlusion (�;�

0

a �;�

0

).

As the ut rule is redundant, what is the point of introduing it? Indeed:

� the ut rule is useful in pratie beause, ombined with ontrations, it

allows one to fatorize inferenes; note that ontrations are used in an es-

sential way when a given quanti�ed formula is instantiated on several plaes

of the same proof;

� the ut rule turns out to be very onvenient in the development of the the-

ory. For example, one may want to inverse logial rules. Consider ^

r

: if

� a �; P ^Q is derivable, we would like to infer that � a �; P is deriv-

able (and similarly for � a �; Q). Indeed, we an easily derive the sequent

Dedution Systems 167

ax

P a P

:

r

a P;:P

_

r2

a :P _ P;:P

_

r1

a :P _ P;:P _ P

tr

r

a :P _ P

ax

even(a) a even(a)

ax

even(a:a) a even(a:a)

8

l

8y even(a:y) a even(a:a)

)

l

even(a))8y even(a:y); even(a) a even(a:a)

8

l

8x even(x))8y even(x:y); even(a) a even(a:a)

)

r

8x even(x))8y even(x:y) a even(a)) even(a:a)

8

r

8x even(x))8y even(x:y) a 8a even(a)) even(a:a)

)

r

a [8x even(x))8y even(x:y)℄) [8a even(a)) even(a:a)℄

Figure 9.10: Proof examples using LK

P ^Q a P , then we get the desired result using a ut on P ^Q:

� a �; P ^Q

P a P

^

l1

P ^Q a P

ut

� a �; P

;

� one may also onsider proofs making use of proper axioms. For example, the

two �rst axioms of Peano an be represented by the sequents:

0 = S(x) a ;

S(x) = S(y) a x = y :

Gentzen's theorem is generalized as follows: all uts an be eliminated exept

the ones where a proper axiom is used.

The dynamis of the ut elimination proess is fairly omplex. The idea of

the algorithm is to make uts going upwards to the leaves of the derivation

tree. Eah lemma in the form 8xP is potentially usable in an in�nite number

of instanes, so it is a priori not obvious that the proess terminates.

M

True eliminations our in the ase of a ut with an axiom. Propa-

gating a ut oming from logial inferenes may have the e�et that

the number of uts inreases, but as a ompensation, new uts are about sub-

formulas. Here is an example in order to illustrate this phenomenon.

168 Understanding Formal Methods

�; A a B

)

r

� a A)B

B a B �

0

a A

)

l

�

0

; A)B a B

ut

.

�;�

0

a B

On the next step, the ut on A) B is replaed with two �smaller� uts, one

on A and the other on B:

�

0

a A �; A a B

ut

�;�

0

a B B a B

ut

.

�;�

0

a B

The seond ut is on an axiom, it is immediately eliminated:

�

0

a A �; A a B

ut

.

�;�

0

a B

M

The most dangerous uts are the ones whih our immediately after

a ontration, beause propagating them entails a dupliation with-

out a straightforward ounterpart. During ut elimination, the proof size may

inrease in a hyperexponential way (it may be 4

4

�

�

�

4

h

, where h is the height of

the initial proof and where the iteration number of exponentials depends on the

size of ut formulas). This measures the omplexity of the elimination proess:

the algorithm is not supposed to be atually performed on real proofs.

This positive result of Gentzen is very important. Among a number of ap-

pliations in omputer siene, it will be seen in Chapter 11 that it lies at

the root of reent developments of omputational paradigms within a logial

framework.

9.4 Appliations to Automated Theorem Proving

The dedution systems presented above formalize the onept of a proof: they

�rst aim at reognizing a proof. On the other hand, onstruting a proof tree

is muh less simple, at least when we go beyond propositional alulus.

V

Reall that a losed formula P is not neessarily always true or always

false: its truth value generally depends on its atomi omponents.

Two well-known tehniques implemented in automated proof searh tools

alled �tableaux� and resolution, are traditionally presented from a model-

theoreti perspetive. The sequent alulus provides another viewpoint based

on proof theory.

The �rst method works on arbitrary formulas. We present here the propo-

sitional version. Given a proposition P , we will see, thanks to a systemati

Dedution Systems 169

deomposition proedure of P , how a ounter-example for P or a proof of P

an be onstruted.

When P is no longer a proposition, but a losed �rst-order formula, we fae

an additional di�ulty: intuitively, we have to onstrut witnessing values for

individual variables. There are systemati searh proedures that eventually

yield a proof of P if there is one, while the searh for a ounter-example does

not terminate in the general ase: the problem is then only semi-deidable. This

will be summarized below (� 9.8.1).

We will not indiate how to adapt the method of semantial tableaux to

�rst-order logi. However, this will be done for the resolution priniple, whih

works with a restrited set of formulas (restritions are about the use of onne-

tors) but has as its main interest the omputation of witnessing values thanks

to the uni�ation algorithm.

9.4.1 Sequents and Semantial Tableaux

In order to mehanize the searh for a proof of a given sequent, it is neessary

that the proess of applying rules (with a bottom-up reading) terminates.

Logial rules of LK possess a remarkable property: they deompose eah

formula into its omponents, so that the number of used logial onnetors

dereases. As ut rules are not mandatory, only ontration rules are still prob-

lemati. However we an still avoid them in lassial propositional logi, thanks

to the variants of ^

l

, _

r

and)

l

given in Figure 9.11.

P;Q;� a �

^

l

P ^Q;� a �

� a �; P;Q

_

r

� a �; P _Q

� a �; P Q;� a �

)

l

P)Q;� a �

Figure 9.11: A variant of LK

These rules are equivalent to the rules of Figure 9.9 (one pass from a version

to the other using weakenings and ontrations), but the new ones have an

advantage for automated proof searh: if the onlusion is provable, the premise

(or the premises) is (are) provable as well. Suh rules are said to be revertible

or invertible: intuitively, no piee of information is lost when we go from the

onlusion to premises. Then we an forget ontration rules without loss of

ompleteness. Remaining rules provide an algorithm for verifying tautologies

whih is quite simple to implement.

Weakening rules are tried as a last resort: when we get a sequent � a � only

made up of atomi propositions, two ases are possible: either � and � have a

ommon formula A; in this ase � a � is derivable from the axiom A a A using

weakening rules (in pratie we don't need to perform these steps, omputing

the intersetion is su�ient); or � and � are disjoint, then there is no way

170 Understanding Formal Methods

to prove � a �; as this sequent is needed in order to derive the sequent S we

searh a proof for, (beause of reversibility of the rules we use) we onlude

that S is not provable.

The same algorithm an be presented � under a di�erent form � from a

model-theoreti perspetive, so that we are led to the method of semantial

tableaux. First the onept of a tautology is extended in the obvious way to

sequents, with the analogy between the sequent A

1

; : : : ; A

m

a B

1

; : : : ; B

n

and

the formula (A

1

^ : : : ^ A

m

)) (B

1

_ : : : _ B

n

) in mind: a sequent � a � is

tautologial if every interpretation where all propositions of � are true satis�es

at least one proposition of �.

Reiproally, a ounter-example to the latter sequent is provided by any

interpretation where all propositions of � are given the truth value true and all

propositions of � are given the truth value false. The rules of the last variant of

LK onsidered above are suh that the onlusion admits a ounter-example if

and only if one of the premises admits this ounter-example, whih is another

way of stating that the rules are sound and invertible. When we reah a sequent

made up only of atomi propositions, we have two ases:

� the two sides of the sequent possess a ommon proposition A; it is then

obvious that the sequent is not semantially refutable, sine A annot si-

multaneously take the values true and false;

� the two sides are disjoint, so we immediately get a ounter-example.

Thus it an be shown that a formula F is a tautology if and only if no branh

of the searh tree starting from F reahes a ounter-example.

Though this presentation rests on providing truth values to propositions,

the semantial tableaux method is very di�erent from the truth table method.

The latter beomes less e�ient as the number of atomi propositions beomes

larger. Atually, only the former method an be generalized to in�nite sets of

propositions and to �rst-order logi. An example of an automated tool based

on semantial tableaux is

3

T

A

P [HBG94℄.

9.4.2 From the Cut Rule to Resolution

Sine the 1960s, a number of researhers, following Gilmore, Davis and Putnam,

and Robinson set out to look for a feasible semi-deision proedure, based on

the work done by Jaques Herbrand in the 1930s. The programming language

Prolog is generally presented as an appliation of the resolution priniple due

to Robinson [Rob65℄.

9.4.2.1 Resolution in the Framework of Propositional Logi. The res-

olution priniple is easy to present from sequent alulus. Let us start with the

propositional ase. It is well known that, using De Morgan laws and replaing

P)Q with :P _Q, every proposition an be put in the form of a onjuntion

of lauses, where a lause is a disjuntion of literals, and a literal is either an

atomi proposition, or the negation of an atomi proposition:

:A

1

_ : : : _ :A

m

_ B

1

_ : : : _ B

n

:

Dedution Systems 171

In order to prove a proposition P from a onjuntion of lauses C

1

. . .C

k

, we

�rst put P in lausal form P

1

^ : : : ^ P

l

in turn. Our problem then boils down

to separately proving eah lause P

j

from C

1

. . .C

k

. Thus we an without loss

of generality restrit ourselves to reason with lauses only.

Whih inferene rules an we use on lauses? It happens that only one is

enough: the resolution rule that, from two lauses �_R and :R_�

0

, denoting

respetively

:A

1

_ : : : _ : : : _ :A

m

_ B

1

_ : : : _ R _ : : : _ B

n

and

:A

0

1

_ : : : _ :R _ : : : _ :A

0

m

_ B

0

1

_ : : : _ : : : _ B

0

n

;

allows us to dedue the lause � _ �

0

(the disjuntion of all literals of � and

�

0

). As usual, this an be stated by means of a fration:

� _ R :R _ �

0

� _ �

0

:

The soundness of this rule is easy to explain if we agree that the lause

:A

1

_ : : : _ :A

m

_ B

1

_ : : : _B

n

represents the sequent

A

1

; : : : ; A

m

a B

1

; : : : ; B

n

:

the resolution priniple simply orresponds to the ut rule.

M

We an also understand why the resolution rule is su�ient, thanks

to Gentzen's Hauptsatz. If we translate lauses into the language of

sequents, we need a priori strutural rules, the identity group and logial rules

of LK. However, the latter are of no use here sine our sequents are without a

logial onnetor!

The theorem of ut elimination seems to indiate that the resolution

rule is useless as well, but beware: here we want to prove a sequent orrespond-

ing to a lause P

j

from the sequents orresponding to lauses C

1

: : : C

k

, so

that the latter are interpreted as proper axioms. We know that, in ontrast to

uts with logial axioms A a A, uts with proper axioms annot be eliminated.

However, the resolution rule an safely be restrited to the ases where at least

one of the premises is among C

1

: : : C

k

.

These ideas are explained in more detail in [GLT89℄. The reader an

also �nd there a justi�ation for the removal of ontration and weakening rules

in the ase of Prolog. In the purely logial fragment of Prolog, a program is a

set of (�rst-order) lauses whih have at most one positive literal. They are

alled Horn lauses, and they orrespond exatly to intuitionisti sequents.

9.4.2.2 Resolution in the Framework of First-order Logi. In order to

illustrate the resolution priniple when we have �rst-order variables, onsider

the two formulas saying that every human being is mortal and that Sorates is

a human being:

172 Understanding Formal Methods

8x human(x)) mortal(x) ;

human(Sorates) :

We an put the �rst formula in lausal form

:human(x) _ mortal(x)

where it is impliit that x is universally quanti�ed. In the speial ase where x

is Sorates, this yields:

:human(Sorates) _ mortal(Sorates) :

The resolution rule for propositions an then be applied:

human(Sorates) :human(Sorates) _ mortal(Sorates)

mortal(Sorates)

:

In fat, the full resolution rule performs the substitution and the simpli�ation

in one step:

human(Sorates) :human(x) _ mortal(x)

mortal(Sorates)

:

In the general ase we have to �nd a substitution for both premises so that, after

performing the substitution, they ontain two opposite literals. For example,

in the following dedution, we substitute 0 for n in the �rst premise, S(m) for

x and S(p) for y in the seond:

:(m+n=p) _ S(m)+n=S(p) :(x+0=y) _ x=y

:(m+0=p) _ S(m)=S(p)

:

The proedure for omputing the smallest uni�er of two terms or of two

atomi formulas, whih is the most general omposition of substitutions making

these terms (or these formulas) idential, is alled uni�ation. (There is atually

an equivalene lass of uni�ers idential up to a renaming of variables.) In the

previous example, the smallest uni�er we hose is

[n := 0℄ Æ [x := S(m)℄ Æ [y := S(p)℄ :

Uni�ation algorithms examine simultaneously the two terms to be uni�ed,

aording to their syntatial struture, while adding substitutions when, at the

same loation, one term has a variable v and the other has either a variable, or

a term that does not ontain v; however, if we have something impossible, e.g.

two di�erent onstants at the same loation, the algorithm stops and returns

a failure.

Explaining resolution using sequents is just as easy when we onsider pred-

iates instead of propositions. We onsider sequents without quanti�er but

ontaining free ourrenes of variables. A substitution step uses the rule:

Dedution Systems 173

� a �

[x := t℄� a [x := t℄�

;

whih is easy to derive from the rules of LK. By repeating suh substitutions

and then applying a ut rule we get the resolution rule:

� a �; R :R

0

;�

0

a �

0

��; ��

0

a ��; ��

0

;

where � is the most general uni�er of R and R

0

.

The previous examples of dedutions read more easily with sequents:

a human(Sorates) human(x) a mortal(x)

a mortal(Sorates)

;

m+n=p a S(m)+n=S(p) x+0=y a x=y

m+0=p a S(m)=S(p)

:

In the following, lauses are noted in the form of sequents.

9.4.2.3 Skolemization. As we onsider only quanti�er-free sequents, this

amounts to agreeing that variables are universally quanti�ed on the whole

formula we would get, after all literals are plaed on the right-hand side of

the sequent. For example, the sequent A(x) a B(x) should be understood as

equivalent to 8x A(x)) B(x).

At �rst sight, the expressive power of �rst-order logi is weakened by this

limitation: using both quanti�ers should be allowed at any plae in a formula.

However, it is possible to put any formula in prenex form

Q

1

x

1

: : : Q

n

x

n

M ;

where Q

i

represents 8 or 9, and where M , alled the matrix, ontains no

quanti�er.

Existential quanti�ers an also be removed by introduing new funtion

symbols, alled Skolem funtions. For example, in the formula

9x 8 y 9 z P (x; y; z) ;

x depends on nothing while z depends on y; introduing the onstant a and

the unary funtion f we get:

8 y P (a; y; f(y)) :

This proess of eliminating existential quanti�ers is alled skolemization, and

leads to the Skolem normal form. What really justi�es this transform is the

following theorem.

Theorem 9.3

Let fF

1

; : : : F

n

g be a set of formulas and let S

1

, . . .S

n

be their respetive

Skolem normal forms, fF

1

; : : : F

n

g is inonsistent

4

if and only if fS

1

; : : : S

n

g is

inonsistent.

4

A set of formulas is de�ned to be inonsistent if we an infer the absurd, whih is

formalized here by the empty sequent. We ome bak to this onept later (� 9.8.2).

174 Understanding Formal Methods

In pratie, this means that, in order to prove that P is a onsequene of

the lauses C

1

, . . .C

k

, we will reason by redution to the absurd: proving that

:P is impossible. To this e�et we put :P in skolemized lausal form P

1

, . . .P

l

.

Then we try to dedue the empty lause from C

1

, . . .C

n

, P

1

, . . .P

l

. This searh

is made muh easier thanks to the preliminary proess of removing onnetors

and quanti�ers.

For example, we want to prove that there exists a mortal being knowing

that Sorates is a human being and that every human is mortal. These two

hypotheses are modeled by the sequents

a human(Sorates) and human(x) a mortal(x) :

Now, skolemizing 9x mortal(x) would lead us to dead end: mortal(a), where

a is a new onstant, annot be dedued from the two previous sequents. In

ontrast, if we onsider the negation :9x mortal(x), orresponding to the se-

quent mortal(x) a, we an dedue the empty sequent from the three previous

sequents. Note that we use here a top down strategy for onstruting the proof

tree, with the idea of onfronting axioms with the sequent to be refuted (ini-

tially mortal(x) a) in mind.

a human(Sorates)

human(x) a mortal(x) mortal(x) a

human(x) a

a

:

Let us illustrate the use of skolemization, with a proof that, if there exists

a ommon lower bound to all elements:

9z 8x z � x (9.20)

then every element has a lower bound:

8x 9y y � x : (9.21)

We put (9.20) in normal form. We introdue a Skolem onstant m for z:

a m � x : (9.22)

Then we onsider the normal form of the negation of (9.21), whih leads us to

introduing a Skolem onstant � say n� for x this time (we impliitly exploit

the dual identities :8uP () 9u:P and :9uP () 8u:P):

y � n a : (9.23)

The proof itself has only one resolution step, using the uni�er [y := m℄ Æ [x :=

n℄:

a m � x y � n a

a

:

Dedution Systems 175

9.4.2.4 Uses of the Resolution Priniple. The resolution rule is just one

part of a full proof searh proedure. At eah step, we still need to hoose a pair

of lauses on whih the rule should be applied. A number of di�erent strategies

are possible, some of them are guaranteed to �nd a derivation of the empty

lause if there is one, in theory. For an exposition of the most important, the

reader may onsult the book of Chang and Lee [CL73℄. The resolution priniple

is atually used in proof tools for �rst order logi, e.g. Otter [MC94℄.

9.4.3 Proofs in Temporal Logi

M

Temporal logi was presented in � 8.5. Proofs for linear temporal

logi an be formalized using an axiomati approah (Figure 9.12)

or a sequent alulus based approah (Figure 9.13). These systems are sound

and omplete (f. � 9.8) for Kripke semantis on the onsidered fragments (they

do not inlude U for instane).

2(A)B)) (2A) 2B)

2A)A

2A) 22A

3A

def

=

:2:A

Figure 9.12: Axioms of temporal logi (system S4)

�; A a �

�;2A a �

� a A;�

� a 3A;�

2� a A;3�

2� a 2A;3�

2�; A a 3�

2�;3A a 3�

Figure 9.13: Rules of sequent alulus for system S4

9.5 Beyond First-order Logi

The dedution systems introdued in the previous setions an be extended to

seond-order and higher-order logi. We will revisit this point in Chapter 11

with the presentation of system F.

176 Understanding Formal Methods

9.6 Dijkstra�Sholten's System

In the previous dedution systems, partiularly the systems of Gentzen, logial

equivalene is not handled diretly: it has to be �rst translated by a double

impliation. In ontrast, the onnetor of equivalene plays a pivotal role in

the alulus of Dijkstra and his followers, whih was designed for favoring the

oniseness of proofs. We limit ourselves to the propositional fragment in what

follows.

9.6.1 An Algebrai Approah

Dedutions are regarded as rewriting of logial expressions. One goes from one

line to the next by replaing a subexpression with an equal subexpression. �De-

dution rules� are then onsidered as logial identities whih have an algebrai

�avor, suh as (a+ b)

2

= a

2

+ 2ab+ b

2

.

The �rst logial onnetor one starts with is equivalene(). One postulates

the following properties of this operation:

� it is assoiative: (A() B)() C = A() (B () C);

� it is ommutative: A() B = B () A;

� it admits t as an identity element: A() t = A;

� it is the (Leibniz) equality on Boolean values: A () B is another way to

write A = B when A and B are logial expressions.

Disjuntion is then introdued with similar postulates: ommutativity, asso-

iativity, idempotentness (A_A = A), distributivity over equivalene. Synta-

tially, _ (as ^ and)) takes preedene with relation to (). The impliation

A)B and the onjuntion A ^B are respetively de�ned by:

A) B

def

=

A _ B () B and A ^ B

def

=

A() B () A _ B :

V

The expression A () B () A _ B has to be regarded as a whole,

and ertainly not as the onjuntion of A() B and B () A _ B. It

an be ompared with an algebrai expression suh as p+ q + p:q :

The last operator to be introdued in this approah is negation, whih is

respetively related to equivalene and to disjuntion by the following postu-

lates:

5

:(A() B)() :A() B and :A _ A :

The onstant f is de�ned as the negation of t:

f

def

=

:t :

5

If we think of the relation between NJ and NK, it is interesting to note that

::A() A an be derived from the �rst postulate (�rst prove A () :B () :A ()

B), whereas it is not the ase of the law of exluded middle.

Dedution Systems 177

9.6.2 Displaying the Calulations

Proving a formula X amounts to making it equal to t using a sequene of

rewriting steps. Calulations are displayed in the following way, in order to

provide the justi�ation of eah step and make reading easier:

X

= {evidene for X = Y (or for X () Y)}

Y

= {evidene for Y = Z (or for Y () Z)}

Z

et.

Evidenes are more or less expliit, depending on the ontext. In the examples

given below they are quite detailed. First we give a proof of A_ t whih makes

use of the equality (X()X) = t .

A _ t

= {(X () X) = t , with X := A}

A _ (A() A)

= {distributivity of _ over ()}

(A _ A)() (A _ A)

= {(X () X) = t , with X := A _ A}

t :

When the formula X to be proved has the shape R () S, it is simpler to

rewrite R to S (the fat that t is an identity element for() ensures that the two

proesses are equivalent). We will proeed below in this way, for proving that

A() B is equivalent to (A) B) ^ (B) A) . From a more general perspetive,

as soon as properties of impliation are proved, for example transitivity, one is

allowed to use steps suh as

.

.

.

X

) {evidene for X) Y }

Y

.

.

.

in order to prove that the �rst line entails the last, or

178 Understanding Formal Methods

.

.

.

X

= {evidene for Z) (X () Y)}

Y

.

.

.

t

in order to prove that Z entails the �rst line.

This way of displaying alulations is also used in the framework of imper-

ative program alulation [Coh90, Kal90℄ (as introdued in Chapter 4) and of

funtional programming [Bir95℄.

9.6.3 The Role of Equivalene

The fat that () is an equality plays a very important role:

� as soon as A() B is at our disposal, ourrenes of A an be replaed with

B in an expression (law of Leibniz);

� all previous identities an be written with () instead of =;

� as() is assoiative and ommutative, many identities an be read in several

ways.

This leads one to manipulate multiples equivalenes without parentheses:

X () Y () Z � � � () T . In a sequene suh as the latter, one an delete two

ourrenes of the same formula: X () X is t, whih is the identity of ().

One of the most notieable multiple identities is ertainly the golden rule,

whih is, among other things, a de�nition of ^:

R ^ S () R() S () R _ S :

This rule admits six permutations, and eah permutation an be parenthesized

in �ve ways; onsidering that R and S play symmetrial roles, we still have

eleven di�erent uses of the golden rule.

The previous ideas are illustrated in Figure 9.14, where it is proved that

double impliation (i.e. traditional equivalene) is idential to the notion of an

equivalene whih is axiomatized here.

6

Note that this theorem needs a fairly

longer proof in other frameworks:

� the proof that double impliation is assoiative is an interesting benh-

mark for automated tautology veri�ation systems; this is one ase where

the method of truth tables is more e�ient than the method of semantial

tableaux;

� proving that double impliation is a Leibniz equality requires an indution

on the struture of formulas.

6

It is quite instrutive to prove the same theorem by progressively identifying

A () B () ((A) B) ^ (B) A)) to t, and using the right instane of X) Y ()

X () X _ Y .

Dedution Systems 179

(A)B) ^ (B)A)

= { de�nition of); ommutativity of _ }

(A _B () B) ^ (A _B () A)

= { golden rule; assoiativity of () }

A _B () B () A _ B () A() (A _B () B) _ (A _ B () A)

= { A _B () A _B is an identity element; ommutativity of () }

A() B () (A _B () B) _ (A _B () A)

= { distributivity of _ over (): fatorisation of A _B }

A() B () A _B () B _A

= { ommutativity of _ }

A() B :

Figure 9.14: Double impliation in Dijkstra's system

This shows that the axioms for equivalene we have seen here ontain a lot

of information. In pratie, they turn out to be su�ient more often than one

would expet; it is worth translating an equivalene into a double impliation

only as a last resort.

9.6.4 Comparison with Other Systems

The approah presented here is learly an axiomati one. This said, dedu-

tions are not of the same kind as in Hilbert systems: here we have equational

reasoning, modus ponens is not primitive and is even avoided.

A loser look shows that axioms are hosen in the spirit of an algebrai

theory. Eah primitive operation ((), _ and :) omes with its own algebrai

properties or with algebrai properties related to other operations. So it may

be better to onsider this alulus as an algebra rather than a logi. In other

words, it is a struture de�ned by non-logial axioms (see page 149). This is

onsistent with the fat that this approah has nothing to do with foundational

issues, in ontrast with formal logi as designed at the beginning of the 20th

entury [DS90℄.

M

The set B of Booleans endowed with onjuntion, disjuntion and

negation admits a number of laws already mentioned on page 47:

idempotene, ommutativity, assoiativity, distributivity. It then makes up

what is alled a Boolean algebra. There is a similar algebra in set theory

with the operations union, intersetion and omplementation.

Those algebras an also be presented from the onept of a Boolean

ring. A unitary ring is a ommutative group endowed with a distributive law

having an identity element, for example hZ;+; :i. A Boolean ring is a unitary

ring where every element is idempotent for the seond law. The powerset of a

set endowed with symmetrial di�erene n and intersetion makes up a Boolean

ring, as well as hB ;�;^i, where � is de�ned by A�B

def

=

:(A() B). One an

also interpret B by f0; 1g, � by the addition modulo 2 and ^ by the produt.

An important property of Boolean rings is that every expression an

be redued into a form whih is unique up to permutations, alled its Stone

180 Understanding Formal Methods

normal form. A number of derivations perfomed in the system presented here

amount to omputing a Stone normal form

7

in the dual Boolean ring hB ;();_i.

At the same time,() plays the role of an equality and then makes it possible

to perform rewriting steps. We revisit this original view on dedution below.

To onlude this omparison with the previous systems, note that a number

of passages in [DS90, vG90a, Coh90, Kal90℄ expliitly onsider logi as an

arbitrary symbol game. This is regrettable, beause the systems of Gentzen go

beyond this standpoint, whih was previously defended by Hilbert. The purely

formalist approah to logi was not that muh of a suess, it was even to

some extent refuted by the failure of Hilbert's program [NNGG89, Gir87b℄: see

below the inompleteness theorems of Gödel. However, let us mention the work

of A.J.M. van Gasteren [vG90a℄, whih shows that a areful examination of the

formal shape of expressions an provide valuable heuristis for solving some

problems.

9.6.5 Choosing Between Prediates and Sets

Most logial onnetors orrespond to an operation over sets: _ orresponds

to [, ^ orresponds to \, : orresponds to omplementation in a referene

set (whih has to be �xed in advane). We don't have a regular notation for

the set operations orresponding to () and) (reall that A � B is not a

set but a logial expression), but let us introdue one for the set operation

orresponding to (), say �, so that we get two similar theories. The set A�B

is the omplement of symmetrial di�erene A nB in the referene set.

The algebrai properties of (), _ and ^ an immediately be transposed

to �, [and \. The hoie between formalizing a given problem using logial

operations, or using set operations, may then seem nothing more than a matter

of taste.

However, the identity between() and Boolean equality has additional spe-

i� advantages. Thus, every theorem in the form X () Y () Z : : : represents

several identities at one, allowing one to replae X with Y () Z : : :, or Y with

X () Z : : :, or X () Y with Z : : :, and so on whereas A�B�C : : : represents

only one set. In partiular, the golden rule

X ^ Y () X () Y () X _ Y

ontains in a ompat way at least �ve ommon identities on set, related to

intersetion, union and symmetrial di�erene:

A = B n (A \B) n (A [B) (A \B) = A n B n (A [B)

A n B = (A \B) n (A [B) (A [B) = A n B n (A \B)

A n (A [B) = B n (A \B):

This remark, together with the fat that set theory is sometimes more om-

pliated than expeted, leads Dijkstra to onsider that prediate alulus is

7

This remark was ommuniated to the author by Gerard Huet.

Dedution Systems 181

more onvenient than set onstrutions. For example, in his approah to for-

mal spei�ation, the spae state of a program is desribed by a logial formula

rather than a set expression, as would be the ase in Z or in B.

9.6.6 Uses of Dijkstra�Sholten's System

This system is well suited to penil and paper manipulations. Dijkstra's shool

attahes importane to the quality of proofs presentation. Though entirely for-

mal, proofs are always onise and easy to hek, even in a number of non-trivial

programmation problems. Many alulational steps use the assoiativity and

the ommutativity of ^, _, (), notably when we have hains of equivalenes.

A skilled eye should be able to reognize an interesting pattern in a hain �

note that automated reasoning in the presene of assoiative and ommutative

operations is not that easy.

Doing formal proofs in this framework turns out to be an art, with its own

guiding heuristis [DS90, vG90a, Coh90, Kal90℄. The proofs we get using this

approah are quite di�erent from the ones provided by traditional proof theory:

the latter are easily heked by a program, but non-trivial ones soon beome too

large for human eyes to spot. So one may onsider that the approah to formal

proofs presented in this setion provides more onvining arguments; however,

automated help is needed for realisti sale problems, and tehniques based on

sequent alulus or on natural dedutions seem more apropriate [Rus93℄.

9.7 A Word About Rewriting Systems

A well-known tehnique has been developed for automating equational reason-

ing: rewriting systems. We will provide an example on page 200.

The general situation is as follows. We are given a �nite number of equalities

S

i

= T

i

, from whih we want to prove a goal A = B. If the terms A or B ontain

an instane of S

i

(or of T

i

), we an replae it with the orresponding instane

of T

i

(or of S

i

). For example, if we take x+x = 2�x for granted, we an replae

the goal

(a+ b) � (a+ b) = a � a+ 2 � a � b+ b � b

with

(a+ b) � (a+ b) = a � a+ a � b+ a � b+ b � b :

Equational reasoning onsists of iterating suh substitutions, until we get an

equation where the two sides are syntatially idential. However, in the frame-

work of automated proof searh, we have to avoid yli sequenes of trans-

formations, where A = B would be replaed with A

1

= B

1

, . . . and �nally

A

n

= B

n

would be transformed into A = B again. Suh a yle is very easy

to get: just use an equality in one diretion and then in the reverse diretion.

182 Understanding Formal Methods

We also have to avoid a potentially in�nite sequene of transformations, whih

may happen e.g. with equations suh as x = e ? x (an arbitrary term t may

then be replaed with e ? t, then with e ? (e ? t), et.).

A entral idea is then to restrit the use of equations given as axioms: they

have to be oriented, that is, we have to hoose one diretion, either from the left

to the right, or onversely. This hoie yields a rewriting rule. But of ourse,

one then runs the risk of beoming unable to prove a number of theorems:

indeed, in many reasonings one uses a given equality in one diretion at one

stage, and in the reverse diretion at a later stage.

In order to reover a rewriting system having the same onsequenes as the

original equations, new rules stemming from the axioms have to be added.

This proess, alled ompletion, was introdued by Knuth and Bendix in

1970 [KB70℄.

Let us explain this somewhat more formally. We look for a set of rules

G

i

!D

i

suh that:

1. G

i

= D

i

is a onsequene of the equations given as axiom.

2. Given an arbitrary term t

0

, every sequene t

0

; t

1

: : : t

n

: : : (where t

k+1

stems from t

k

by appliation of a rule G

i

!D

i

) eventually reahes a

unique term whih depends on t

0

only, alled its normal form.

3. Two terms whih are equal modulo the axioms possess the same normal

form.

Then, in order to know whether A = B is a onsequene of the axioms, we

just have to ompute the normal forms of A and B and then to ompare the

results.

Bringing this basi idea into atual play, however, raises non-trivial issues.

Important researh developments ame out, as well as interesting support soft-

ware systems suh as REVE [FG84, Les86℄, RRL [KZ95℄ and LP [GG89, GG91℄

for ompletion and rewriting, and Spike [BR95, Bou94, BKR92℄ for indutive

proof of equations. More reent (and e�ient) systems are Maude [CDE

+

99℄

and Elan [BKK

+

98℄.

In passing let us point out the importane of termination: the normalization

proess should be guaranteed to terminate, and this is an essentially deliate

problem. Theoretial and pratial tools were developed in the framework of

rewriting systems for proving that a relation is noetherian (see the de�nition on

page 52). This is a tehnial matter, where ordinals naturally have an important

plae.

Rewriting systems are strongly related to algebrai spei�ation tehniques,

sine spei�ations are written using equations in this framework. We go bak

to it in Chapter 10.

9.8 Results on Completeness and Deidability

If we want to prove theorems in a mehanial way, propositional, �rst-order

and seond order logi don't o�er the same possibilities. In fat this even de-

Dedution Systems 183

pends on the theory we onsider. We give here a brief aount of some of the

main known results. For a number of them (partiularly for inompleteness the-

orems), only an approximate statement is given, beause a preise statement

would neessitate too many tehnial preliminaries. A state-of-the-art survey is

available in [Rab77℄ (and [Gri91℄, in Frenh). Apart from the basis on model

theory and proof theory already presented, we rely on the onepts related to

alulability introdued in Chapter 3.

Completeness was also introdued and illustrated in Chapter 3. Its intuitive

meaning is that everything whih is true is provable. But this may be under-

stood in two ways, sine, given a set of formulas �, one may onsider truth

either in a lass of models of �, or in one speial (intended) model of �.

9.8.1 Properties of Logis

We �rst de�ne a number of properties about logis. Our framework is lassial

�rst-order or higher-order logi. We agree that every �rst-order language de�nes

a logi � within whih several theories an be desribed. Some results depend

on the number and on the arity of the symbols de�ning the language onsidered.

In what follows P and � represent respetively a losed formula and a set of

losed formulas.

A logi is sound if the dedutive onsequene relation implies the semanti

onsequene relation, i.e. if � a P entails � j= P . A logi is omplete if the

semanti onsequene relation implies the dedutive onsequene relation, i.e.

if � j= P entails � a P . A logi is deidable if there exists an algorithm that

�nds whether an arbitrary formula admits, or does not admit a proof, using

a �nite number of steps; a logi is semi-deidable if there exists an algorithm

that �nds a proof of any theorem, using a �nite number of steps (it may be

the ase that the algorithm does not terminate if the input formula is not a

theorem); in the other ases the logi is said to be undeidable. We have the

following results.

Theorem 9.4

Propositional logi and prediate logis of arbitrary high order are sound.

This is simply beause logial axioms are valid and dedution rules propagate

validity.

Theorem 9.5 (Shröder)

Propositional logi is deidable.

Theorem 9.6 (Post)

Propositional logi is omplete.

Theorem 9.7 (ompleteness, Gödel)

Given any �rst-order language, the orresponding �rst-order logi is omplete.

To put it otherwise, if a formula ' is true in all models of a family of formulas,

then ' has a formal proof.

184 Understanding Formal Methods

Theorem 9.8

Seond-order logis are inomplete (even weak monadi logi).

This theorem is a onsequene of the inompleteness of arithmeti (see below)

and of the fat that arithmetial truth an be haraterized by a �nite number

of seond-order axioms.

Theorem 9.9 (Churh)

First-order logi is semi-deidable. More preisely, if the language of a �rst-

order logi ontains at least one funtion symbol or binary prediate symbol,

the validity of an arbitrary formula annot be mehanially deided.

One generally onsiders reursively axiomatizable theories, and a onsequene is

that their theorems make up a reursively enumerable set. When the onditions

of Churh's theorem are satis�ed, whih is the most frequent ase, we get semi-

deidables theories. Thus, theorems of prediate alulus an be reursively

enumerated (sine �rst-order logi is omplete), but not the other formulas.

In order to get positive deidability results beyond �rst-order, one has to

onsider very restrited languages. However, the following result remains true

for seond-order monadi logi.

Theorem 9.10

Equational logi with an arbitrary number of unary relation symbols and at

most one unary funtion symbol is deidable.

9.8.2 Properties of Theories

Now we de�ne properties about theories . The onept of ompleteness we use

here for theories is a syntatial onept: a theory T is (syntatially) omplete

if for every losed formula P one has either T a P , or T a :P . It is lear that

two models of a omplete theory annot be distinguished, sine any losed

formula has the same truth value in eah of them. In this respet one an say

that a omplete theory haraterizes a unique model.

The simplest example of an inomplete theory is the empty theory: if A is

a unary prediate symbol, neither a 8x A(x) nor its negation is a theorem;

even more simply, if B is a proposition symbol, neither a B nor a :B is a

theorem. A more interesting example is group theory, whih states nothing

about 8xy (xy = yx), sine there exist ommutative groups as well as non-

ommutative groups. Hene group theory is not omplete, and there is no ause

for alarm here.

In ontrast, a number of theories are designed with a preise intended model

in mind. This is typially the ase with natural integers endowed with usual

arithmetial operations. In suh a ase, one is interested in the onsequenes

whih are true in one model (the so-alled standard model), and not in every

model of the axioms. Let us reall the axioms for addition.

8x x+ 0 = x

8x8y x+ S(y) = S(x+ y) :

Dedution Systems 185

One would expet that 8x 0 + x = x, whih is true in N, is a onsequene of

the previous axioms. Atually we also need the indution shema: there exist

models of the two previous axioms where 8x 0 + x = x is not satis�ed.

Note that if a system of axioms is inomplete one may try to omplete it

by introduing additional axioms.

A theory T is inonsistent if one of the three following equivalent onditions

is veri�ed:

� T a f ,

� there exist a formula P suh that T a P and T a :P ,

� for all P , one has T a P .

In the opposite ase T is said to be onsistent; note that, this is the �rst

property about a theory one would expet. The omplementarity between om-

pleteness and onsisteny should be noted. To oin a phrase, we ould say that

a omplete and onsistent theory tells the truth and nothing but the truth.

A deidable theory is de�ned in the same way as a deidable logi.

Theorem 9.11

A �rst-order theory is onsistent if and only if it has a model.

This theorem is atually another formulation of the ompleteness theorem for

�rst-order logi.

Theorem 9.12 (Herbrand)

A set T of �rst-order lauses is inonsistent if and only if there exists a �nite

set of losed instanes of lauses of T whih is inonsistent as well.

Thanks to this theorem, the searh for a proof in prediate alulus an be

redued to the searh for a proof in propositional alulus. It plays an essential

role in the semi-deision proedures based on the resolution priniple, as already

mentioned in � 9.4.2.

Theorem 9.13 (Turing)

A reursively and omplete axiomatizable theory is deidable.

Theorem 9.14

The arithmeti of Peano is undeidable, as well as any onsistent theory that

ontains it.

For any onsistent extension of PA (Peano's arithmeti), it is even possible to

exhibit a losed formula, whih is neither provable nor refutable, and whih is,

however, true in the intended model (Rosser). Then there is no �rst-order har-

aterization of the standard model of arithmeti. This is an essential limitation

whih annot be repaired by adding appropriate axioms.

V

Beware: a formula whih is true in all models of PA is provable by

means of axioms of PA: this is the meaning of the ompleteness the-

orem (9.7). The �rst inompleteness theorem of Gödel states that the standard

model of PA ontains at least one formula whih is true but annot be proved

186 Understanding Formal Methods

using the axioms of PA. Note that we have already seen that there exist non-

standard models of PA (see � 5.3.2.3). The original proof of Gödel shows how

to onstrut suh a formula, inspired by the paradox of the liar:

8

using triky

odings he was able to enode arithmeti formulas, then arithmeti proofs, by

integers, so that he ould write a formula stating its own unprovability. Less

arti�ial theorems have been disovered reently [PH77, KP82℄.

Here is an example of a statement whih is true but beyond the proof power

of PA, taken from [KP82℄. Let us hoose an arbitrary natural number n, for

example 266, and a basis b, for example 2, so we write: 266 = 2

8

+ 2

3

+ 2

1

.

Exponents are then represented in the same basis, and so on. In our example

this yields 266 = 2

2

2+1

+2

2+1

+2

1

. Now onsider the following proess: we add

1 to b in this representation, we subtrat 1 to the new value, then again with

the new values of b and n if n is non-zero, and so on. In our example the seond

value of n is 3

3

3+1

+ 3

3+1

+ 2, that is about 10

38

; the �rst values of hb; ni are

approximately h2; 266i, h3; 10

38

i, h4; 10

616

i, h5; 10

10;000

i. Though it may seem

strange, the inredible growth of n eventually stops � the basis beomes equal

to the number. The proess then amounts to letting n be deremented by 1

at eah step, so that the sequene is �nite (the proess stops when n = 0).

However, this annot be proved in Peano's arithmeti.

The seond theorem of Gödel is the most elebrated beause of its epis-

temologi onsequenes. It states that the onsisteny of arithmeti annot be

proved by simple indution on natural numbers. Later, Gentzen proved the

onsisteny of arithmeti by means of a stronger indution priniple.

Note that an important fragment of arithmeti, alled Presburger arith-

meti, is deidable. Its essential di�erene with Peano arithmeti is that terms

annot inlude a produt x:y where x and y are variables. In other words, terms

are linear expressions with integer oe�ients.

Theorem 9.15

Presburger arithmeti is deidable.

9.8.3 Impat of These Results

A good knowledge of the previous results is useful when one uses a proof as-

sistant � it is even a must in the design of a suh tool. Positive results open

possibilities, negative ones bring impassable theoretial barriers to light.

The atual impat of deision or semi-deision results depends on the om-

plexity of the omputations they entail. Unfortunately, even in the simple ase

of the propositional alulus, deiding the satis�ability or the validity of a

proposition is up to now believed to need a omputation time whih is, in the

8

Epimenides says that he is lying; if this is true, i.e. Epimenides is a liar, then he is

telling the truth, so he is not a liar � a ontradition. If this is false, i.e. Epimenides

is telling a lie when he says that he is a liar, then that means he is not a liar � a

ontradition again.

Dedution Systems 187

worst ase, an exponential funtion of the size of the formula.

9

Beyond this,

results are truly disastrous: for many deidable problems, theoretial upper

bounds lead to omputation times whih would be larger than the age of the

universe. However, on problems we enounter in atual pratie, the e�ieny

of deision proedures is sometimes drastially improved by lever tehniques

or by appropriate restritions. This is notably the ase for Boolean formulas

and Presburger arithmeti � in partiular, in the latter framework, it is a good

idea to onsider formulas without existential quanti�ers.

In summary, fully automated proof searh an only be arried out in a less

expressive logi, so that only very spei� lasses of problems an be handled in

this way. In the general ase, the skills and knowledge of the user seems to be

the determining fator. Software support tools are of ourse very useful. As they

have to be interative rather than fully automated in many situations, one may

onsider that there is no point in restriting oneself to a limited language, say,

�rst-order logi. Indeed, support tools based on higher-order logi (e.g. PVS,

Coq or Isabelle) beome more widely used nowadays. Of ourse they are muh

more user-friendly when �simple� subgoals an be solved by e�ient deision

proedures.

9.9 Notes and Suggestions for Further Reading

The priniples and algorithms used by automated proof tools for �rst-order

logi, notably the resolution priniple, are often presented from a model-

theoreti perspetive, using the fat that a speial model, alled the model

of Herbrand, is su�iently representative of the general situation: this model is

built upon the set of syntati terms that an be onstruted in the language

under onsideration. The book of Chang and Lee [CL73℄ provides a good syn-

thesis along these lines.

Logi is presented from a sequent alulus perspetive in more reent books,

suh as the one of Jean Gallier [Gal86℄, devoted to �rst-order lassial logi,

or the book of Girard, Lafont and Taylor [GLT89℄, whih ontains a good

introdution to natural dedution and seond-order logi. Referene books on

proof theory inlude [Tak75℄, [Sh77℄ and [Gir87b℄.

Natural dedution inspired a theory of programming language semantis

alled natural semantis by Kahn [Kah87℄, whih is lose to the strutural

operational semantis of Plotkin [Plo81℄. These two approahes are also ex-

plained and ompared in [NN92℄. Natural semantis has been implemented in

Centaur [JRG92℄, an experimental software tool for prototyping programming

languages.

9

To be more preise, determining whether a Boolean formula has a model is the

NP-omplete problem par exellene: many ombinatory problems (knapsak, opti-

mization, et.) an be redued to it. For suh problems, algorithms able to �nd a

solution in exponential time (in the worst ase) are known, but until now there is no

proof that a polynomial time solution does not exist, though it seems highly improb-

able.

188 Understanding Formal Methods

The books [Coh90℄ and [Kal90℄ present the approah of Dijkstra and

Sholten to logi and its appliation to the design of orret algorithms. A

thorough development of the logial part is given in [DS90℄.

Referene publiations on rewriting inlude the artile of Huet and Oppen

[HO80℄, the hapter of Dershowitz and Jouannaud [DJ90℄ in [vL90b℄ and the

book of Baader and Nipkow [BN98℄.

A translation of the original of Gödel on his inompleteness theorems is

available in [NNGG89℄. The artile is preeded by a long explanation of F.

Nagel and J-R. Newman, and then followed by an interesting presentation of

J-Y. Girard about the program of Hilbert, its epistemologial stakes and the

onsequenes of its failure. Many results on deidability and indeidability are

given in [Rab77℄.

10. Abstrat Data Types, Algebrai Spei�ation

At �rst glane, algebrai spei�ation tehniques may seem to have less rele-

vane to industrial appliations than other methods. They are, however, worth

studying beause they bene�t from extensive theoretial researh and have had

a great in�uene on other spei�ation tehniques, and more importantly, on

omputer siene in general, notably with the onept of the abstrat data type.

Typing is a well-known onept in omputer siene. It is not only a means of

protetion against a number of mistakes, but also a methodologial tool. We

start with an informal disussion of the uses of typing and several interpreta-

tions of this notion. As a �rst approximation, a type an be regarded as a set.

Unfortunately, one has to be more autious with this interpretation, than one

would expet. We will therefore onsider more abstrat onepts of a type.

10.1 Types

Adding a Boolean value to a string hardly makes sense. Types are basially

used for ensuring that suh situations do not our. To this end, types are

assigned to the relevant expressions (terms, formulas, ommands, et.) of the

language we are onsidering. When a given operation, say addition, is applied

to its arguments, we an then hek that the latter have the expeted type.

Type-heking a given expression onsists of verifying that all its omponents

have the expeted type. The key to type-heking is a means to determine,

given an expression E and a type T , whether or not E has the type T (denoted

E : T). There are several options for a typing system.

� If one wishes type-heking to be performed statially (at ompile-time),

this problem has to be deidable; then the quantity of information arried

by types tends to be limited.

� A part of type-heking an also be performed at run-time; one of the most

well-known examples, previously introdued in Chapter 2, onerns array

indies, whih must be kept between two bounds. We an no longer guarantee

the absene of run-time faults, yet it is still possible to have the program

terminate in a graeful manner. Another disadvantage is the additional time

required by these veri�ation steps. Unless expliitly stated otherwise, we

will onsider only stati type-heking below.

190 Understanding Formal Methods

� If one wishes to have an expressive typing system, free of run-time penalties,

the proof that the program is well typed must be arried out with the help

of the programmer. Let us also mention that, in a development with the B

method, typing information is added to the invariant and the assertions, so

that type heking yields proof obligations; however, the typing system of

B is not terribly rih, in order that proof obligations orresponding to type

heking an be automatially disharged.

The type assoiated to an objet is not neessarily unique. For example, if

we onsider the set-theoreti interpretation of a type, many sets ontaining a

given item ould be seen as a possible type for this item. This yields a possible

interpretation of subtyping, a onept related to inheritane in objet-oriented

languages.

Also, we often want to give several types to a funtion, but for other rea-

sons. The idea an be illustrated with the simple ase of the identity funtion,

whih an be onsidered to have the types int! int, bool! bool, : : :, that

is, in general, T ! T where T is an arbitrary type. Suh types are alled poly-

morphi types in the framework of funtional languages, or generi types in

the framework of languages suh as Ada or Ei�el.

A number of funtions on lists, suh as atenation or the omputation of the

length of a list, are in the same ategory as the identity funtion: the algorithm

used is exatly the same. Note that addition is also a polymorphi operation,

beause it an be de�ned over integers, �oating numbers, vetors, matries,

et.; but here the underlying algorithm is di�erent for eah ase. The former

kind of polymorphism is alled parametri polymorphism, whereas the latter

kind is alled ad-ho polymorphism. In the following we will limit ourselves to

parametri polymorphism.

10.2 Sets as Types

In a typed programming language, a variable v is assoiated with a type, whih

is generally seen as the olletion of the possible values of v. Typing the variables

amounts then to speifying the set of the possible states, or equivalently, a

onstraint on the exeution of the program. We an then say that types provide

an invariant. For illustration purposes, let us imagine a programming language

having a Pasal-like syntax, where types are sets.

10.2.1 Basi Types

For example, we an interpret the delaration:

var x: {a,b,};

y: {d,e};

as a spei�ation requiring that the state spae of the program is a strit subset

of fa; b; ; d; eg

2

, whih is, spei�ally, fa; b; g� fd; eg. If we add:

Abstrat Data Types and Algebrai Spei�ation 191

z: N;

the state spae beomes fa; b; g � fd; eg � N.

10.2.2 A First Glane at Dependent Types

More advaned languages, suh as Cayenne [Aug98℄, allow more sophistiated

type delarations, where the type of a omponent depends on the value of

another omponent. Thus:

var x: N;

y: 0 .. x;

would speify that the state spae is

�

(x; y) 2 N

2

j y � x

	

. As a lassial

example, we an onsider the (Gregorian) alendar. As a �rst approximation,

we an take

�

1 : : : 31

	

as the type of the day of the month, but a more aurate

typing would be

�

1 : : : f(m; a)

	

, where m and a represent, respetively, the

urrent month and year, and where f is a well-known funtion. Suh types are

referred to as dependent types . One may also use a logial formulation for them,

for example 1�q^q�f(m; a). In this framework, type-heking involves oping

with logial inferenes, whih make it more omplex. We will revisit dependent

types at the end of Chapter 11.

10.2.3 Type of a Funtion

Funtions an also be given a type. For example, a possible type for addition

is N � N ! N. In fat, the main purpose of typing is to ensure that applying

a funtion to its arguments does indeed make sense. In our example, we want

to rejet an expression suh as a + b if either a or b is not in N. On the other

hand, assuming that a+ b is well typed, we know that a+ b is a member of N,

hene it an be, in turn, one of the arguments of a further addition.

10.2.4 Type Cheking

Using the onstruts whih are available in the language under onsideration

(arrays, funtion appliation, tuples or whatever), one may form an expression

E. Saying that E has the type T amounts here to saying that E is a member

of T . Type-heking may then be seen as membership heking.

10.2.5 From Sets to Types

In the language imagined so far, types are de�ned in a set-theoreti notation.

Now, we ould ask ourselves if any set ould atually serve as a type.

Consider the set of even non-negative numbers, denoted here by 2N. There

are funtions or programs that require suh numbers as arguments, as we have

already seen at the end of � 3.5.2. Let f

e

be suh a funtion, and assume we

192 Understanding Formal Methods

are given two non-negative even numbers p and q. Then we an form f

e

(p)

and f

e

(q). But it is unlear, at this stage, whether or not f

e

(p + q) should be

aepted. Sine x 2 2N implies x 2 N, p + q makes sense, but as the type of

+ is N � N ! N, we an only onlude that p+ q 2 N. On the other hand, we

have more, i.e., p + q 2 2N, so we ould in priniple write f

e

(p + q). But this

annot be deided with the type of + only, we need additional knowledge from

number theory. For a more omplex example, onsider a funtion f

�

that takes

as input a number whih is not a ube. Then one ould write f

�

(a

3

+b

3

) if a and

b are positive integers � this is a speial ase of Fermat's last theorem. Suh

examples are somewhat arti�ial, but atually, everyday programming provides

arbitrarily di�ult situations � and involves data strutures whih are more

omplex than N. We annot a�ord to embed any amount of mathematis in a

stati type-heking proedure.

Hene, in the general ase, we have to admit that when we apply a funtion

to arguments, the type of the result is provided by the type of the funtion, and

nothing more. In general, this entails a loss of information. It also means that

type-heking is not equivalent to membership heking: we may have E 2 T

whereas E : T does not hold.

10.2.6 Towards Abstrat Data Types

In our example, we then give up the idea that f

e

(p + q) is well typed. But it

is still possible to reover something very lose to f

e

(p+ q). The prie to pay

is the introdution of new symbols for funtions that return even numbers: for

example, the addition+

e

of two even numbers, whih has the type 2N�2N!2N ,

or the multipliation �

e

1

of an even number by a non-negative integer, whih

has the type 2N � N ! 2N. These operations behave exatly like + and �, on

their respetive domains. Using +

e

and �

e

1

(and if we delare that the onstant

2 has the type 2N) we an easily onstrut many well-typed expressions under

the form f

e

(E), inluding f

e

(p+

e

q). Moreover, type-heking an be performed

as normal, by a systemati syntatial inspetion of the expression.

1

In fat, we just worked in the spirit of abstrat data types, as we will see

in � 10.3. The onlusion is that 2N is useful as a type, provided that we are

given funtions returning a result in 2N.

10.2.7 Coerions

If we know that an expression E has the type 2N, we ertainly would like to

be able to use it in situations where something of type N is expeted. In the

general ase, inferring that E : U from E : T is possible provided we have

1

Of ourse, the orretness of this approah still relies upon arithmetial fats,

whih provide evidene that +

e

and �

e

1

return even numbers. This task is indepen-

dent from the general type-heking proedure. We an then say that the relevant

arithmetial fats are now used in a ontrolled manner, as de�ned by the ourrenes

of +

e

and �

e

1

in the expression to be type-heked.

Abstrat Data Types and Algebrai Spei�ation 193

some evidene that T is a subtype of U . In the set-theoreti interpretation of

types, this amounts to T � U . But subset heking is at least as di�ult as

membership heking. Suh inferenes an be guided by syntati means, just

as before: introdue an expliit identity funtion i

T;U

from T to U that maps

any x, onsidered as a member of T , to the same x, onsidered as a member of

U . Thus, in our example, i

2N;N

(p) + i

2N;N

(q) has the type N.

In general, we are also interested in onverting integers to real or �oating-

point numbers, et. This may involve a hange in the internal representation,

so that i

T;U

is no longer a funtion that maps x to itself but, more generally,

an injetion. Suh injetions are referred to as oerions. They an often be

delared one-and-for-all, and left impliit in expressions, in order to keep them

simple � type-heking should then be ompleted in suh a way that the

oerions are reovered.

10.2.8 A Simpler Approah

One may onlude that allowing arbitrary subsets of N or, more generally, of

any given type, to be onsidered as types, drives us to umbersome notations.

An alternative approah, whih is followed in Z and in B, onsists of taking

a olletion of sets for types, in suh a way that, for all x, we have a unique

type T

x

suh that x 2 T

x

. (For example, the type of integers will be Z.) As a

onsequene, the intersetion of two di�erent types must be empty.

Let A be a set, and f be an operation de�ned over S. If we want to be able

to assign a type to f , all elements of A must be of the same type, say T , so

that f will have the type T ! U , for some type U (atually the type of f will

be P(T � U), sine, in set theory, funtions are speial ases of relations). We

see that the only sets A we an work with, are the subsets of types. The type

T

x

of x is then the greatest set ontaining x.

As we have seen in Chapter 6, type-heking is not very di�ult in this

framework. Examples suh as the one with even numbers are dealt with using

invariants or assertions instead of types.

10.2.9 Unions and Sums

In the previous approah, we annot build a set with elements of di�erent types.

It is problemati beause one sometimes needs to handle several things on an

equal footing, say, integers and pairs of integers, whereas Z[Z�Z is not allowed.

On the other hand, we know that a diret use of Z[Z�Z is not that useful:

given a data item x whih is a member of Z[Z�Z, one generally wants to

eventually perform a omputation whih depends on the soure of x. But it is

not obvious that its soure an be reovered. In the implementation of many

programming languages, we annot distinguish a 64-bit integer from a pair of

two 32-bit integers. Even in set theory, integers and Cartesian produts are

enoded in suh a way that a given element an be interpreted in several ways.

As we have seen in � 3.1.2, a better onept is the sum. Reall that the sum

194 Understanding Formal Methods

A+B of two sets A and B an be de�ned as ffalseg�A [ftrueg�B. This is a

speial subset of B � (A[B). But it would be strange to allow that ffalseg�A

and ftrueg�B may be mixed, whereas A and B may not.

What we need here is a strutured or abstrat view of A+B, where A [B

is hidden. Suh an approah is still more relevant if we onsider slightly more

ompliated data strutures, suh as binary trees: reall that the type of binary

trees is similar to an in�nite sum A+(A�A)+(A�(A�A))+((A�A)�A)+ : : :.

Here again, we will see in � 10.3 that abstrat data types are helpful.

Note also that the di�ulty pointed out here is overome in Z due to the in-

trodution of the onept of a free type. Indeed, Z free types provide a notation

for the speial abstrat data types that we need in suh situations.

10.2.10 Summary

Interpreting a type as a set has the immediate bene�t of simpliity. However, a

diret use of typed sets is not that helpful when we want to represent a number

of well-typed regular data strutures used in omputer siene. It is ertainly

not by hane that set-theory is an untyped theory, where 3 = 1 [h0; 1i is a

perfetly legal equality. Let us end this disussion with two omments.

� On the one hand, set theory is too general: the set of set-theoreti funtions

from N�N to N is not ountable, whereas only the set of omputable funtions

is relevant for programs, and this is a ountable set

2

(f. � 3.3.4).

� From another perspetive, set theory is not general enough, if one needs to

desribe a polymorphi (also alled generi) type [Rey85℄, as was already

mentioned in Chapter 7.

10.3 Abstrat Data Types

The general idea behind abstrat data types is to desribe data strutures

without unveiling their implementation. Essentially, an abstrat data type en-

apsulates a data struture D together with the operations whih manipulate

it. Eah value in D is expressed by means of these operations only. It then

beomes possible to axiomatize D in an algebrai manner.

Let us illustrate the idea with the very simple ase of the natural integers.

To this end, instead of using diretly N, we would introdue an abstrat data

type alled nat, together with names for the regular arithmetial operations.

Of ourse, N, endowed with appropriate operations de�ned by means of set-

theoreti primitives, would provide a model for this abstrat data type. Note

that the typing disipline itself does not depend on this interpretation. The rule

we should onform to would be that only expressions built up from the opera-

tions delared in the type are aepted as arithmetial (integer) expressions.

2

In a �high-level� (or abstrat) spei�ation stage, a less strit viewpoint is aept-

able.

Abstrat Data Types and Algebrai Spei�ation 195

We an proeed in the same manner with even numbers, as suggested at

the end of � 10.2.6: introdue a data type alled even_nb, with appropriate

operations, and onsider that 2N (endowed with +

e

and �

e

1

) is a model for

them.

Finally, onsider the example of a binary tree. In order to be able to use

binary trees, one needs to onstrut a new tree, to ompose a tree from two

previously onstruted ones, to ompare two trees, et. One has also to know

whether information items are stored at the leaves or at the nodes. But imple-

mentation hoies suh as the use of pointers, arithmetial operations in arrays,

or whatever, are not relevant here. One has a onrete type when the repre-

sentation of data items, and of the funtions for aessing or modifying them,

are desribed, whereas one has an abstrat data type when only properties

of these data items and funtions are desribed. There is an analogy in logi:

a onrete type would orrespond to the notion of a model, while properties

de�ned in an abstrat data type would be represented by formulas.

10.3.1 Sorts, Signatures

To de�ne an abstrat data type, one �rst gives a name, termed a sort, to

the various kinds of data items to be used. For example, we will need trees,

integers and Boolean values, having tree, nat and bool, respetively, as their

sort. We also need to designate operations over these objets. For example, for a

binary tree whose leaves ontain an integer, we an onsider the operations bin

whih onstruts a tree from its two sub-trees, leaf whih onstruts a one-leaf

tree, lft (respetively rgt) whih extrats the left (respetively right) sub-tree,

depth whih yields the depth of a tree (the length of its longest branh), bal

whih indiates whether the tree is balaned, and so on.

The operations we onsider are side-e�et free; that is, they have no e�et

other than the prodution of a value. Let us give some examples: the expression

bin(leaf(3),leaf(1)) represents a tree having two leaves ontaining 3 and 1,

respetively; rgt(bin(leaf(3),leaf(1))) represents a tree having exatly a

leaf ontaining 1. A value is always designated by means of previously delared

operations, without referene to a partiular model. In most ases there are

operations, alled the onstrutors, whih play a speial role. They allow one

to designate all possible values, and only those values. In the ase of binary

trees, the onstrutors are leaf and bin. Using axioms, one should be able to

prove that every expression is equal to an expression using only onstrutors.

The signature of an operation onsists of the delaration of the sorts

of its arguments and of its result. For example nat ! tree is the signa-

ture of a funtion whih takes an integer as input, and returns a tree, while

tree� tree ! tree is the signature of a funtion whih takes two trees as

inputs, and returns a tree. The previous operations would then be delared as

follows:

leaf : nat ! tree bin : tree� tree ! tree

lft : tree ! tree rgt : tree ! tree

depth : tree ! nat bal : tree ! bool :

196 Understanding Formal Methods

10.3.2 Axioms

We need to have more knowledge about the ontents or about the behavior

of those operations. In the ase of a programming language (Ada, CLU), the

semantis of operations is expressed by programs. Their internals are based on

a onrete representation of data types; the formal interfae is then made up

of only the signatures. In the ase of B, a set-based model is provided for the

operations. This model is quite a high-level one, however, as it uses unbounded

hoies and general operations over sets and relations. The more onrete rep-

resentations, desribed in re�nements and �nally in implementations, are then

hidden behind an abstrat spei�ation. In the framework of an algebrai spe-

i�ation language, one does not provide any model, abstrat nor onrete, but

rather a number of properties whih are expeted from the operations. Those

properties are expressed by logial formulas, whih an be axioms or theorems.

We have an analogous situation in mathematis. As a well-known example,

groups an be haraterized by three axioms. Similarly, the e�et of the opera-

tions of an abstrat data type an be haraterized by appropriate axioms. For

example, natural numbers an be seen as an abstrat data type, desribed by

the signature:

zero : ! nat su : nat ! nat

plus : nat� nat ! nat mult : nat� nat ! nat

eq : nat� nat ! bool inf : nat� nat ! bool ;

and the axioms of Peano.

In the example of binary trees, here is an axiom stating that a tree, made

up of two sub-trees is balaned, if these sub-trees are themselves balaned and

if the di�erene between their respetive depths does not exeed 1 (we use here

a liberal syntax for the arithmetial parts of the formula):

8 a; b (bal(a) ^ bal(b) ^

jdepth(a)� depth(b)j � 1)

) bal(bin(a; b)) :

(10.1)

The funtions lft, rgt and depth are determined by the following axioms:

8 a; b lft(bin(a; b)) = a

8 a; b rgt(bin(a; b)) = b

8n depth(leaf(n)) = 1

8 a; b depth(bin(a; b)) = 1 + max(depth(a); depth(b)) :

If the axioms are arbitrary formulas, we have an axiomati abstrat data

type; the name algebrai abstrat data type is preferred when the axioms are

equations

3

(or, sometimes, formulas of the form E

1

^ � � � ^E

n

)E

0

, where E

i

are equations). We an state the axiom about bal in the form of an impliation

between equations in the following manner:

3

Reall that in mathematis, the axioms used to de�ne algebrai strutures suh

as groups, rings, vetor spaes, et. are (universally quanti�ed) equations.

Abstrat Data Types and Algebrai Spei�ation 197

8 a; b (bal(a) = true ^ bal(b) = true ^

infeg(jdepth(a)� depth(b)j ; 1) = true)

) bal(bin(a; b)) = true :

(10.2)

All these formulas are quanti�ed universally for every variable; the general

framework is �rst-order logi, as desribed in � 5.2.

M

In our spei�ation, bool is a sort orresponding to an abstrat data

type in the same way as arb. Its onstrutors are true and false.

It an be endowed with usual Boolean operations (negation, onjuntion, dis-

juntion, et.).

Note that bal is a prediate in (10.1), whereas it is an ordinary

funtion in (10.2). If we onsider semantis, in both ases bal is interpreted as

a funtion to B . In a way, expliitly using bool plaes a formula suh as bal(a)

at the level of semantis.

V

For the sake of ompleteness, the spei�ation of binary trees should

make expliit that any tree onstruted with bin is di�erent from

any tree onstruted with leaf, and that the onstrutors are injetions, and

�nally, that all trees are onstruted with bin and leaf. This is easy to express

using �rst-order axioms, for example:

8 a; b; n :(bin(a; b) = leaf(n))

8m;n rgt(bin(a; b)) = b

8m;n leaf(m) = leaf(n)) m = n :

In order to simplify the spei�ation, it is agreed that suh axioms

are impliitly stated. One does not then have the freedom to interpret two

expressions as the same objet, exept if this is a onsequene of the axioms. In

short: two objets whih are not expliitly (or provably) equal must be distint.

10.3.3 First-order and Beyond

The formulas onsidered so far in this hapter are �rst-order. However, higher-

order logi may be useful if we want to express generi operations. Let us

illustrate the idea on (an abstrat view of) the sum of nat and nat� nat �

another abstrat data type, say, for binary trees, would do just as well. We

have essentially two manners of onstruting a value of this type � let us all

it Snat:

� by means of the onstrutor i1 (�rst injetion) of type

nat! Snat;

� by means of the onstrutor i2 (seond injetion) of type

nat� nat ! Snat.

If we want to use a value s of type Snat, in order to build up a Boolean for

example, we have to onsider the two possible soures of s. To this end we

would introdue the operation ase with three arguments:

198 Understanding Formal Methods

� a value of type Snat;

� a funtion of type nat! bool to be applied in the �rst ase;

� a funtion of type nat� nat ! bool to be applied in the seond ase.

These operations ome with the following axioms:

ase(i1(n); f; g) = f(n) ;

ase(i2(hx; yi); f; g) = g(hx; yi) :

Any model of Snat should satisfy these axioms. In partiular, this an be

heked with a set-theoreti interpretation based on ffalseg�N[ftrueg�(N�N)

together with an appropriate model of i1, i2 and ase.

Note that the funtion ase takes funtions as arguments. A polymorphi

version of this funtion would be welome: its behavior is the same whatever

the type of the result. Then one would systematially replae bool with a

parameter T .

Atually, one would like to introdue suh parameters for the sum itself and

for the two injetions i1 and i2. All this an be done, provided that one goes

beyond �rst-order. Appropriate devies for doing that will be introdued in the

next hapter.

10.4 Semantis

The semantis of a spei�ation de�ned by an abstrat data type is given by

a model of the axioms (� 5.6). For algebrai abstrat data types, one generally

onsiders multi-sorted logi. Eah sort is interpreted by a previously known set.

Expressions suh as nat� nat! nat are interpreted by a total funtion from

a Cartesian produt to a set, for example, the addition is from N � N to N.

The abstrat data type itself is interpreted by a mathematial struture,

that is, an n-tuple omposed of sets and operations over these sets. For example,

the abstrat data type nat of the previous setion ould be interpreted by

hN; B ; 0; S;+;�; =; < i.

The example of even_nb, given in � 10.2.6, is interesting. One model for

it is 2N, of ourse, but another one is N itself, endowed with regular addition

and multipliation, without any hanges. What hanges in this interpretation

is the oerion funtion from even_nb to nat, whih is no longer the identity

funtion, but the funtion whih returns the double of its argument.

There are several options for de�ning the semantis of an algebrai ab-

strat data type. Let us mention two of them here: initial semantis and loose

semantis.

In the ase of initial semantis, a spei� struture, referred to as the initial

model, plays a entral role. For example, we would take hN; B ; 0; S;+;�; =

; < i in the ase of arithmeti. This approah is well suited when we have

onstrutors, suh as zero and su (we want them to have a �no junk � no

onfusion� property).

Abstrat Data Types and Algebrai Spei�ation 199

On the other hand, loose semantis onsiders the lass of all possible models.

As a mathematial example, this framework would be more appropriate than

initial semantis for group theory.

10.5 Example of the Table

10.5.1 Signature of Operations

Given an arbitrary sort U , we want to represent tables of elements of U , on-

sidered here as �nite sets of elements of U . We will onstrut them by means

of the operations emptytab (the empty table, this operation, intuitively, orre-

sponds to the reation of a new table) and insert (whih inserts an element

in a table):

emptytab : table insert : U � table ! table :

Other operations an be designed, for example, removing an element or building

the union of two tables:

remove : U � table ! table

tabunion : table� table ! table :

The searh for an item will be spei�ed by the relation in:

in : U � table ! bool

searh : table ! U :

10.5.2 Axioms

The following axioms express that the order of insertion is not important, and

that possible repetitions are not either.

8x; y; t insert(x; insert(y; t)) = insert(y; insert(x; t))

8x; t insert(x; insert(x; t)) = insert(x; t) :

In order to speify the searh for an item we need a prediate P over elements

of U :

8x in(x; emptytab) = false

8x; t in(x; insert(x; t)) = true

8x; y; t x 6= y) in(x; insert(y; t)) = in(x; t)

8x; t searh(t) = x ^ in(x; t)) P (x) :

Note that the failure of a searh is not ompletely spei�ed here. We an only

say that, in ase of failure, the item that is returned is not an element of t.

The two axioms given for in are su�ient beause we onsider that the order

of insertion is not relevant.

200 Understanding Formal Methods

10.6 Rewriting

It may be tempting to write the � unfortunately �awed � following spei�-

ation for the searh operation:

8x; t P (x)) searh(insert(x; t)) = x :

An undesired onsequene of this spei�ation is that the table ould not on-

tain two distint items x and y satisfying P ! Indeed, a table ontaining x and

y an be put in the two forms insert(x; t) and insert(y; t

0

) � where x and

y are members, respetively, of t

0

and of t. If we also have P (x) and P (y), we

get:

x = searh(insert(x; t)) = searh(insert(y; t

0

)) = y :

Yet the latter spei�ation of searhmight seem quite harmless. The lesson

we draw from this is that formal statements, alone, are not a panaea. It is

ruial to examine their onsequenes. This is preisely the job performed by

dedution tools. In the ase of algebrai spei�ations, they are generally based

on rewriting systems, as explained in the previous hapter. Let us illustrate

this tehnique using the example of binary trees.

An example of a property whih is quite easy to hek is that the left subtree

of a tree a (supposed to be in the form bin(b;)), is less deep than the full tree

a:

a = bin(b;)) inf(depth(lft(a)); depth(a)) = true :

Indeed, after the substitution of bin(b;) for a in the right-hand side of this im-

pliation, we obtain a formula ontaining lft(bin(b;)) and depth(bin(b;)),

whih in turn an be rewritten to b and 1 + max(depth(b); depth()), respe-

tively, aording to our axioms. The right-hand side an then be written:

inf(depth(b); 1 + max(depth(b); depth())) = true ;

whih is easy to solve using arithmeti rules:

inf(x; 1 + y) = infeg(x; y)

infeg(x; max(x; y)) = true :

Note that in this example, we always proeeded by replaing the left-hand side

with the right-hand side of an equation. In other words, equations were used

as rewriting rules, as indiated in � 9.7.

10.7 Notes and Suggestions for Further Reading

The book [BKL

+

91℄ provides an overview of algebrai spei�ations. One of the

main approahes to this topi, using so-alled initial algebras, is developed in

Abstrat Data Types and Algebrai Spei�ation 201

[EM85, EM90℄, where the reader an �nd a desription of the language ACT1.

This language has been reused in the two �formal desription tehniques� for

ommuniation protools LOTOS � whose ontrol aspets are derived from

proess algebras in CSP and CCS style � and a (now obsolete) version of SDL.

Another important algebrai spei�ation language is OBJ, desribed for

example in [JKKM92℄. Its more reent suessors inlude Maude [CDE

+

99℄

and CafeOBJ [DF98℄.

11. Type Systems and Construtive Logis

This hapter introdues the relationship between typing, logi, and spei�a-

tion. In fat, a type an be viewed as a kind of spei�ation. This analogy an be

arried to a fair extent, at least in the framework of the onstrutive approah

to logi, already mentioned on page 42. From this perspetive, intuitionisti

logi turns out to have better features than lassial logi.

In passing, we will introdue the �-alulus, whih is both a plain logial

tool and an elementary language whih is muh appreiated for studying fun-

damental issues in omputer siene, inluding questions related to typing. All

that will lead us to the topi of the next hapter, devoted to the alulus of

indutive onstrutions, a powerful type system implemented in two software

systems, Coq and Lego.

1

11.1 Yet Another Conept of a Type

11.1.1 Formulas as Types

The most general thing we an say about a type is that it is just a non-

interpreted formal expression, whih an be attahed to the onepts of the

language we onsider (variables, funtions, et.). An objet whih has a given

type is sometimes referred to as an inhabitant of this type.

A typing system tells us how to assign a type to an expression of the lan-

guage, as soon as we know the type of the omponents of that expression. For

example, if f has the type A! B and if x has the type A, then f(x) has the

type B. A typing system an then be regarded as a formal spei�ation lan-

guage, whih is more, or less, re�ned depending on the rihness of the typing

system. From this perspetive, verifying that a program is well typed amounts

to proving that it satis�es its spei�ation.

Note that the onept of a type applies not only to programming languages,

but to spei�ation languages as well. Thus, in algebrai spei�ation languages,

the basi symbols for types are alled sorts, for example nat, bool, stak. The

operators � and ! allow one to onstrut ompound types, suh as nat �

nat!bool. In this ase we have two levels of spei�ation: the typing spei�es

1

We also want to mention NuPRL and ALF, whih are based on very similar prin-

iples.

204 Understanding Formal Methods

something about the algebrai spei�ation. In partiular, it fores the axioms

whih ome with the delaration of operations to be well typed. The same

omment applies to the spei�ation languages based on set-theoreti notations.

Considering that a spei�ation is, in general, a logial formula, we an

still go one step further. Types, regarded as formal expressions, beome more

preisely logial formulas. This was already suggested in the ase of dependent

types. We get here the �rst part of the so-alled Curry�Howard isomorphism,

to be developed below:

type = logial formula :

We will see that, in this framework,� and! are given a simple logial meaning.

11.1.2 Interpretation

As soon as we onsider a type as a formula, we an onsider interpretations of it,

as in model theory. However, model theory does not provide all possible kinds

of interpretation. Instead of interpreting the truth value of a formula by means

of the two values true and false, one an examine the spae of the proofs that

onlude with this formula. Suh objets turn out to be relevant to omputer

siene: they are just omputable funtions. More exatly, they are algorithmi

(or, intentional) de�nitions of omputable funtions � reall that usually,

�funtion� is used with its extensional meaning, inluding the phrase �reursive

funtion� in omputability theory. A good framework for expressing intentional

presentations of reursive funtions, and for studying typing systems, is the �-

alulus. We start with the untyped version of this formalism.

11.2 The Lambda-alulus

Une fois rien... 'est rien !

Deux fois rien... e n'est pas beauoup !

Mais trois fois rien !... Pour trois fois rien, on peut déjà

aheter quelque hose... et pour pas her !

2

R. Devos

The �-alulus, devised by Alonzo Churh, formalizes with remarkably re-

strited means the onept of a omputable funtion. It an be regarded as a

programming language, powerful enough for enoding any algorithm, whereas

its rudimentary harater simpli�es the study of a number of fundamental is-

sues, suh as omputability and typing. The �-alulus was also used for de�n-

ing the semantis of programming languages, and it is the arhetype of fun-

tional languages. Finally, notations of the �-alulus are very often re-used,

inluding in languages suh as Z or B.

2

One time nothing... this is just nothing! Two times nothing... this is not muh!

But three times nothing!... with three times nothing, one an buy something... and

with little money!

Type Systems and Construtive Logis 205

In the �-alulus, the notation �x: x+3 represents the funtion f suh that

f(x) = x+3. Evaluating f(5), denoted by ((�x: x+3) 5), onsists of substituting

5 for x in the body of the funtion, whih yields 5+3 (and then, 8).

One an get rid of the symbols �+�, �3� and �5�. The main idea of the

�-alulus is that everything an be represented by one-argument funtions,

inluding data strutures and ontrol strutures. Only one omputation meh-

anism, alled the �-redution, is available. It formalizes what happens when a

funtion is applied to its argument.

11.2.1 Syntax

In the �-alulus, programs, or funtions, are expressed by �-terms, built up

from variables denoted by identi�ers x; y; z : : : and only three rules:

� a variable is a �-term;

� �-abstration: if T is a �-term and if x is a variable, �x: T is a �-term

(intuitively, it represents the funtion whih maps x to T ; for example �x: x

is the identity funtion);

� appliation: if F and X are �-terms, the appliation of F to X is a �-term

denoted by FX .

As usual, parentheses are used for removing ambiguities, for example, for

distinguishing (�x: x)y from �x: (xy). Appliation has syntatial preedene

over abstration: �x: xy is a shorthand for �x: (xy).

The onept of a free, or of a bound, variable is similar to the one in pred-

iate alulus, the role of 8 being played by �. In the same way, the meta-

notation [x := V ℄T denotes the substitution of a term V for eah free our-

rene of x in T . For example, in x(�x: xy) the �rst ourrene of x is free, the

seond is bound, and y possesses only one ourrene whih happens to be free;

[x := (�z: z)℄ (x(�x: xy)) represents the term (�z: z)(�x: xy).

The mehanism of the �-redution is quite natural: when a funtion F with

a parameter x, say �x: T , is invoked on an argument V (this situation is alled

a redex), V is substituted for all free ourrenes of x in the body T of F ;

more preisely, the �-term (�x: T)V is rewritten as [x := V ℄T . For example, if

we take T = x, (�x: x)V is rewritten as V ; thus we hek that �x: x represents

the identity funtion, as one would expet.

We easily see that �y: y is also the identity funtion. More generally, �-terms

are de�ned up to a renaming of bound variables (this is alled �-onversion).

In pratie, suh renaming an be performed systematially before every �-

redution in order to avoid onfusion. We will always omply with this disipline

in the following.

A redex an our at the top of a term, but also at the top of an arbi-

trary sub-term. Of ourse, the sope of substitutions performed by a given

�-redution extends only over the onerned sub-term. A �-redution step,

from T to T

0

, is denoted by T

�

! T

0

. For example, we have

(�x: x)(�y: y)

�

! �y: y : (11.1)

206 Understanding Formal Methods

When we have a (�nite) hain of �-redutions going from T to S this is written

T

�

!

�

S . When a term has no redex, we say that it is irreduible, or in normal

form. Evaluating a �-term T onsists of looking for an irreduible term S suh

that T

�

!

�

S .

11.2.2 The Pure �-alulus and the �-alulus with Constants

It turns out to be possible to enode all useful data strutures (integers,

Booleans, pairs, lists, trees, et.), as well as the funtions whih allow one

to manipulate them, by means of �-terms. One an also represent �xed-point

operators, and then reursive funtions. Thus, this alulus has the maximal

expressive power that one an expet.

Nevertheless, it is sometimes onvenient to enrih the syntax with additional

operations, together with appropriate redution rules alled Æ-rules. These op-

erations are alled onstants,

3

the system thus obtained is alled the �-alulus

with onstants. For example, one ould introdue the onstants +, 0... 3, 4,

5... with rules suh as:

5+3

Æ

! 8 :

An important example is the �-alulus with pairs, whih introdues three

onstants: pair formation h_;_i, and the �rst (respetively the seond) pro-

jetion p

1

(respetively p

2

) whih, respetively, extrat the �rst and the seond

elements from a pair. For example, �x: hp

2

x; p

1

xi represents the transposition

of the elements of a pair. It is neessary to introdue the Æ-rules p

1

hx; yi

Æ

! x

and p

2

hx; yi

Æ

! y. The system without onstants is alled the pure �-alulus.

We onsider the latter up to the end of the urrent setion.

11.2.3 Funtion and Funtion

We have seen that, as a funtion, a �-term takes a funtion as input and then

returns a funtion. However, the example given in (11.1) illustrates something

less ommon: a funtion an be applied to itself! Indeed, applying the identity

funtion to the identity funtion an be written (�x: x)(�x: x), or, preferably

(�x: x)(�y: y); after �-redution we get �y: y, whih is the identity funtion

again (as expeted). Reall that in set theory it is required that before de�ning a

funtion, its domain and its o-domain are de�ned, and this prevents a funtion

from being applied to itself: a funtion from A to B is regarded as a member

of P(A�B), so that it annot be a member of A. We will see later that, even

though a funtion of the �-alulus is not interpreted by a set (of pairs), a

3

Admittedly, these onstants represent funtions, but these funtions do not

hange. One has to distinguish between the result of a funtion, whih generally

varies when arguments vary, from the funtion itself. In ontrast, letters x, y are

variables, whih represent (and may be substituted by) arbitrary funtions.

Type Systems and Construtive Logis 207

type may be assigned to it. The onept of a funtion in the �-alulus turns

out to be, from this respet, more powerful than the set-theoreti onept of a

funtion.

Atually, funtions in the �-alulus are omputation proedures above all.

In this respet, they are quite lose to the onept of a funtion used prior to

Dedekind and Cantor. We admit that they represent omputable funtions par

exellene. Moreover, reall that there are many more set-theoreti funtions

than omputable funtions (f. � 3.3.4).

The di�erene between set-theoreti funtions and omputable funtions

remains at the root of an important issue for formal spei�ation of software.

Indeed, the set-theoreti onept of a funtion is sometimes easier to handle or

to understand, than the onstrutive onept, whereas the latter is the only one

available in programming; the set-theoreti onept is then put to the fore. An

essential issue in program onstrution from formal spei�ations is to exhibit

an algorithm omputing a funtion previously presented in an impliit manner,

and one hopes that suh an algorithm does exist.

11.2.4 Representing Elementary Funtions

In order to illustrate more onretely how the �-alulus an be used, let us

show how a number of ommon programming onstruts an be represented.

This will shed new light on a mapping between data strutures and ontrol

strutures. Thus, the onept of a pair is assoiated with the onept of a

projetion, the onept of a Boolean is assoiated with the onept of a test,

the onept of an integer is assoiated with the onept of an iteration. In some

respet, a data struture is de�ned by its typial use ases.

11.2.4.1 Preliminary Conventions, Curry�ation. We have to agree on

a number of notational simpli�ations. We will also show how to �urryfy� a

two arguments funtion in order to onsider it as a one argument funtion.

Let us onsider informally the ase of addition, whih maps x and y to

�x+y � . If we �x the �rst argument to 2 (respetively to u), we get the funtion

�add 2 � (respetively �add u �) whih maps y to �2+y � (respetively �u+y �);

this funtion is then �y: �2+y � (respetively �y: �u+y �).

Consider that x, y and �x+y � have the type nat. The funtion �y: �x+y �

then has the type nat! nat. The addition is then regarded as the funtion

whih maps x, not to an integer, but to the funtion of type nat! nat we

have just seen, �y: �x+y � . In other words, the addition is represented by

�x: (�y: �x+y �) of type nat!(nat! nat) . We agree that this term is also

noted �x: �y: �x+y � or even more simply, �xy: �x+y � .

More generally, �xy: T and �x: �y: T represents �x: (�y: T); this onvention

generalizes to an arbitrary number of arguments. Consistently, the appliation

operation assoiates to the left : gfy does not represent g(fy) as one would

expet at a �rst glane, but (gf)y: this expression should be interpreted as the

appliation of the two-arguments (urry�ed) funtion g to f and y. Thus we

do have, assuming that the only ourrenes of x and y are in T :

208 Understanding Formal Methods

(�xy: T)U V

�

!

�

[x; y := U; V ℄T :

11.2.4.2 Conept of a Combinator. A ombinator is a losed �-term (that

is, without free variables). Three examples of ombinators are:

I

def

=

�x: x K

def

=

�xy: x and S

def

=

�xyz: (xz)(yz) :

A theorem states that every ombinator an be obtained using only I, K and

S. One an even dispense with I, beause SKK

�

!

�

I (reall that ab is read

(ab)).

11.2.4.3 Booleans and Tests. The very purpose of a Boolean b is to hoose,

from two arguments X and Y , the �rst if the value of b is �true� and the seond

otherwise. In a funtional language, this would be expressed by:

if b then X else Y : (11.2)

Beware: this expression designates the value of X or of Y , and not a ommand.

We take for �true� and for �false� two terms denoted by t and f, respetively,

and de�ned by

t

def

=

�xy: x and f

def

=

�xy: y :

The fat that tXY

�

!

�

X and that fXY

�

!

�

Y allows us to represent the test

(11.2) by bXY (whih reads: (bX)Y).

Now Boolean funtions are easy to program. For example, the disjuntion

is obtained by omputing x _ y by means of if x then t else y:

or

def

=

�xy: xty :

11.2.4.4 Integers and Iteration. There are several means of enoding in-

tegers with the �-alulus. The most popular, due to Churh, onsists of rep-

resenting the integers n by the funtion whih iterates a funtion given as an

argument n times, that is, intuitively:

�f: f

n

= �f: f Æ f � � � Æ f

| {z }

n

= �fx: f(f � � � (f

| {z }

n

x) � � �) :

We need to represent the two onstrutors 0 and S. Let us observe that f

0

is

the identity funtion, while f

n+1

(x) is f(f

n

(x)). This idea is implemented in

the following ombinators:

0

def

=

�f: �x: x and S

def

=

�n: �fx: f(nfx) :

We will also use:

1

def

=

�fx: fx ; 2

def

=

�fx: f(fx) ; et:

Type Systems and Construtive Logis 209

As an illustration of the use of iteration, let us represent arithmetial op-

erations. The addition m+n is obtained by m suessive inrements of n:

�m+n � = �S

m

(n) � = mSn, that is, formally, plus

def

=

�mn:mSn .

In the following we prefer a slightly di�erent de�nition, whih omes diretly

from f

m+n

(x) = f

m

(f

n

(x)), that is,

plus

def

=

�mn: �fx: (mf)(nfx) :

This version is atually shorter than the previous one, beause we should ex-

pand S in the latter.

We an get the multipliation m � n by iterating m times the addition of

n to 0, whih yields the expression: �mn:m(�x:plus n x)0 . However we get a

shorter de�nition from f

mn

= (f

m

)

n

:

mult

def

=

�mn: �f: n(mf) :

Remarkably, the exponential funtion is still simpler to represent, sine a

Churh integer is preisely the exponential operation:

exp

def

=

�mn: nm :

Finally, omparison to zero is expressed by

zer

def

=

�n: n(�x: f)t :

Indeed, (�x: f)

0

is the identity, whih obviously yields t when applied to t; in

ontrast, for n > 0, (�x: f)

n

is �x: f whih, applied to t yields f. As an exerise,

the reader may alulate zer(plus 1 x) and zer(plus 0 0).

11.2.4.5 Pairs and Projetions. The ombinator for onstruting a pair

takes two �data� items X and Y as inputs (for example integers, Booleans, but

atually arbitrary �-terms) and it returns hX;Y i. The �rst (respetively the

seond) projetion takes a pair as input and it returns X (respetively Y). The

abstrat type �pair� is atually haraterized by three funtions pair, pr1 and

pr2 whih must verify pr1(pair(x; y)) = x and pr2(pair(x; y)) = y .

Natural de�nitions of the urry�ed projetions p1 and p2 are �xy: x and

�xy: y . Let us represent the onstrution of the pair hx; yi by a term taking a

urry�ed projetion p as an argument and applies it to x and y:

hx; yi

def

=

�p: pxy and pair

def

=

�xy: �p: pxy :

The projetions are then in the form �: � where is a pair and � is a urry�ed

projetion:

pr1

def

=

�: (�xy: x) and pr2

def

=

�: (�xy: y) :

210 Understanding Formal Methods

11.2.4.6 Paradoxial and Fixed-point Combinators. The paradoxial

ombinator is

def

=

(�x: xx)(�x: xx) :

It has a feature whih was not present in the ombinators introdued so far:

there is a redex inside it. One an even perform an arbitrarily high number of

suessive �-redutions from
, sine

�

!
 . This term represents a �looping�

program. On �rst inspetion, one might blame �x: xx, beause it ontains the

�self-appliation� xx; but there are ombinators T suh that (�x: xx)T on-

verges (terminates). The simplest is I:

(�x: xx)(�x: x)

�

! (�x: x)(�x: x)

�

! (�x: x) :

We an even get an in�nite number of suh terms, by taking for T the Churh

enoding of an arbitrary integer n: this yields a representation of n

n

whih,

after suessive redutions, reahes the normal form

�fx: f(f � � � (f

| {z }

n

n

x) � � �) :

This is an example of a term yielding a very long hain of �-redutions.

A slight modi�ation of
 provides a �xed-point ombinator:

Y

def

=

�f:

�

�x: f(xx)

��

�x: f(xx)

�

;

whih, applied to any term F , yields after a �-redution step a term F

0

that

redues itself to FF

0

, hene the in�nite hain:

YF

�

! F

0

�

! FF

0

�

! F (FF

0

)

�

! F (F (FF

0

))

�

! � � � : (11.3)

This term then yields an in�nite loop too, but not neessarily ! Let us onsider a

�reursive� de�nition of the form g = �x:G, where G ontains free ourrenes

of g. We know that, from a semantial viewpoint, we should interpret it as �g is

the least �xed point of G� (f. � 3.6). Even though the set-theoretial onept

of a funtion turns out too narrow for developing this idea in �-alulus, the

intuitive idea remains valid: in some sense, YF is a �xed point of F . Let us see

what happens if we take F = �gx:G and we apply YF to a given term t. In

the example of the sequene of Fibonai, G would be a translation of

if x = 0 _ x = 1 then 1 else g(x� 1) + g(x� 2) :

When we reah FF

0

t, that is, (�gx:G)F

0

t, two new redexes appear suessively,

so that we get [g := F

0

; x := t℄G. If the funtion G is programmed as expeted,

this term ontains redexes that, intuitively, hek the value of x. Then there

are two options:

Type Systems and Construtive Logis 211

� �reursive� ase, the �-redution yields a term ontaining other ourrenes

of g � but reall that g has been replaed with F

0

; then a redution step

F

0

�

! FF

0

an be applied, and we get one or several sub-terms under the

form FF

0

t

i

, so that we have a situation similar to the previous one, with

new values for t (�t� 1 � and �t� 2 � in the above example);

� �base� ase, the �-redution yields a term whih ontains no ourrene of g

(�1� in the above example); we no longer enter in the in�nite loop (11.3); all

additional redutions that may have been performed on F

0

turn out to be

useless.

To sum up, we observe that suitable appliations of the �-redution meh-

anism allow us to simulate the evaluation of a �reursive� funtion.

11.2.5 Funtionality of �-redution

We presented �-redution as an evaluation mehanism whih transforms any

given term into an irreduible one. A number of phenomena appear in previous

examples:

1. As a term may ontain several redexes, it an be redued in several ways;

is it possible to get di�erent irreduible forms from the same term?

2. In a number of ases, suh as
, a term does not possess a normal form;

an this be deided a priori?

3. In other situations, a term an be transformed into an irreduible form,

along some paths, while suessive redutions along other paths do not

terminate. A very simple ase is (�x: T)
, where T is a normal term on-

taining no free ourrene of x. Can we �nd a strategy for the hoie of

redexes suh that an irreduible form will eventually be reahed if there is

one?

The �rst issue is about funtionality: we wish the result to depend only on

the initial expression, and not on the manner of performing omputations. This

property is alled on�uene, or the Churh�Rosser property. The following

result is quite di�ult to prove.

Theorem 11.1 (Churh�Rosser)

If a term T an be redued to two di�erent terms U and V , that is, if T

�

!

�

U

and T

�

!

�

V , then there exists a term W suh that U

�

!

�

W and V

�

!

�

W .

As a orollary, if the irreduible form exists, it is unique (hene the name

normal form).

This result an also be regarded as stating a kind of onsisteny of the �-

alulus, in the following sense. Let us onsider

�

(), the re�exive and symmet-

rial losure of

�

!

�

. By onstrution, this is an equivalene relation. Eah term is

in a unique equivalene lass modulo

�

(), and eah lass represents the �value�

denoted by one of its members. For example, we have (or t f)

�

() (or t t). It

212 Understanding Formal Methods

is lear that �-redutions preserve the equivalene lass. However, it is impor-

tant that the values represented by t and f are di�erent, that all the values

of Churh integers are di�erent, and similarly for eah data struture: other-

wise omputations would have no interest, one would say that the alulus is

inonsistent. The Churh�Rosser property guarantees the onsisteny of the

alulus beause the normal form forms of t and f are syntatially di�erent

(and similarly for Churh integers).

The seond and third point onern the termination of omputations. The

answer to the seond an only be negative, beause the �-alulus has the power

of Turing mahines. In ontrast, a strategy exists whih reahes the normal form

if it exists. This strategy, alled the normal strategy, onsists of reduing the

redex whose ��� is on the left-most position. For example, in (�x: T)
, one has

to hoose the redution (�x: T)

�

! [x :=
℄T (whih yields T if T does not

ontain a free ourrene of x), and not the redex whih is inside
. These two

results are summarized in the following theorem.

Theorem 11.2

The existene of a normal form of an arbitrary �-term is a semi-deidable

problem.

Con�uene and termination properties play a pivotal role in the study of rewrit-

ing systems. The tools developed in the framework of the �-alulus are widely

used in this theory.

To summarize, we an reall that the �-alulus is a formalism well suited

for representing the onept of a omputable funtion (or of a reursive fun-

tion, as de�ned in � 3.7). Indeed, it is a onsistent and Turing-omplete alu-

lus. In pratie, it is present in several important spei�ation languages, and

also in funtional programming languages, though the notations used there are

more user-friendly. In these languages, integers and other data strutures are

generally represented by ommon enodings lose to the mahine, instead of

�-terms, for obvious reasons of e�ieny. However, understanding the behavior

of Churh integers and other ombinators is quite useful, beause they are a

good illustration of fundamental manipulations of funtions to be met in the

pratie of modeling and of programming.

11.3 Intuitionisti Logi and Simple Typing

11.3.1 Construtive Logis

In mathematis, it an sometimes our that one proves the existene of an

objet verifying some property without exhibiting this witnessing objet. A

frequently ited example is the proof that there is an irrational number r suh

that r

p

2

is a rational � so that we have two irrational numbers r and s suh

that r

s

is rational. Consider a

def

=

p

3 and b

def

=

a

p

2

. If b is rational, we an

take r = a; otherwise, we an take r = b beause (a

p

2

)

p

2

=

p

3

2

. By the law

Type Systems and Construtive Logis 213

of the exluded middle, the existene of r is ensured, without needing to say

whether r is a or b.

Suh proofs are alled non-onstrutive, beause they do not provide an

e�etive manner to obtain the witness possessing the desired property. Con-

strutive proofs are, however, quite ommon. A simple ase is when the witness

is expliitly provided, for example 3 in the property 9x 2x = 6. Many proofs

by indution are onstrutive, beause they impliitly ontain a onstrution

proess allowing one to ompute a witness. For example, in order to prove that

every integer is even or odd, the indution step onsists of taking an integer n

whih is already in the form 2k or 2l + 1, and then proving that n + 1 is in

the form 2k

0

or 2l

0

+ 1; here one has to onsider k

0

= l + 1 and l

0

= k. During

this proof, we impliitly desribed an algorithm whih performs the Eulidian

division of n by 2.

Most theorems in basi arithmeti are proved onstrutively, as well as

theorems whih are involved in program proving. Note that the axiom of hoie,

in set theory, is essentially non-onstrutive. Atually, it is sarely used in

omputer siene, beause one is often interested in the algorithmi ontents

of proofs. Unfortunately, lassial logi, that is, the kind of logi that everyone

uses regularly, turns out to be inappropriate for the development of onstrutive

proofs.

We need onstrutive logis, whih not only allow us to extrat an algo-

rithmi ontent from proofs, but provide proof spaes themselves with an in-

teresting mathematial struture. The most ommonly used onstrutive logi

in omputer siene is intuitionisti logi, whih originated at the beginning of

the 20th entury. In onstrutive logis, provability and proof struture beome

more important onepts than truth values.

M

More reently, a onsiderable amount of researh work has been de-

voted to a new and promising onstrutive logi alled linear logi.

We want to also mention that subtle variants of lassial logi an be made

onstrutive. This is a reent disovery, related to the interpretation of ontrol

strutures suh as exeptions and all/ [Gir91, Gri90, Mur91℄.

11.3.2 Intuitionisti Logi

Intuitionisti logi was already presented in Chapter 9. In the following we rely

on natural dedution. Let us reall that, in the system NJ, one manipulates

dedutions made under some hypotheses. These are displayed in a tree whose

root ontains the onlusion. A �nished proof is a dedution where all hypothe-

ses have been disharged. The formation of dedutions an be interpreted in

the following manner (disjuntion and quanti�ers will be disussed later):

^

i

given a dedution a of A and a dedution b of B, one forms a dedution

of A ^ B; the latter is represented by the pair ha; bi;

^

e

given a dedution of A^B, under the form ha; bi, one forms a dedution

of A (respetively of B) whih is a (respetively b), obtained from by

a projetion;

214 Understanding Formal Methods

)

e

given a dedution f of A)B and a dedution a of A, one forms a dedu-

tion of B; f is then regarded as a funtion whih maps every dedution

of A to a dedution of B;

)

i

given a dedution of B under the hypothesis A, one forms a dedution

of A) B; it an be regarded as a funtion from the spae of dedutions

onluding to A, to the spae of dedutions onluding to B;

? the spae of dedutions of ? is empty.

This interpretation is the interpretation of Heyting, also alled the BHK in-

terpretation (Brouwer�Heyting�Kolmogoro�). Here, the semantis of a propo-

sition P is not a truth value, but the spae of proofs onluding to P . The

propositions whih an be proved with the onnetors onsidered here are es-

sentially impliations (for example P) P or P ^Q) Q ^ P), sine the on-

juntions whih an be proved are onjuntions of impliations (for example

(P) P) ^ (P ^Q) Q ^ P)). The main spaes we onsider are then essen-

tially sets of funtions.

M

We use the term �spae� beause the study of the semantis of these

objets shows that they live in spaes, in the ommon mathematial

sense, that is, sets endowed with algebrai or topologial properties.

11.3.3 The Simply Typed �-alulus

It will be seen that these funtions are atually nothing but �-terms, more

preisely terms of the simply typed �-alulus with pairs whih we introdue

now.

First we de�ne types as expressions formed by the means of type variables

A, B, C, et. and of binary onnetors ! and �. The terms of the simply

typed �-alulus with pairs are just the terms of the �-alulus with pairs

whih are ompatible with typing rules. Thus, we are given, for eah type � ,

typed variables of type � , for example x :A, y :A, z :A�B, t :A!B. Let �

and � be types:

� if x is a variable of type � and if t is a �-term of type � , �x :�: t is a �-term

of type �! � ; to simplify reading, we also write �x

�

: t;

� if f is a �-term of type �! � and if s is a �-term of type �, f s is a �-term

of type � ;

� if s and t are �-terms of types � and � , respetively, hs ; ti is a �-term of type

��� ;

� if is a �-term of type ��� , p

1

 and p

2

 are �-terms of types respetively

� and � .

Eah typed �-term an trivially be mapped to an untyped �-term: just remove

typing information.

11.3.3.1 Examples.

� �x

A

: x has the type A! A; the underlying untyped �-term is �x: x;

Type Systems and Construtive Logis 215

� �x

A

: �y

B

: x has the type A! B! A; the underlying untyped �-term is

�x: �y: x;

� �f

A�B!C

: �x

A

: �y

B

: fhx; yi has the type (A�B! C)! (A! B! C); the

underlying untyped �-term is �f: �xy: fhx; yi � this is urry�ation.

11.3.3.2 Properties. When T is the underlying untyped �-term of a typed

�-term of type � , we say that T is typable with type � . As one may expet,

�-redution is ompatible with typing: if T

�

! S and if T is typable with type

� , then S is typable with type � . Theorem 11.3 will soon provide a muh more

interesting property.

11.3.4 Curry�Howard Correspondene

The semantis of Heyting amounts to interpreting dedutions by �-terms of the

above system. In this interpretation, ^ is regarded as a produt, sine proof of

A ^ B boils down to a proof of A and a proof of B. The onnetor) is still

more interesting: A)B allows one to onstrut a proof of B from any proof of

A; impliation is then interpreted as the onstrution of a spae of funtions.

This yields the following systemati translation:

� a proposition P is translated into a type P

℄

, obtained from P by replaing

) with ! and ^ with�;

� a paket of hypotheses P (see page 161) is translated into a variable x : P

℄

(or x

P

℄

);

� if two dedutions of A and B are respetively translated into the �-terms

a of type A

℄

and b of type B

℄

, the dedution of A ^ B obtained by ^

i

is

translated into ha; bi of type A

℄

�B

℄

;

� if a dedution of A ^ B is translated into the �-term of type A

℄

�B

℄

, the

dedution of A (respetively of B) obtained by ^

e1

(respetively ^

e2

) is

translated into p

1

 (respetively p

2

);

� if a dedution of A)B is translated into the �-term f of type A

℄

!B

℄

, and

if a dedution of A is translated into the �-term a of type A

℄

, the dedution

of B obtained by)

e

is f a of type B

℄

;

� if a dedution of B, done under a paket of hypotheses A, is translated into

the �-term b of type B

℄

� the latter must ontain a free variable of type

A

℄

, say x, whih translates the paket of hypotheses � the dedution of B

obtained by)

i

by disharging this paket of hypotheses is translated into

�x

A

℄

: b of type A

℄

!B

℄

.

Conversely, every �-term of type � an be regarded as a dedution onlud-

ing to �

[

whih is � after the replaement of�with ^ and of ! with). The

two reiproal translations ℄ and [onstitute the Curry�Howard orrespon-

dene (also alled the Curry�Howard isomorphism), whih an be summarized

as follows:

proposition = type ;

proof = funtion ;

216 Understanding Formal Methods

where �funtion� should be understood as ��-term�. This sheds a new light on

the typed �-alulus: it is a onise notation for dedutions. Here are some

examples:

(x)

z}|{

A

)

i(x)

A)A

9

>

=

>

;

is noted �x

A

: x ;

(x)

z}|{

A

)

i(y)

B)A

)

i(x)

A)B)A

9

>

>

>

=

>

>

>

;

is noted �x

A

: �y

B

: x ;

(f)

z }| {

A ^ B) C

(x)

z}|{

A

(y)

z}|{

B

^

i

A ^ B

)

e

C

9

>

>

>

=

>

>

>

;

is noted fhx; yi ;

(f)

z }| {

A ^B) C

(x)

z}|{

A

(y)

z}|{

B

^

i

A ^B

)

e

C

)

i(y)

B) C

)

i(x)

A)B) C

)

i(f)

(A ^ B) C)) (A) B) C)

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

is noted

�f

A^B)C

: �x

A

: �y

B

: fhx; yi :

From now on, types will be onsidered and noted as propositions, and we

will take �!� as the symbol for impliation.

It is then natural to ask how to interpret the �-redution from the per-

spetive of logi. In other words, what is the meaning of the evaluation of a

funtion in the spae of proofs? In order to simplify the disussion, let us here

limit ourselves to the impliative fragment of NJ, that is, the fragment having

! as its only onnetor. The orresponding �-alulus is the simply typed

�-alulus.

Let us write the dedution orresponding to a �-term ontaining a redex

(�x

A

: b) a where a has the type A and b has the type B:

(x)

z}|{

A

.

.

.

b

B

!

i(x)

A! B

.

.

.

a

A

!

e

B

.

(11.4)

Type Systems and Construtive Logis 217

The dedution orresponding to [x := a℄ b is:

.

.

.

a

A

.

.

.

b

B :

(11.5)

In (11.4), the dedution a an be seen as a proof of the lemma A, and this

lemma is used an arbitrary number of times in b for proving B. In (11.5), eah

ourrene of the hypothesis A whih is a member of the paket denoted by

x, is replaed with the dedution a in b. In some sense, the proof (11.5) is

more diret than (11.4), beause it avoids the passage by A!B, whih is not

a sub-formula of the onlusion B to be proved. The transformation of (11.4)

into (11.5) is alled a normalization step. This provides the third part of the

Curry�Howard orrespondene:

normalization = �-redution :

This transformation is similar to ut-elimination in the sequent alulus. The

dedution (11.4) orresponds to:

�; A a B

!

r

� a A!B

B a B �

0

a A

!

l

�

0

; A! B a B

ut :

�;�

0

a B

(11.6)

while (11.5) orresponds to:

�

0

a A �; A a B

ut :

�;�

0

a B

(11.7)

The transition from (11.6) to (11.7) is the one that was already disussed

on page 167. By iterating suh steps, one reahes a proof without lemma,

also alled a normal proof, as in the Hauptsatz of Gentzen. We have even a

theorem stating that this normal form is reahed whihever redution strategy

is employed : this property is alled strong normalization. One says also that

the relation

�

!, restrited to typed terms, is Noetherian (see page 52).

Theorem 11.3

The above proedure for transforming dedutions (11.4) ! (11.5) in the im-

pliative fragment of NJ, or, equivalently, the �-redution of simply typed �-

alulus, has the strong normalization property.

We have seen that there exist �-terms, suh as
 and YF , whih are not

normalizable. There is no ontradition, beause these terms are not simply

typable. Atually, even �x: xx is not.

Let us take stok. The untyped �-alulus has the power of Turing mahines.

In general one annot know in advane whether the evaluation of a �-term t

218 Understanding Formal Methods

does or does not terminate. Moreover, it an terminate for some redution

strategies only, for example, if t enodes a reursive funtion by the means of

a �xed-point ombinator. We also learned that the evaluation of t terminates

in all ases if t is simply typed. We will see that there are yet other strongly

normalizable terms.

11.4 Expressive Power of the Simply Typed �-alulus

The fat that the simply typed �-alulus prohibits some terms is, by itself,

quite legitimate. The very purpose of a typing disipline is preisely to detet

irrelevant ombinations, suh as the appliation of a funtion de�ned over in-

tegers to a Boolean value. But what is preserved from the expressive power of

the �-alulus? Let us onsider some of the ombinators presented above.

11.4.1 Typing of the Natural Numbers

A possible typing of �fx: f(f � � � (f

| {z }

n

x) � � �) is

�f

X!X

: �x

X

: f(f � � � (f

| {z }

n

x) � � �)

whih has the type (X !X)! (X !X). Any other expression where X is

uniformly substituted for a given proposition ' is also suitable; we will abbre-

viate this formula to N

'

. It is easy to verify that we an give 0 the type N

X

,

S the type N

X

!N

X

, plus and mult the type N

X

!N

X

!N

X

.

The exponential funtion exp

def

=

�mn: nm raises a problem. If we give

m and the result the type N

X

, we are driven to give n the type N

X

!N

X

,

whih yields �m

N

X

: �n

N

X

!N

X

: nm of type N

X

! (N

X

!N

X

)!N

X

, while

one would expet the same type as for plus and mult.

Indeed, note that N

X

!N

X

is also of the form N

'

: it is N

X!X

. However,

it is not very satisfatory to have to onsider di�erent formulas for the type of

the natural numbers within the same term.

4

We have a more serious issue:

5

it is impossible to give a type to a term

as simple as �n: (exp n n) � whih an be simpli�ed to �n: nn � and, more

generally, to any term in whih one would use a variable with di�erent instanes

of the same type.

4

Note that a similar problem would be raised with other de�nitions of the addition

and of the multipliation, for example plus

def

=

�mn:mSn.

5

Warning: we onsider here one among the possible enodings of the funtion that

maps n to n

n

. Other enodings admit a simple type, but they are more ompliated.

Type Systems and Construtive Logis 219

11.4.2 Typing of Booleans

A typing of �xy: x is �x

X

: �y

Y

: x of type X! Y !X , and a typing of �xy: y

is �x

X

: �y

Y

: y of type X ! Y ! Y . As we want t and f to have the same type,

we are led to take X = Y . The Boolean type is then X !X !X (abbreviated

to B

X

) or any instane of B

X

.

Consider a possible expression for the negation: �b: bft. Assume we give t

and f the type B

X

, we are led to taking the expression B

X

! B

X

! B

X

, as the

type of b; this expression is of the form B

'

, as desired, with ' = B

X

. But this

yields B

B

X

!B

X

as the type of �b: bft, so we again get a quite unsatisfatory

situation, as with the exponential. We an, however, use another expression for

the negation, whih is �b: �xy: byx, that is, �b

X!X!X

: �x

X

: �y

X

: byx, whose

type is B

X

! B

X

as expeted. We get a similar problem if we enode disjun-

tion by �b: bt, whereas �b: �xy: bx(xy) has the type B

X

! B

X

! B

X

.

V

There is no relationship between the terms t or f and the logial in-

terpretation of the typing system. The type of Booleans is essentially

an enumerated type with two values, whih ould quite legitimately be named

aa and bb instead of t and f; the fat that the latter onvention is preferred an

be regarded as tradition. It is sometimes onvenient to introdue an enumerated

type with, for example, three values. It would be C

X

def

=

X!X !X !X , it

is inhabited by �x

X

: �y

X

: �z

X

: x, �x

X

: �y

X

: �z

X

: y and �x

X

: �y

X

: �z

X

: z . For

this type one would get a �three-ases if� ontrol struture.

M

Several types an be given to the same �-term. For example, a pos-

sible typing of �f: �x: x is �f

X!X

: �x

X

: x, that is, 0; another is

�f

X

: �x

X

: x, that is, f.

11.4.3 Typing of the Identity Funtion

The aforementioned problems an readily be observed in a very simple example,

the identity funtion: �x: x is typable byX !X and by every proposition under

the form '! ' . What do we think about the term (�x: x)(�x: x)? Possible

typings are of the form (�x

'!'

: x)(�x

'

: x), whih fores us to onsider two

di�erent identity funtions within the same expression.

11.4.4 Typing of Pairs, Produt of Types

It is not di�ult to propose a type for the urry�ed projetions p1 and p2,

with p1

def

=

�xy: x and p2

def

=

�xy: y: just takeX ! Y !X andX!Y!Y .

However, the impliative fragment of NJ turns out to be insu�ient for oping

with pair formation. The typed version of the ombinator pair

def

=

�xyp: pxy

is of the form:

pair = �x

X

: �y

Y

: �p

X!Y!U

: pxy :

220 Understanding Formal Methods

The variable p represents here a projetion, whih means that U must be either

X , or Y . However X and Y are a priori distint � for example, if we want to

form pairs omposed of an integer and of a Boolean.

This drives us to onsider a �-alulus where the formation of pairs and pro-

jetions are primitive: this is the simply typed �-alulus with pairs. Its typing

system orresponds to the fragment f!;^g of NJ. Note that, in propositional

logi, ^ annot be de�ned using ! only.

11.4.5 Sum Types

Given two types � and � , we an form their sum �+ � . Let y be an inhabitant

of � + � , y omes from an inhabitant u whih is either in �, or in � .

How an we use y? A funtion from � + � to ' is obtained by providing a

funtion f of type �! ' and a funtion g of type � ! '. Then one onsiders a

onstrution ase y f g , designed in suh a way that, if u is of type �, the result

is obtained by applying f to u and if u is of type � , the result is obtained by

applying g to u.

In order to form y , we are given two injetions, whih are i1 of type

�! � + � , and i2 of type � ! � + � . We assume that the abstrat type sum

satis�es ase (i1 s)f g = f s and ase (i2 t)f g = gt.

In the untyped �-alulus, these operations an be represented by

i1

def

=

�s: �fg: fs ;

i2

def

=

�t: �fg: gt ;

ase

def

=

�xfg: xfg :

Again, it is not possible to give a satisfatory type to these operations.

As for the produt, the sum annot be reovered from ! only. It annot be

onstruted from ! and� either; we thus need a further extension.

The strong normalization theorem stated on page 217 an be extended to

the whole NJ alulus; that is, to the simply typed �-alulus with pairs and

sums.

From the viewpoint of logi, the sum orresponds exatly to the intuition-

isti disjuntion: _

i1

orresponds to i1, _

i2

to i2, _

e

to ase. An inhabitant of

� + � is either an inhabitant of �, or an inhabitant of � ; similarly, a dedution

of S _ T is formed either from a dedution of S, or from a dedution of T .

Moreover, we are able to know whih is the right ase, depending on whether

_

i1

or _

i2

was applied: this is typial of the intuitionisti disjuntion.

There is, however, a subtle point: if (i1 s) is of type � + � , (�x: x)(i1 s) is

also of type � + � . There are atually an in�nite number of terms of type � + �

whih are not of the form (i1 s) or (i2 t). Then, how an we justify that every

inhabitant of � + � omes from a term of type � or of type � � and that we

know whih one? Preisely beause of the strong normalization property, whih

entails that every term of type � + � redues to a normal term of type � + � ,

and that the latter is neessarily of the form (i1 s) or (i2 t).

Type Systems and Construtive Logis 221

Comment. In the set-theoreti interpretation of types, if we denote the inter-

pretation of the type ' by k'k, k�+�k is a disjoint union f1g�k�k [f2g�k�k.

Reall that the union annot be used in a naïve manner beause, if k�k and

k�k share elements, their origin annot be distinguished in k�k [k�k.

11.4.6 Paradoxial and Fixed-point Combinators

We already mentioned that there is no simple type for the paradoxial ombi-

nator
. The same is true for �xed-point ombinators suh as Y. This is more

problemati beause they provide a very important expressiveness. In parti-

ular they are ruial for simulating a Turing mahine. We may add that this

is preisely why funtional languages suh as ML inlude a typed �xed-point

onstant (syntatially, it is presented in the form of a let re onstrut).

11.4.7 Summary

The previous examples illustrate the bene�ts of simple typing, as well as its

limitations: the onstraints of simple typing turn out to make it rejet too

many �-terms. The expressive power left with the alulus is insu�ient for

the needs of programming, even if primitives for the produt and the sum are

introdued. Reursion is not allowed, and iteration itself annot be employed to

its full extent � remember �n: (exp n n). On the other hand, the typing system

onsidered above is still far from what is needed in spei�ation languages. For

example, all funtions mapping an integer to a Boolean are indisriminately put

in the same ategory, whereas it would make sense to distinguish the funtions

whih, say, return �true� if their argument is an even integer less than 100.

These two issues an be attaked by generalizing the typing system, and this

is done in two independent diretions. In both ases, this amounts to onsider-

ing a more powerful onstrutive logi. A means to greatly inrease the number

of typable funtions is introduing seond-order quanti�ation, over proposi-

tional variables. To allow for rihness of expression, we gain polymorphism. In

the seond diretion, introduing �rst-order variables and related quanti�ers

provides a system whih inludes dependent types, whih are interesting for

spei�ation purposes.

Note that, in ompensation for its oarseness, simple typing has a feature

of interest to seure prototyping languages: type inferene. As indiated by its

name, this mehanism infers the type of an expression or of a program where

minimal or even no typing information is given expliitly.

6

The typing system

implemented in funtional languages suh as ML and Haskell is a kind of simple

typing extended to reursive onstruts, in a manner suh that type inferene

is still possible.

6

Type inferene relies on the use of a uni�ation algorithm to type expressions.

Uni�ation was already desribed in Chapter 9: it is one of the main basi tools of

automated proof.

222 Understanding Formal Methods

11.5 Seond-Order Typing: System F

The system F was devised by Girard and independently redisovered by

Reynolds. It is built on a single logial onnetor, impliation, and on seond-

order quanti�ation. We will see that in the presene of the latter, the other

intuitionisti onnetors an be de�ned.

Let us �rst illustrate some intuitive ideas behind seond-order quanti�a-

tion, by starting with the following dedution of P ! P :

(x)

z}|{

P

!

i(x)

P ! P :

We then dedue 8

2

P P ! P (in the urrent setion we distinguish seond-

order from �rst-order quanti�ation by using 8

2

in the former ase and 8 in

the latter). The seond-order quanti�er an then be eliminated by substituting

an arbitrary proposition for P . This yields, for example:

(A!B)! (A! B) :

We an even substitute 8

2

P P ! P for P , and we get

(8

2

P P ! P) ! (8

2

P P ! P) :

Now onsider the dedution:

(x)

z }| {

Q! P Q

!

e

P

!

i(x)

(Q! P)! P

.

We an dedue 8

2

P (Q! P)! P , without inident beause we still have the

hypothesis Q. In ontrast, it would be manifestly inorret to dedue 8

2

Q (Q!

P)! P . For example, [Q := P ℄ ((Q! P)! P) does not hold, even under the

hypothesis Q, whih does not intervene. The most simple ase of that kind is

the trivial dedution of P under the hypothesis P ; we ertainly don't want to

dedue 8

2

P P ! This unprovable proposition atually provides a representation

of the absurd proposition ? of NJ. In the light of the preeding remarks, we an

give the introdution and elimination rules of 8

2

(Figure 11.1), the �rst rule

being onstrained by a proviso: the dedution of ' must make no hypothesis

over P .

Let us onsider again the theorem 8

2

P P ! P . We have seen that the

quanti�er arries over the spae of all propositions, inluding 8

2

P P ! P . We

reognize here the imprediativity previously enountered in set theory. We are

going to employ tehniques similar to the ones used in � 7.3.1, for indutively

de�ning the produt, the sum, the natural numbers, trees, et.; but here we will

Type Systems and Construtive Logis 223

'

8

2

i

8

2

P '

8

2

P '

8

2

e

[P := ℄'

In 8

2

i

, all undisharged hypotheses must ontain

no free ourrene of P .

Figure 11.1: Rules of 8

2

in system F

not be disturbed by a onstraint orresponding to the one governing the axiom

of separation. Moreover, the strutures onstruted here will be polymorphi

right away. The latter feature an already be observed in the previous proof

of 8

2

P P ! P . It is time to provide a funtional syntax for the manipulation

rules of 8

2

. The introdution of 8

2

will be represented by a �-abstration whih

does not arry over a regular variable, but over a type variable (a propositional

variable). From the proof �x

P

: x of P ! P , we then onstrut �P: �x

P

: x of

type 8

2

P P ! P . De�ne

Idp

def

=

�P: �x

P

: x ;

�x

P

: x is the identity funtion over P , while Idp is the polymorphi identity

funtion whih may be applied to an inhabitant h of any type H ... after P has

been expliitly instantiated by means of 8

2

e

, that is, in a funtional syntax,

by means of a �seond-order appliation�: (�P: �x

P

: x)Hh, whih suessively

redues to (�x

H

: x)h, then to h. Imprediativity appears when we take for h

the polymorphi funtion identity itself:

Idp (8

2

P P ! P) Idp

def

=

(�P: �x

P

: x) (8

2

P P ! P) Idp

!

(�x

8

2

P P!P

: x) Idp

�

!

Idp

def

=

(�P: �x

P

: x) :

The remainder of this setion provides some hints on the expressive apaity

of system F.

11.5.1 Typing of Regular Strutures

M

The natural numbers, the Booleans, and the other data strutures

admit a satisfatory typing if we ombine the simple typings previ-

ously proposed with suitable quanti�ations. Let us quikly inspet them. The

224 Understanding Formal Methods

type of integers is:

N

def

=

8

2

X (X !X)! (X !X) :

Any inhabitant of N an be regarded as a polymorphi iterator whih, given a

type T , a funtion f from T to T and an inhabitant x of T , is able to ompute

f(: : : (x) : : :). The exponential funtion an be typed as follows:

�m

N

: �n

N

: �X:n(X!X)(mX) : N!N!N :

As a onsequene, the funtion whih maps n to n

n

, that is �n: nn, gets a

suitable typing.

The type of Booleans is:

B

def

=

8

2

X X !X !X :

The onstants t and f are respetively typed in the following manner:

t

def

=

�X:�x

X

: �y

X

: x and f

def

=

�X:�x

X

: �y

X

: y :

The two versions of the negation are typable in F, inluding �b: bft:

�b

B

: b (B!B!B) f t :

The initial version of or an be typed by following a similar approah.

M

In order to represent pairs, we �rst examine the problem from a

logial perspetive: how an we represent the onjuntion by means

of 8

2

and of !? The intuitive idea an be explained from the imprediative

de�nitions we have seen in � 7.3.1. The intersetion of � and � ould have been

imprediatively de�ned as the smallest superset of � and �:

�

x j 8e

e ontains � \ �

z }| {

(8y y 2 � ^ y 2 � ! y 2 e)!x 2 e

| {z }

x is in any superset of � \ �

	

:

But P ^Q!R an also be written without �^�: P !Q! R, hene:

� \ �

def

=

�

x j 8e (8y y 2 � ! y 2 � ! y 2 e) ! x 2 e

	

;

that is:

x 2 � \ � i� 8e (8y y 2 � ! y 2 � ! y 2 e) ! x 2 e : (11.8)

If we onsider that x 2 P means �x allows us to prove P �, or just �I know how

to prove P �, (11.8) an read: �I know how to prove A ^B if and only if I know

how to prove every onsequene of A and of B�, whih an be represented in

seond-order logi as follows:

7

7

It is not a ompletely rigorous justi�ation of (11.9). But we an see an analogy

between imprediative onstrutions in set theory and in type theory.

Type Systems and Construtive Logis 225

A ^ B

def

=

8

2

X (A!B!X)!X ; (11.9)

At the funtional level, we then have a guideline for building ha; bi from a

A

and

from b

B

: ha; bi is of the form �X:�f

A!B!X

: E , where E is an inhabitant of X

built on a, b and f : the only possibility is fab, whih yields

ha; bi

def

=

�X:�f

A!B!X

: fab :

The projetions are inhabitants of A ^ B!A and of A ^ B!B. Let be a

variable of type A ^ B, an be speialized as a funtion to A by an appliation

to A, sine A is of type (A!B!A)! A. We still have to �nd a funtion of

type A!B!A, we naturally onsider the urry�ed projetion �x

A

: �y

B

: x.

With a similar reasoning about the seond projetion, we get:

pr1

def

=

�

A^B

: A(�x

A

: �y

B

: x) and

pr2

def

=

�

A^B

: B(�x

A

: �y

B

: y) :

We still have to hek that pr1ha; bi

�

! a and pr2ha; bi

�

! b, but this was pre-

viously done, sine removing types provides exatly the de�nitions of untyped

�-alulus. This example illustrates the help provided by types for designing a

program (in �-alulus here).

M

The sum of types is designed along the same lines, only the steps are

given here :

� [�

def

=

�

x j 8e

e ontains � [�

z }| {

(8y (y 2 � ! y 2 e) ^ (y 2 � ! y 2 e)) ! x 2 e

| {z }

x is in any superset of � [�

	

=

�

x j 8e (8y y 2 � ! y 2 e)!

(8y y 2 � ! y 2 e) ! x 2 e

	

;

whih means �I know how to prove A _ B if and only if I know how to prove

any X whih is both a onsequene of A and a onsequene of B�:

A _ B

def

=

8

2

X (A!X)! (B!X)!X ;

i1 a

def

=

�X:�f

A!X

: �g

B!X

: fa for a : A ;

i2 b

def

=

�X:�f

A!X

: �g

B!X

: gb for b : B ;

ase

def

=

�T: �s

A_B

: �f

A!T

: �g

B!T

: sTfg :

11.5.2 Systemati Constrution of Types

M

The sope of the method explained in the previous subsetion goes

far beyond propositional onnetors: it an be generalized to indu-

tive de�nitions suh as the natural numbers (one reovers the representation

226 Understanding Formal Methods

of Churh), all kind of trees, the (polymorphi) lists, et. In this way, one

an represent all sets of losed terms obtained by the means of a �nite set of

onstrutors, whih are employed in algebrai spei�ation.

8

The reiepe onsists of starting with the urry�ed signature of eah

onstrutor, in whih the desired type is systematially replaed with the vari-

ableX , whereX has previously been universally quanti�ed. If this type is made

up of n onstrutors, having �

1

, : : : �

n

as their respetive signatures, we repre-

sent it by 8

2

X �

1

! : : : �

n

!X . For example, the two onstrutors of A _ B are

i1 of type A! A_B and i2 of type B!A_B, whih yields �

1

= A!X and

�

2

= B!X ; A _ B is then represented by 8

2

X (A!X)! (B!X)!X.

For a little variety, let us onsider binary trees, as de�ned by

leaf : int ! tree

bin : tree� tree ! tree

Here we represent the integers by N. After urry�ation and replaement with

X , the onstrutor signatures beome N!X and X !X !X, whih yields

for tree:

8

2

X (N!X) ! (X !X!X) ! X :

M

This idea goes far beyond regular algebrai data types, beause we

may introdue onstrutors having more omplex types. For example,

here is a type of trees where eah node may possess 0, 1, or an in�nite number

of hildren:

init : arbi

next : arbi ! arbi

lim : (int ! arbi) ! arbi:

It is represented in system F by

8

2

X X ! (X !X) ! ((N!X)!X) ! X :

This struture provides a representation of ordinal numbers, where init is

interpreted by 0, next is interpreted by the suessor funtion and lim is in-

terpreted by the formation of a limit ordinal number. This gives some idea of

the expressive abilities of system F.

11.5.3 Expressive Power and Consisteny of System F

System F inludes an extremely rih lass of funtions. The following theorem

states that almost all funtions we need in pratie an be represented in F.

9

8

See the onept of an initial algebra on page 88.

9

However, there is a restrition: system F does not always provide a type for the

most e�ient algorithm whih omputes a given funtion. Here the term �funtion�

takes its set-theoretial meaning � something unommon in this hapter.

Type Systems and Construtive Logis 227

Theorem 11.4

Any total funtion whose termination an be proved by means of regular math-

ematis

10

an be represented in system F.

It is then quite remarkable that the strong normalization property of the simply

typed �-alulus still holds.

Theorem 11.5

The �-redution is strongly normalizing in system F.

This means that the termination of omputations is deidable (ensured, in

fat) as soon as typing is heked. This property has a good onsequene: it

guarantees that system F is free of logial paradoxes (suh problems may have

been aused by the imprediativity of the system). Note that, the expressive

power of system F does not ome from reursion (in the sense of omputer

siene): �xed-point ombinators annot be represented.

11.6 Dependent Types

11.6.1 Introdution of First-order Variables

The interpretation of Heyting allows one to distinguish the (many) proofs of a

given formula. For example, the most simple proofs of N!B are �n

N

: t and

�n

N

: f; but we an �nd many others:

�n

N

: �if n = 0 then t else f � ;

�n

N

: �if n is even then t else f � ;

et.

From the viewpoint of spei�ation, only the domain (N) and the o-domain

(B) of these funtions are spei�ed, but we would like to go further: stating

a relation between the result and the argument. To provide an analogy with

abstrat data types, system F delares only the signatures � however, we have

a new feature with relation to algebrai data types: higher-order signatures are

allowed here.

In order to takle this problem, we take prediates instead of propositions.

For example, in the ase of natural integers, we introdue the symbols S and

0 in the logial language, and N beomes a 1-argument prediate. The idea

is that N(x) is provable if x is obtained by suessive appliations of S to 0.

Intuitively, N(x) represents x 2 N . Let us write the expeted indution shema,

where the indution step omes �rst;

11

here, X is a unary prediate variable:

10

The preise meaning of this phrase should be explained but this is beyond the

sope of this hapter. A preise statement an be found in [GLT89℄.

11

We ould also onsider the base ase �rst; the integer n will then be represented

by �xf: f(f � � � (f

| {z }

n

x) � � �) instead of �fx: f(f � � � (f

| {z }

n

x) � � �). Of ourse, all operations

de�ned over the natural numbers have to be rewritten aordingly.

228 Understanding Formal Methods

8

2

X (8x Xx!X(Sx))!X0!8nN(n)!Xn :

The quanti�ation over n an also be written at the beginning of the formula,

whih yields:

8nN(n)!8

2

X (8x Xx!X(Sx))!X0!Xn :

Formally, we will atually de�ne N by:

N(n)

def

=

8

2

X (8x Xx!X(Sx))!X0!Xn : (11.10)

Note that, if we remove �rst-order information, we reover the de�nition given

in system F:

N

def

=

8

2

X (X !X)!X !X :

The system we just skethed was introdued by Krivine under the name

seond-order funtional arithmeti (AF2) [Kri93℄. The lass of funtions,

whih an be desribed in it, is the same as in system F; but typing provides a

real spei�ation language.

The previous type expressions may seem somewhat mysterious at �rst sight,

but looking at them as Prolog programs may help. From this perspetive, one

should ignore issues related to the speial resolution strategy of Prolog, and

onentrate on the proof trees that ould be onstruted using a fair strategy.

The Prolog program orresponding to the type of the integers in system F would

be

nat:- nat.

nat.

The Prolog program orresponding to the type of the integers in AF2 would be

nat(S(x)):- nat(x).

nat(0).

11.6.2 Sums and Produts

11.6.2.1 Produts of Sets. Until now, we onsidered the produt S�T or

the sum S + T � also denoted, respetively, by S ^ T and S _ T , thanks to the

Curry�Howard orrespondene � of two types. In mathematis, these onepts

an be generalized to the produt, and to the sum, of a family of sets (T

i

)

indexed by a set I .

For the sake of simpliity, let us �rst take for I an interval of integers of the

form [1::n℄. The elements of the produt

Q

i2I

T

i

are the tuples hx

1

; : : : ; x

n

i

where, for all i from I , we have x

i

2 T

i

. In the ase where all T

i

are idential,

we an write T

i

= T , then we an view the tuples hx

1

; : : : ; x

n

i as funtions

from [1::n℄ to T . For example, there is a natural bijetion between T�T and

f1; 2g! T .

Type Systems and Construtive Logis 229

More generally, for an arbitrary I ,

Q

i2I

T is de�ned as the set of mappings

from I to T , whih is ommonly denoted by I ! T .

In onlusion, I ! T is a kind of produt.

In the general ase, where T

i

are distint sets,

Q

i2I

T

i

is termed a depen-

dent produt. It is seen as a funtion, whose domain is I , and whose o-domain

T

i

depends on the element to whih it is applied.

12

The following notation is

often used:

Y

i2I

T (i) :

The produt R�S is a simple example of a dependent produt, it is:

Y

i2f1;2g

T (i) with T (1) = R and T (2) = S :

Examples:

� In ommuniation protools, it is not unommon that, in a message, the type

of a �eld depends on a value, or on a ombination of values, whih ome from

a previous �eld.

� In the example of a alendar, whih was mentioned at the beginning of the

previous hapter, suppose that we would like to selet a day in eah month

of the year 2002. This will be represented by a 12-tuple, that is, at a �rst

approximation, a member of [1; 12℄! [1; 31℄. But, for a more aurate spe-

i�ation, we would onsider it as a member of the dependent produt:

Y

i2[1::12℄

month(i); with

8

<

:

month(1) = [1; 31℄ ;

month(2) = [1; 28℄ ;

et.

11.6.2.2 Sum of Sets. In a similar manner,

P

i2I

T (i) is omposed of pairs

hi; month(i)i whose �rst element i is taken from [1; 12℄ and the seond element

is taken from month(i). This is a dependent sum. In this ase, it represents the

type of the dates of a non-leap year.

11.6.2.3 Produts and Sums of Types. The previous onstruts over sets

an be translated into onstruts over proof spaes. We know that providing a

proof of T

1

^ T

2

amounts to providing a proof of T

1

and a proof of T

2

.

By generalizing this remark, providing a proof of 8i T (i) amounts to pro-

viding a proof of T (i) for eah i: this orresponds to the dependent produt

Q

i

T (i).

Finally, providing an intuitionisti proof of 9i T (i) amounts to providing

an i and a proof of T (i), that is, an inhabitant of

P

i

T (i).

When a type is represented by a formula whih ontains parameters, it is

termed a dependent type, beause the type of the result of a funtion, whih

inhabits suh a type, depends on the value of its argument.

12

In order to reover the ommon onept of a set-theoreti funtion, one has to

build its o-domain: it is the union of all T

i

.

230 Understanding Formal Methods

11.6.3 Spei�ation Based on Dependent Types

A funtion to be implemented an be spei�ed using dependent types, in a

formula suh as:

8x :E P (x)!9y :S Q(x; y) ; (11.11)

where E is the type of the input argument, S is the type of the output, P is a

preondition and Q is a post ondition. Intuitively, the above formula tells us

that, for all x from E satisfying P , there exists a y from S suh that Q(x; y)

is satis�ed. A onstrutive proof of (11.11) fores us to make the witness y

expliit, or more preisely to make it expliit how y an be omputed from x

(in lassial logi, we ould ontent ourselves with proving that, if all y satisfy

:Py, a ontradition an be derived).

After loser examination, an inhabitant ' of type (11.11) is a funtion whih

takes, �rst, an inhabitant x from E and then, an inhabitant from � a proof of

� Px, and whih returns a pair hy; qi suh that y inhabits S and q inhabits

Q(x; y). This is then more ompliated an objet than a funtion from E to S.

Nevertheless, it is possible to extrat from ' a funtion f of type E! S suh

that:

8x :E P (x)!Q(x; f(x)) : (11.12)

This operation is termed program extration or program synthesis. It is im-

plemented in several software tools suh as Nuprl and Coq; we will return to

this idea in Chapter 12.

11.7 Example: De�ning Temporal Logi

In order to illustrate the expressive power of the notions presented in the pre-

vious setions, we formalize here the de�nition of CTL* given in � 8.5.

M

We assume that we are in an environment whih inludes a type

state for the states and a type nat for the natural integers. We

de�ne traj, the type of trajetories, and suff, the funtion whih omputes

the kth su�x.

traj

def

=

nat! state suff

def

=

�k

nat

: ��

traj

: �n

nat

: �(k+n)

For the sake of larity, we distinguish various kind of prediates by giving them

a type: Pstate, for the prediates over states, and Ptraj, for the prediates over

trajetories. They are de�ned from the type of propositions, whih is denoted

by Prop (as in the next hapter).

Pstate

def

=

state! Prop Ptraj

def

=

traj! Prop

Then we formalize the start operator � and logial onnetors. Here, we give

only the onjuntion andst over state prediates, the onjuntion andtr over

Type Systems and Construtive Logis 231

trajetory prediates, and the universal quanti�ation forallst over state

prediates.

�

def

=

�P

Pstate

: ��

traj

: P (�0)

andst

def

=

�P

Pstate

: �Q

Pstate

: �s

state

: P s ^ Qs

forallst

def

=

�P

A!Pstate

: �s

state

: 8a

A

Pas

andtr

def

=

�'

Ptraj

: �

Ptraj

: ��

traj

: '� ^ �

Finally, we have the temporal and the branhing operators.

X

def

=

�'

Ptraj

: ��

traj

: '(suff 1�)

F

def

=

�'

Ptraj

: ��

traj

: 9n

nat

'(suffn�)

G

def

=

�'

Ptraj

: ��

traj

: 8n

nat

'(suffn�)

W

def

=

�'

Ptraj

: �

Ptraj

: ��

traj

:

8n

nat

(8i

nat

i�n!: (suff i �))! '(suffn�)

U

def

=

�'

Ptraj

: �

Ptraj

: ��

traj

:

9n

nat

 (suffn�) ^ (8i

nat

i<n! '(suff i �))

E

def

=

�'

Ptraj

: �s

state

: 9�

traj

�(0)=s ^ '�

A

def

=

�'

Ptraj

: �s

state

: 8�

traj

�(0)=s ! '�

11.8 Towards Linear Logi

M

Reall that, in sequent alulus, intuitionisti logi appears as a re-

strition of lassial logi, where the right-hand side of sequents an

be made up of at most one formula. As an important onsequene, the use of

the ontration rule is prohibited on the right, and the use of the weakening

rule is drastially limited. After a deep analysis of this fat, based on seman-

tial onsiderations, Girard ame to onsider a logi where a �ne-grain ontrol

over the spae of hypotheses and onlusions, regarded as resoures, is spei�ed

by speial logial operators [Gir87a℄. Typially, regular impliation is deom-

posed into a new kind of impliation, whih is denoted by (and is termed

linear impliation, and whose inhabitants are funtions whih �onsume� their

argument, and a loning operator for keeping this argument in memory. Two

versions of the onjuntion and of the disjuntion are distinguished: a multi-

pliative and an additive version. For example, the multipliative onjuntion

an be interpreted as the juxtaposition of resoures, while the additive on-

juntion an be interpreted as their superposition. An interesting property of

the multipliative fragment is that, in the orresponding alulus on proofs

(aording to the Curry�Howard orrespondene) transitions an be performed

in parallel without synhronization problems.

232 Understanding Formal Methods

The new onstrutive logi thus obtained is termed the linear logi

(not to be onfused with the linear temporal logi onsidered in Chapter 8). In

the same vein, let us mention interation nets [Laf90℄, an elegant paradigm for

parallel omputations over graphs, whih is based on linear logi.

11.9 Notes and Suggestions for Further Reading

Referene works on the �-alulus are [Bar84℄ and [HS86℄. An algorithmi for-

mulation, interesting for omputer sientists and pratitioners, is presented by

Gérard Huet in [Hue92℄.

The book [Hue90℄ edited by Huet ontains fundamental hapters on type

theory. Chapter 2 of [AGM92b℄, by Barendregt, presents several type systems

for the �-alulus in a uniform and syntheti manner (see also Chapter 16 in

[Hue90℄). One may also onsider the papers of Mithell in [vL90b℄. The book

[Tho91℄ ontains a thorough and progressive introdution to type theory. It

is based on a prediative version of type theory, due to Martin-Löf, whih is

partiularly in�uential [ML84℄.

The relationship between typing, natural dedution and sequent alulus are

handled in [GLT89℄ and [Gal93℄. Interesting hints are also given by Coquand

in [Hue92, h. 17℄.

Referene books on intuitionisti logi and, more generally, onstrutive

mathematis, are [Dum00℄ and [TvD88℄.

12. Using Type Theory

Et, omme la multitude des lois fournit souvent des exuses aux vies, en

sorte qu'un État est bien mieux réglé lorsque, n'en ayant que fort peu, elles

y sont fort étroitement observées ; ainsi, au lieu de e grand nombre de pré-

eptes dont la logique est omposée, je rus que j'aurais assez des quatre

suivants, pourvu que je prisse une ferme et onstante résolution de ne man-

quer pas une seule fois à les observer.

1

R. Desartes, disours de la méthode, II.

In the table example, we would like to onsider the searh riterion P as a

parameter. This is not possible in the framework of a formal method based on

�rst-order logi, at least not in a satisfatory manner:

� P may be enoded in the form of a set, but in the framework of B, for

example, only ertain �nite sets are allowed;

� Z is more �exible, but no straightforward mehanism is provided for deriving

a program from the spei�ation;

� the axiom for searh, in the algebrai spei�ation of Chapter 10 is atually

a shema of axioms; we then have to write down an instane of this shema

for every property of interest.

Furthermore, the proposed expedients hardly survive if one wants to takle

arbitrary situations, for example if P is an argument to be disovered only at

all time, or if P is given by an algorithm instead of a data struture, or else

when we onsider several-level searh proesses in omplex overlapping tables.

If we take a prediate P as an objet whih may vary, or be manipulated

as an argument of a funtion or of a prediate, we are working in higher-order

logi. The version of higher-order logi we will employ in this hapter is the

alulus of indutive onstrutions. This is a very powerful logi, well-adapted

to speifying and reasoning about programs. Interative and reliable tools, suh

as Coq and Lego, are available for aiding the development of spei�ations and

proofs.

1

And as a multitude of laws often only hampers justie, so that a state is best

governed when, with few laws, these are rigidly administered; in like manner, in-

stead of the great number of preepts of whih logi is omposed, I believed that the

four following would prove perfetly su�ient for me, provided I took the �rm and

unwavering resolution never in a single instane to fail in observing them.

234 Understanding Formal Methods

12.1 The Calulus of Indutive Construtions

We start with a pragmati presentation of the logi, then we will indiate how

it is related to type theory as introdued in the previous hapter.

12.1.1 Basi Conepts

The alulus of onstrutions inludes the ordinary logial operators ^, _, : and

the impliation denoted !. Quanti�ations are typed. Thus, a property whih

holds true for every natural integer is expressed by 8n :nat P n. (Comment on

the notation: as in the �-alulus, we heneforth omit parentheses for funtion

appliation whenever possible. For example, 8n : nat P n would be denoted

8n :nat P (n) in standard mathematial notation.)

The notational onfusion between a proposition P !Q and funtion spae

P!Q is intentional: aording to the Curry�Howard orrespondene (� 11.3.4),

a proof of P!Q an be interpreted as a total funtion whih omputes a proof

of Q from a proof of P .

Propositions themselves have a type named Prop. For example, the predi-

ates over natural integers have the type nat! Prop. We an express that, for

any given proposition P , P implies P , by the formula 8P : Prop P ! P . Let

us point out that P is quanti�ed here: this would be impossible in �rst-order

logi.

The data types suh as nat themselves have a type named Set. Thus we

an build up funtions whose type depends on the �rst argument. The most

simple example is the identity funtion, whih is de�ned (without types) by

Idx = x. Its behavior is the same, independently from the type of x, whih

ould be an integer, a Boolean, or even a funtion itself. It is assigned the type

8X:Set X !X . The typed version of Id is then Id(X : Set ; x :X) = x. For

example, Id ould take nat as its �rst argument, then 3, and its result is then

3. We an also onsider the expression Idnat, and take it as the de�nition of

Idn. Idn is then the speialization of Id to natural integers.

Similarly, data strutures an be parameterized by a data type. The las-

sial example is lists: given an arbitrary type X , listX is the type of lists of

elements from X ; list then has the type Set! Set, its onstrutors are nil,

of type 8X:Set listX, and ons, of type 8X:Set X ! listX ! listX .

V

The expression A

1

!A

2

! : : : A

n

!B denotes the type of a funtion

whih has n arguments of types A

1

: : : A

n

, respetively, and whih

returns a result of type B. Similarly, on the side of propositions, we have seen,

in the equation (3.11) on page 47, that P !Q!R, whih means �if I have P ,

then if I have Q, then I have R� an replae P ^Q! R.

M

A type suh as nat!nat is still of type Set. This allows us to form,

for example, lists of funtions over integers. Thus, we an legitimately

apply Id to nat! nat. For example, Id (nat! nat) Idn returns Idn. We an

even apply Id to itself as follows: Id (8X:Set X!X) Id, and this expression

redues to Id.

Using Type Theory 235

12.1.2 Indutive Types

The alulus of indutive onstrutions also inludes a mehanism for de�ning

data types from onstrutors, as in algebrai data types. The integers, the

Booleans, and the lists are de�ned in this way. However, as we an use higher-

order features, we have polymorphi lists from the outset, (also termed �generi�

lists, in the terminology of programming languages suh as Ada).

The indutive types that we will use in the table example are speializations

of very general indutive types, whih we present in an informal manner for the

moment (we will give the formal de�nitions in � 12.2.8). The �rst is fx : S j P xg

where S is of type Set and P is of type S ! Prop. As is suggested by the

notation, this type plays the role of the set of elements x from S whih satisfy

P x.

V

However, the reader must be aware that fx : S j P xg does not denote

exatly the same thing in set theory and in type theory. Here, the

inhabitants of fx : S j P xg are the pairs hx; �i where � is a proof of P x. We

will see, in � 12.3.4, how the logial part � an be removed.

The sum of two data types is yet another general indutive type. The most

ommon form is:

A+B; with A;B :Set. (12.1)

The elements of type A+B are elements of type either A, or B, together with

a piee of information for indiating their origin.

The following onstrut uses two propositions:

fPg+ fQg; with P;Q :Prop. (12.2)

There are two kinds of inhabitants from this type, the �rst tells us that P

is true and the seond tells us that Q is true. As we use a onstrutive logi

here, this means that we an e�etively ompute whether P or Q is satis�ed.

In the ase where Q is the negation of P , this type an also be regarded as an

enrihed version of bool: an inhabitant of fPg+ f:Pg yields the truth value

of P ; providing suh an element simply amounts to saying that P is deidable

(in our example, on page 16, we employed the term P is de�ned.)

The last onstrut we will use is a kind of mixture of the two previous ones.

Its elements are either inhabitants of A whih satisfy the prediate P , or an

indiation that Q is true:

fx :A j P xg+ fQg; with A :Set, P :A! Prop et Q :Prop. (12.3)

This onstrut is an enrihed version of the option type of ML.

12.1.3 The Table Example

12.1.3.1 Spei�ation. We are given an arbitrary universe U of type Set and

an arbitrary prediate P over U . The table is represented by its harateristi

236 Understanding Formal Methods

prediate Ptable. We �rst state the preondition: P is de�ned for all elements

from the table. To this end we write, using (12.2) � the identi�ers inside the

square brakets U , Ptable and P , are simply the parameters of the funtion

def_tbl:

def_tbl[U : Set ; Ptable; P : U ! Prop℄

def

=

8x :U Ptable x!fP xg+ f:P xg :

The expression on the right-hand side an also be interpreted as the type of a

total funtion whih, for every x whih satis�es Ptable, returns the truth value

of P x. This expresses the idea of a �table where every element an be tested�.

If we onsider � 12.3.4, an inhabitant D of type def_tbl ould simply be an

array of Booleans whih represent truth values of P . But a Boolean funtion

de�ned over an in�nite domain would do the job just as well. The spei�ation

written above assumes nothing about the future realization of D.

Let us onsider the type of the result. It should be either an element from

the table verifying P , or an indiation that there is no suh element. Its type

is de�ned using (12.3):

resu_tbl[U : Set ; Ptable; P : U ! Prop℄

def

=

fx :U j Ptable x ^ P xg+ f8x :U Ptable x!:P xg :

12.1.3.2 Speialization to an Array. With the aim of developing a pro-

gram, we onsider the ase where U is the type of the natural integers and

where Ptable haraterizes an interval of integers. P is left free. The onsidered

interval is de�ned by its two bounds p and q, whih are also onsidered as pa-

rameters, for whih we assume that p � q. This ontext is onretely delared

in the following manner:

Variable P : nat! Prop :

Variable p; q : nat :

Hypothesis lepq : p � q :

Now we just have to apply def_tbl and resu_tbl to nat and to Pinterv, one

the latter is de�ned:

between[a; b; :nat℄

def

=

a � b ^ b < :

Pinterv[x :nat℄

def

=

betweenp x q :

def_tbl_int

def

=

def_tbl nat PintervP :

resu_tbl_int

def

=

resu_tbl nat Pinterv P :

The de�nition hosen for betweenp x q orresponds to the interval [p::q[that

we used in Chapter 2.

12.1.3.3 Speialization to a List. We an also speialize the general spei-

�ation above to the searh for an element in a list. We don't need to speialize

U : the table will be represented by a list of elements from U and we will assume

that P is de�ned for all elements of this list. Formally, we �rst stipulate that a

list ontains u if, and only if, it is of the form onsu l, or of the form ons v l,

where u is in l.

Using Type Theory 237

Indutive ontains:list! U ! Prop

def

=

ontains_head : 8l :list 8u :U ontains(onsu l)u

j ontains_queue :

8l :list 8u; v :U ontains l u! ontains(ons v l)u:

We then onsider a given list l, and we write the de�nition of Ptablist in order

to state the desired spei�ation.

Variable l : list :

Ptablist[u :U ℄

def

=

ontains l u :

def_tbl_lis

def

=

def_tblU PtablistP :

resu_tbl_lis

def

=

resu_tblU PtablistP :

12.2 More on Type Theory

The alulus of indutive onstrutions is obtained from system F, introdued

in Chapter 11, using three independent extensions that we onsider in turn:

� introdution of an additional type level on top of propositions;

� introdution of prediates and of dependent types;

� introdution of indutive types.

This system allows one to represent a strit superset of the funtions rep-

resentable in system F, while preserving the strong normalization property.

12.2.1 System F!

We introdued the symbol Prop for representing the type of propositions. A

type quanti�ed using seond-order quanti�ation, denoted 8

2

X' in Chapter 11,

is heneforth denoted 8X :Prop '; similarly, �X:' beomes �X :Prop: ' . For

example, the formula expressing that P implies P , for any proposition P , is

8P :Prop P!P . It is inhabited by the polymorphi identity �P :Prop:�x :P:x.

This provides a more uniform syntax, but the main point is that we are

now allowed to onsider expressions suh as Prop! Prop! Prop � the type

of logial onnetors � and even quanti�ations over onnetors.

8 : (Prop! Prop! Prop) '

Thus, from now on, we an de�ne the logial onnetors as funtions, using a

�-term. For example, for ^, we adapt (11.9):

and

def

=

�A :Prop: �B :Prop: 8X :Prop (A!B!X)!X : (12.4)

In system F, we ould only represent A ^B for given A and B.

238 Understanding Formal Methods

M

P !Q is atually only a simpli�ed notation for 8x :P Q, that we

use when Q does not depend on P . Indeed, we have seen, in � 11.6.2,

that the regular produt is a partiular ase of a dependent produt. This still

holds if we take Prop instead of P . The only primitive logial operation is then

the universal quanti�ation.

As in P :Prop, we an onstrut other inhabitants of Prop, suh as

P ! P . We have to give a type to expressions suh as Prop, Prop! Prop,

et. This type is named Type. The proess ontinues with a hierarhy of types

Type

1

, Type

2

, and so on. The important point is that polymorphism is not

allowed within Type and beyond, beause this would leave room for paradoxes.

12.2.2 The Calulus of Pure Construtions

We have seen how to de�ne data types in system F, suh as N, the natural

integers, orB, the Booleans. We then have three levels: objets from the bottom

level, suh as 0 or S, inhabit objets from the seond level, suh asN orN!N,

whih themselves inhabit an objet of the third level, Prop.

The alulus of onstrutions authorizes produts suh asN! Prop, whih

are simply prediates over the integers. If P is of type N! Prop, the formula

8n :N Pn expresses that this property is veri�ed for every integer.

12.2.3 Indutive De�nitions

There is another way of introduing objets suh as the natural integers, the

Booleans, binary trees and the like: using an indutive de�nition, whih on-

sists of an exhaustive enumeration of the onstrutors of the type to be de�ned,

together with their respetive signatures. For example, here is the de�nition of

bool and of nat:

Indutive bool: Set:= true: bool j false: bool.

Indutive nat: Set:= 0: nat j S: nat! nat.

Note that bool and nat have the type Set instead of Prop. We an ignore

the di�erene between Set and Prop at the moment. Distinguishing them will

beome important later, in the ontext of program extration, for separating

data strutures from proofs. In the following example, whih de�nes binary

trees, we have a two-argument onstrutor:

Indutive tree: Set:=

leaf: nat! tree j bin: tree! tree! tree.

Thanks to indutive de�nitions, not only does the representation of data stru-

tures beome learer, but we gain automatially generated indution priniples,

whih are essential for reasoning about objets or programs. We will ome bak

to them in � 12.2.6. The de�nitions inspired from system F keep their interest

as ontrol strutures. For example, an inhabitant of N is an iterator whih

applies a funtion to an argument for a given number of times.

Using Type Theory 239

12.2.4 Indutive Dependent Types

In the alulus of indutive onstrutions, we an also de�ne prediates in an

indutive manner. For example, here is a de�nition of the prediate whih states

that a given natural integer is even:

Indutive even: nat! Prop:=

p0: even 0

j p2: 8n :nat evenn! even(n+ 2).

The assertion p0 stipulates that 0 is even, the assertion p2 stipulates that for

any integer n, if n is even, then n+ 2 is even; �nally, an integer is even only if

this an be proved using p0 and p2 only � similarly, the de�nition of nat says

that any integer an be onstruted with 0 and S only.

A proof of evenn, where n is non-zero, an be given in the form p2 k p

where p is a proof of evenk. For example, the tree

p2

�

�

�

�

2 p2

�

�

�

�

0 p0

whih represents the term p2 2 (p2 0 p0), is a proof of even4. Let us observe

that, in p2 k p, the type of the omponent p depends on the value of the previous

omponent k.

M

A Prolog de�nition of even would be omposed of lauses similar

to p0 and p2, but here we an write n+ 2 instead of S(Sn). The

next de�nition of even, alled even1 below, does not orrespond to a Prolog

program.

12.2.5 Primitive Reursive Funtions

In order to de�ne a funtion suh as the addition, one indiates how to onstrut

the result by means of a ase analysis on the possible onstrutors of nat, whih

are S and 0. More preisely, one expresses that m+ 0 evaluates to m, and that

m+ Sn evaluates to S(m+ n). A possible syntax in Coq is (replaing, following

ommon notation, plusa b with a+ b):

Fixpoint plus [m;n : nat℄ : nat:=

Cases n of

0) m

j Sn) S(m+ n) end.

An expression suh as S0+ S0 is then an unredued form of S(S 0). Similarly

2, viewed as a onstant funtion without arguments, is an unredued form of

S(S0).

We an de�ne in the same way funtions over binary trees, by exhausting

the possible ases. This is sometimes alled strutural indution. For example,

here is a de�nition of the sum of the leaves of a tree:

240 Understanding Formal Methods

Fixpoint sumlf [a : tree℄ : nat:=

Cases a of

leafn) n

j bin g d) sumlfg + sumlfd end.

M

In the ase of integers, we an then de�ne the primitive reursive

funtions whih were introdued in � 3.7.1. The system presented

here then inludes a generalization of primitive reursive funtions to arbitrary

indutive types. Furthermore, even in the ase of the integers, we atually have

muh more than primitive reursion: we have a large lass of total reursive

funtions (totality is automatially ensured by the theorem of strong normal-

ization). The large size of this lass omes partly from the higher-order features

of the alulus. For example, we saw in � 3.7.1 that the Akermann funtion is

not primitive reursive in the ordinary sense, but after urry�ation it beomes

so.

12.2.6 Reasoning by Generalized Indution

Here is another de�nition of the property, for a natural integer, to be even:

Indutive even1: nat! Prop:=

p1: 8n :nat even1(n+ n).

How an we ensure that the two de�nitions even and even1 are equivalent?

Eah indutive de�nition is automatially assoiated to an elimination rule,

whih allows one to reason by ases on an objet whih inhabits an indutive

type. In the simple ase of an enumerated type, suh as bool, the rule simply

states that, in order to prove Pb for any Boolean b, it is su�ient to prove

P true and P false.

In the ase of a �reursive� type suh as nat, the rule states that, in order

to prove P n for any natural number n, it is su�ient to prove P 0 and to prove

that, if P m, then P (Sm): this is a formalization of reasoning by indution,

expressed here by one axiom, and not by a shema as we did in � 5.3.2.

8P :nat!Prop P 0 ! [8m :nat Pm! P (Sm)℄ ! 8n :nat Pn:

For example, let us onsider a proof of even1n! evenn. Reasoning di-

retly by indution over n is not a very good idea, beause if n is even,

then Sn is odd. However, the hypothesis even1n entails that n has the form

m+m (whih is formally expressed by an elimination on even1). We then

reason by indution over m, whih amounts to proving that even(0+0) and

even(k+k)! even(S k + S k), whih is trivial by applying, respetively, p0 and

p2, and then using very simple arithmeti fats.

Another omplete example of a proof by indution was previously presented

in � 9.2.2.2.

Using Type Theory 241

12.2.7 Indution Over a Dependent Type

M

For the same reason as in the previous subsetion, it is neither easy,

nor natural, to prove the formula evenn!even1n by indution over

n. Intuitively, we would like to ount the number of ourrenes of p2, m, in

a proof of evenn, to onstrut p1m and to verify that the latter is of type

even1n. Formally, we employ the elimination rule assoiated with even, whih

amounts to examining the di�erent means of onstruting a proof of evenn.

Two ases are possible:

� either this proof is p0 and, in this ase, n is 0: we an take p10;

� or, the proof is of the form p2 k p where p is a proof of evenk

and, in this ase, n is k + 2; by the indution hypothesis we have

a proof of even1k, whih means that k is of the form m+m (here,

an elimination of even1 is used); we an take p1(Sm), sine we have

m+m+ 2 = (m+1) + (m+1).

This reasoning needs some are. In suh situations, using a software-based proof

assistant turns out very helpful. The main lesson we an draw is that ommon

indution over the natural integers is an elimination rule among many others,

and that it is often worthwhile to use an indution priniple over types whih

are more omplex than nat, suh as even in the previous example.

V

Reasoning by indution proeeds by examining the di�erent means

of produing the eliminated objet. But one always limits oneself to

onsidering that this objet is built using only onstrutors. For example, in

an indution over a natural integer, one only onsiders the ase where it is

zero and the ase where it is the suessor of an integer. However, the integer

under examination may well be presented in a di�erent form, using multipli-

ations or one of the many other possibilities. Similarly, a proof of evenn,

when n is non-zero, is not neessarily of the form p2 k p from the outset: an-

other possibility is thn p

0

, where p

0

is a proof of even1n and th a proof of

8x :nat even1x! evenx.

Con�ning the exploration to onstrutors is su�ient, beause every

expression neessarily redues to the form of a ombination of onstrutors

(when no free variable is left). Termination (normalization) properties of the

alulus play an essential role there.

V

In passing, the above disussion illustrates the importane of the

omputational ontents of proofs � the third part of the Curry�

Howard orrespondene: the argument given above for proving evenn!even1n

relies on the fat that a proof of evenn is eventually (after a number of om-

putation steps) of the form p2 k p.

12.2.8 General Purpose Indutive Types

We provide the formal de�nition of the general-purpose indutive types, that

we used in � 12.1.3, for the example of the searh for an element in a table.

242 Understanding Formal Methods

12.2.8.1 Type of Existene. We assume that a type S is given, together

with a property P over the elements of S, and one wants to onstrut the type

sig of pairs omposed of an element x from S and of a proof p of P x � suh

a pair an be onstruted only if x veri�es P . We denote suhthatx p suh a

pair, that is, we name suhthat the orresponding onstrutor. The type sig

is parameterized by S and P , we employ the following notation:

Indutive sig [S :Set;P :S! Prop℄: Set:=

suhthat: 8x :S P x! sigS P .

As we have two parameters S and P , suhthat atually onstruts a 4-tuple

instead of a pair, whih is suhthat(S; P; x; p) where the types of P and of x

depend on the value of S and where the type of p depends on the values of P

and of x.

The type sig plays a role similar to a de�nition by omprehension in set

theory. For this reason one uses the notation fx :S j P xg instead of sigS P .

For example, the type of even integers an be de�ned by fn :nat j evenng.

However, one must be aware that in set theory, fx :S j P xg denotes a subset

A of S, while in type theory, the same expression denotes a set of pairs. We

reover A by deleting the seond element of eah pair.

The type sig has another interpretation. Indeed, proving that there exists

an x verifying P x, is the same as exhibiting a witness x and a proof of P x.

The de�nition of 9x :S P x is idential to the de�nition of fx :S j P xg, with

just one di�erene: the result is a proposition instead of a data type:

Indutive ex [S :Set;P :S! Prop℄: Prop:=

ex_intro: 8x :S P x! exS P .

The di�erene between fx :S j P xg and 9x :S P x is then tiny; it is important

only in the framework of program extration.

12.2.8.2 Sums and Disjuntion. Let A and B be two types, whih are

themselves of type Set. An inhabitant of their sum is onstruted from either an

inhabitant of A, or an inhabitant of B. The orresponding indutive de�nition

sumAB has two parameters (A and B) and two onstrutors inl and inr:

Indutive sum [A;B :Set℄: Set:=

inl: A! sumAB

j inr: B! sumAB.

One generally uses the notation A+B instead of sumAB. The inhabitant

of A+B whih is onstruted from an inhabitant a of A is then inlAB a.

In � 12.1.3, we used the similar onstrut fPg+ fQg, where P and Q play

the role of A and B; here, P and Q have the type Prop, while the result has

again the type Set:

Indutive sumbool [P;Q :Prop℄: Set:=

left: P ! sumboolP Q

j right: Q! sumboolP Q.

Using Type Theory 243

The disjuntion of two propositions P and Q is another variant of this indutive

type, where the result has the type Prop instead of Set.

Indutive or [P;Q :Prop℄: Prop:=

or_introl: P ! orP Q

j or_intror: Q! orP Q.

The syntax used is P _Q instead of orP Q. We get yet another useful variant

by summing a data type A with a proposition Q.

Indutive sumor [A :Set;Q :Prop℄: Set:=

inleft: A! sumorAQ

j inright: Q! sumorAQ.

The syntax used is A+ fQg. When A is itself an existential type, of the form

fx :A j P xg, we get fx :A j (P x)g+ fQg, whih is the last general type we used

in � 12.1.3. An equivalent de�nition is as follows:

Indutive option [A :Set;P :A! Prop;Q :Prop℄: Set:=

suess: 8x :A P x! option(A;P;Q)

j fail: Q! option(A;P;Q).

An inhabitant of this type is either an inhabitant x of A together with a

proof that x veri�es the prediate P , or a proof of Q.

12.3 A Program Corret by Constrution

In � 12.1.3, we gave a spei�ation for the searh for an element in a table.

How an we design an algorithm from this spei�ation? Two approahes an

be taken. The �rst is quite standard. We view

hdef_tbl U Ptable P; resu_tbl U PtableP i

or its speialization to intervals

hdef_tbl_int; resu_tbl_inti

as the preondition and the postondition, respetively, of an imperative pro-

gram. We an, for example, formalize the onept of a prediate transformer

in the alulus of indutive onstrutions. Then we get a framework omposed

of a formal logi and of tools, whih an be used to support the development

proess presented in Chapter 4. This aid is worthwhile if we want to be sure

that nothing has been forgotten in the reasoning of � 4.2.2.

A more sophistiated variant onsists of formalizing in Coq the operational

and axiomati semantis of a programming language. It is then possible to

automate the prodution of the lemmas to be proved. This was previously

proposed in [BF95, Ter93℄. More reent works inlude [Fil99℄.

244 Understanding Formal Methods

The seond approah is typial of onstrutive logis. It is based on the

aforementioned Curry�Howard orrespondene. In this approah, a program

and its proof are simultaneously developed. This is reminisent of the tehniques

of Dijkstra. The main di�erene is that here we will get funtional programs

instead of imperative programs. In general, this means that the e�ieny of

imperative programs may be lost, but that omplex reursive funtions an be

proven to be orret. However, this annot be illustrated on the table example:

we will get a very simple algorithm, and moreover a tail-reursive one, so that

modern ompilers of funtional languages are able to provide ode as e�ient

as for C programs. But our aim is only to illustrate the tehnique on our now

well-known example.

12.3.1 Programs and Proofs

Reall the Curry�Howard orrespondene:

spei�ation = type,

proof = funtional program.

A spei�ation is, from a logial viewpoint, an impliation between a preon-

dition and a postondition. From the funtional viewpoint, it is the type of

a funtion, as given by the type of its arguments (together with logial on-

straints) and the type of the result (together with logial onstraints also). In

the table example, for a given U , the spei�ation of the searh for an element

x verifying P , if there is one, in a table haraterized by Ptable is then:

def_tbl U PtableP ! resu_tbl U PtableP : (12.5)

Instead of diretly displaying a funtion in a funtional language, the idea is to

prove the formula (12.5), using the rules of logi: introdution of hypotheses,

ase splitting, reasoning by indution, et. Figure 12.1 gives the main orre-

spondenes between reasoning rules and algorithmi onstruts.

onjuntion pair of data

ase analysis ase of, if then else

impliation funtion

reasoning by indution (primitive) reursion

Figure 12.1: Logi and funtions

A proof onstruted in this way ontains an algorithm. Of ourse, di�erent

proofs orrespond to di�erent programs. Atually, one may perform the proof

with a more or less preise algorithm in mind; in muh the same way, one is

guided by intuition when one writes down a formal proof.

Using Type Theory 245

M

E�ieny issues are not ignored in this approah, and this may give

proofs a somewhat arti�ial taste. For example, suppose we want to

�nd an inhabitant of the type T n, where n is a given integer. If T n is proven

by regular indution, the result will be found after O(n) omputation steps.

2

But if we use the following indution priniple:

8n :nat P 0 ! [8k :nat P k! P (2k)℄

! [8k :nat P k! P (2k + 1)℄ ! 8n :nat P n ;

the number of steps will be O(logn). This is nothing but the logial translation

of well-known design priniples for algorithms. In summary, the hoie of data

types and of indution priniples are important design deisions in a develop-

ment � they are expeted to be performed by a human. The support provided

by software-based proof assistants is more relevant for the management of teh-

nial details.

12.3.2 Example: Searhing for an Element in a List

Aording to the above setions, searhing for an element verifying a given

property, in a given list, amounts to �nding a funtion spei�ed by the type:

def_tbl_lis! resu_tbl_lis : (12.6)

Let us expand the de�nitions of def_tbl_lis and of resu_tbl_lis:

(8u :U Ptablistu!fP ug+ f:P ug) !

fu :U j Ptablistu ^ P ug

+

f8u :U Ptablistu!:P ug :

(12.7)

The solution is by no means mysterious: Ptablist depends on the given list l,

and we just make the desired program hek eah element until a suitable one

is found. From a logial perspetive, this orresponds exatly to onsidering the

ase where l is empty and the ase where l is omposed of at least one element.

More preisely, we proeed by indution over the struture of l as follows:

� if a property is proved for nil,

� furthermore, if we prove the property for onsu l with the assumption it

holds for l,

� we onlude that this property holds for an arbitrary list.

In pratie, suh reasoning is elaborated step-by-step and interatively with

the aid of a tool suh as Coq or Lego. In our example, the Coq sript takes

less than 10 lines, whereas the underlying detailed and omplete reasoning is

longer. We write it down for the srupulous reader.

2

Roughly speaking, O(n) is a proportional funtion of n.

246 Understanding Formal Methods

M

Let us expand Ptablist in order to make l expliit, and, for the sake

of simplifying the presentation, suppose that P an be tested for all

inhabitants from U :

(8u :U fP ug+ f:P ug) !

fu :U j ontains l u ^ P ug

+

f8u :U ontains l u!:P ug :

(12.8)

We onsider that fx : A j �xg+ f g has two onstrutors named suess and

fail. The result is then either of the form suessu �, where u inhabits U and

� is a proof of ontains l u ^ P u, or of the form fail� where � is a proof of

8u :U ontains l u!:P u. We onstrut suh an objet by indution over the

struture of the list l:

� the ase where l is nil is easy to solve: we have a trivial proof � of 8x :U

ontains nil x ! :P x, we then onstrut fail�

nil

; intuitively, no mem-

ber of the empty list veri�es P , whih prevents us from laiming satisfation

of the �rst hoie (suess);

� if l = onsu l

0

, we will be allowed to use the indution hypothesis expressed

by (12.8) where l

0

is substituted for l; but let us �rst test P on u: we get

either a proof of P u, or a proof of :P u� intuitively: we ompute the truth

value of P u;

� in the �rst ase, we get a proof �

u

of ontains l u ^ P u, from whih we

onstrut suessu �

u

;

� in the seond ase, we use the indution hypothesis over l

0

: in the ase of

suess, every member of l

0

verifying P is also a member of l verifying P ;

in the ase of failure, no member of l

0

veri�es P , and then no member of l

veri�es P , sine we already have :P u.

This proof, viewed as a funtion, has the following form, where the expres-

sions �

nil

, �

u

, �

v

, �

0

v

, � and �

0

are not detailed, and where Du is of type

fP ug+ f:P ug:

list_searh

def

=

funtion

nil �! fail�

nil

j onsu l �! ase Du of a proof of

P u �! suessu �

u

:P u �! ase list_searh l

0

of

suessv �

0

v

�! suessv �

v

j fail�

0

�! fail� :

12.3.3 Searhing in an Interval of Integers

In the ase where the table is represented by an interval of integers [p::q[, the

formula to be proven is:

def_tbl_int! resu_tbl_int : (12.9)

Using Type Theory 247

The previous proof an be adapted by reasoning over the length of the

interval, l. For example, we an onsider p as a �xed parameter and l suh

that q = p+ l, and then reason by indution over l. We ould then paraphrase

the previous subsetion, but we prefer now to follow the line of the program

presented in � 2.4.4, where we use an additional piee of information: if there

are several integers satisfying P in [p::q[, the result is the least of them.

In this version we express the type of the result as an integer ontained

between p and q inlusive, by imposing that, if x = q, then no integer of the

table veri�es P . We introdue the auxiliary prediate ini_seg_emptyx, whose

meaning is that no integer from [p::x[veri�es P :

ini_seg_empty[x :nat℄

def

=

8i :nat betweenp i x!:P i :

resint

def

=

fx :nat j (Pintervx ^ P x) _

(x = q ^ ini_seg_emptyq)g :

In order to allow us to reover resu_tbl_int from resint, we simply onstrut

a onverting funtion spei�ed by:

resint! resu_tbl_int : (12.10)

M The proof is by ase analysis on the value of x ontained in resint:

� if x = q, we dedue, from the de�nitions of resint and Pinterv, that

ini_seg_emptyx is veri�ed, the inhabitant from resu_tbl_int to re-

turn is then fail�, where � is the objet whih formalizes the proof of

ini_seg_emptyx;

� if x 6= q, we dedue, from the de�nition of resint, that x is in the interval

and veri�es P , then we take suessx h�; �i, where � and � are the objets

whih formalize the proofs of Pintervx and P x, respetively.

The funtion orresponding to this proof is:

if x = q then fail� else suessx h�; �i :

M

We still have to prove resint. Intuitively, we will one more examine

the elements in the interval [p::q℄ � haraterized by Pdom � until

a suitable one is found, as in the algorithm explained in � 2.4.4. To this end we

onsider a stronger spei�ation, named strg_resint where no integer from

[p::x[veri�es P , even when x is smaller than q:

Pdom[x :nat℄

def

=

Pintervx _ x = q :

strg_resint

def

=

fx :nat j Pdomx ^ ini_seg_emptyx ^

(x < q ! P x)g :

Proving strg_resint!resint is quite easy, the underlying funtion preserves

the witnessing integer.

Again, following the reasoning line of Chapter 2, we take q�x as our

loop variant. Intuitively, it means that we intend to reason by indution over

q � x. The base ase is x = q. The only result we an propose in this ase is

248 Understanding Formal Methods

q, but to this end, we �rst need a proof of ini_seg_emptyx. It is then better

to try to prove stepx by indution, where we put a preondition in front of

strg_resint:

step[x :nat℄

def

=

ini_seg_emptyx! strg_resint :

The informal reasoning is as follows:

� if x = q, a proof of ini_seg_emptyx allows us to dedue that the result is q;

� if x < q, suppose one again that we have a proof of ini_seg_emptyx at

our disposal; the indution hypothesis expresses that we are able to �nd the

result from a proof of ini_seg_empty(x + 1); we reason by ase analysis on

P x: if P x holds, the result is simply x; in the opposite ase, :P x ombined

with ini_seg_emptyx provides a proof of ini_seg_empty(x+1), so that we

are allowed to use the indution hypothesis.

Note that, the hypothesis def_tbl_int is needed for reasoning by ase analysis

on P x.

M

A tehnique for reasoning by indution over q � x is to expliitly

determine an integer l suh that x + l = q. We prove the theorem

loop spei�ed by:

def_tbl_int ! 8l; x :nat p � x ! l + x = q ! stepx :

by indution over l, by formalizing the previous reasoning. A better option is

to prove the following spei�ation:

def_tbl_int ! 8x :nat p � x ! x � q ! stepx :

using well-founded indution; in this way we avoid using l. The well-founded

relation to be used is the one named R

4

(q) on page 51.

Finally, giving x the value p in loop, (and l the value q�p, if we use

the former spei�ation of loop), then providing a � very simple � proof of

ini_seg_emptyp, we obtain an element from strg_resint.

12.3.4 Program Extration

The program just obtained manipulates piees of data, suh as x, p, q, and

proofs, for example the proof of ini_seg_emptyx. If we keep this program as it

is, its exeution will be omposed of omputation steps not only on data but also

on proofs. Intuitively, this means that assertions on data will be dynamially

heked, whih is obviously pointless. Clearly, we an ompare this with type-

heking in the ommon typed programming languages: for example, ompile-

time type-heking ensures that arithmetial funtions will atually be applied

on numbers at run-time; then typing information an be removed from the

exeutable ode.

Using Type Theory 249

The same strategy an be adopted here. In onrete terms, everything re-

lated to Prop an be removed from programs suh as the ones that were pre-

sented above. Thus, one extrats an untyped program whih omplies, by on-

strution, with the initial spei�ation. We an �rst illustrate the idea on the

type def_tbl. Its omplete de�nition was:

def_tbl[U : Set ; Ptable; P : U ! Prop℄

def

=

8x :U Ptable x!fP xg+ f:P xg :

In the extration proess, fP xg + f:P xg is replaed with bool, whih does

not depend on x; we are left with:

def_tbl[U :Set℄

def

=

U ! bool :

For example, an inhabitant D of type def_tbl nat is a funtion from nat to

bool; this funtion is not neessarily de�ned for all integers � it ould be

implemented by an array, but we are supposed to use it only under the preon-

ditions whih are written in the original de�nition. Here, D is only a parameter;

let us onsider again the onverting funtion whih was developed in � 12.3.3.

Its type is resint!resu_tbl_int. Expanding resint and resu_tbl_int, we

get:

fx :nat j (Pintervx ^ P x) _ (x = q ^ ini_seg_emptyqg !

fx :nat j Pintervx ^ P xg + f8x :nat Pintervx!:P xg:

The proposed funtion was:

onversion[hx :nat; � : (Pintervx ^ P x) _ : : :i℄

def

=

if x = q then fail� else suessx ; h�; �i :

Under its expurgated form, the type resu_tbl_int is inhabited by elements

of the form suessn, where n is a natural integer, or fail. As for the type

resint, it simply boils down to nat. The extrated program is then:

onversion[x :nat℄

def

=

if x = q then fail else suessx :

If we onsider the program for searhing in a list, as given on page 246, the

extration proess yields the following algorithm:

list_searh

def

=

funtion

nil! fail

j onsu l! if Du then suessu

else ase list_searh l

0

of

suessv! suessv

j fail! fail :

This program, although it is orret, is somewhat frustrating, beause there is

learly no need to test the result of the reursive all. We would prefer:

250 Understanding Formal Methods

list_searh

def

=

funtion

nil! fail

j onsu l! if Du then suessu else list_searh l

0

:

This an be regarded as an optimization, whih ould be performed by a good

ompiler, or at the bak-end of the extration proess itself. However, we an

sharpen the previous development so that we diretly obtain the seond pro-

gram.

M

The main problem is that, as the type of the result is fu : U j

ontains l u ^ P ug + f8u : U ontains l u! :P ug, an indution

over l fores us to distinguish suessv �

0

v

from suessv �

v

and fail�

0

from

fail�: indeed, �

0

v

, for example, is of type ontains l u ^ P u, whereas �

v

is of

type ontains(ons v l)u ^ P u.

One this is understood, the solution onsists of putting the goal

into an equivalent form Cond l!f: : :g+ f: : :g where Cond l is a purely logial

expression, and then will be removed at the extration stage, and where f: : :g+

f: : :g is kept onstant in the indution step. In this ase Ptablist is just the

tiket. We prove:

(8u :U ontains l u$ Ptablistu) !

fu :U j Ptablistu ^ P ug

+

f8u :U Ptablistu!:P ug

(12.11)

by indution over l, following the same reasoning line as before.

In the ase where the table is represented by an interval of integers, the

searh funtion is the following. We give here the ML program atually ex-

trated by the system Coq from the proof given above. Connoisseurs will note

that we get a tail-reursive program, whih ompiles to a ommon loop. We

then get a program quite lose to the imperative algorithm given on page 31.

let main p q D =

let re loop x =

math q = x with

true ! q

j false ! math D x with

true ! x

j false ! loop (S x)

in loop p ;;

The program extration mehanism is based on general results of realiz-

ability theory, whih ensures that the extrated funtion onforms to the spe-

i�ation of the omplete funtion.

Program extration allowed us to point out the deep analogy between pro-

gram and proof design. In this framework, it remains possible to adopt a more

traditional strategy, by proposing the funtion to be extrated [Par95℄; then it

is up to the system to infer automatially the orresponding proof obligations.

Using Type Theory 251

12.4 On Unde�ned Expressions

A triky issue about the relationship between logi and programming was raised

in Chapter 2: a logial expression may ontain unde�ned terms. This issue was

illustrated on the expression P x. In this hapter, we introdued a omputable

funtion D whih determines whether or not P x holds. There is a lear dis-

tintion between the use of P in the mathematial reasoning, the use of D at

the same level, and the use of D in the expressions of the �nal program. The

fat that D is not de�ned everywhere is represented in its spei�ation by the

formula p � x < q! fP xg + f:P xg. By this impliation, D takes an addi-

tional argument whih is a proof Æ

x

of p � x < q: the omplete expression is

atually DxÆ

x

. It is always de�ned � that is, it is de�ned for all pairs hx; Æ

x

i

� and hene it always makes sense to use it in our reasoning. One the latter

is �nished, we an onsider a program obtained by extration, where only Dx

is present, and we are ensured that x is in the domain of D.

12.5 Other Proof Systems Based on Higher-order Logi

The main alling of typed higher-order logi is to provide a rigorous and very

expressive logial framework: as soon as the systems we want to model are

omplex at all, we need to rely upon a olletion of mathematial results for-

malized in advane. The rihness of expression is an important ingredient for

expressing problems, reasonings and hopefully solutions in a natural manner,

with an adequate degree of generality.

At the same time, any approah having the goal of verifying realistially

sized systems must rely upon automated proof tehniques whih relieve the

user of tasks whih are often tedious (arithmetial alulations, propositional

reasoning) or omplex (model heking tehniques, for example), or both. Using

and ombining e�iently the know-how aumulated in the di�erent relevant

disiplines is still a researh topi. At the same time, the issue of the reliability

of the analysis and proof tools beomes important, even more so as the tools

beome larger and implement more omplex algorithms.

PVS (Prototype Veri�ation System) is a proof assistant for a higher-order

lassial logi, whih is quite good at automatially disharging proof obliga-

tions, thanks to the implementation of state-of-the-art deision proedures. The

spei�ation language of PVS inludes dependent types and a prediate-based

sub-typing mehanism, whih are quite powerful for spei�ation purposes, but

make type-heking undeidable: type-heking may generate proof obligations.

Fortunately, most of them an be automatially disharged thanks to the auto-

mated proof proedures of the system. The latter are indeed very onvenient for

the user, and they tend to be used extensively, so that the user an onentrate

his e�orts more on the struture of his developments.

The reliability of the approah relies mainly on the expertise of the designers

and implementers of the system. PVS is a good laboratory for experimenting

252 Understanding Formal Methods

with new ideas in the area. However, to prevent obvious potential problems,

only a small number of researhers are authorized to integrate new mehanisms

into the o�ial version of the system. Even so, if an undisovered �aw remains,

in partiular, a �aw whih ours only in rare on�gurations or is hardly ob-

servable in ommon situations, the hanes that it is � unonsiously � used

inrease when users more frequently use the automated proedures o�ered to

them. Can we prevent suh aidents, or, more modestly, restrit or delimit the

risk?

This issue motivated one of the key deisions for the design of the arhi-

teture of LCF [GMW79℄, another proof tool for higher-order logi (without

dependent types). The main idea is to have a small software kernel, the proof

heker, whih is very arefully written, with only one objetive: heking that

only legal dedution rules are used in a formal proof. Suh an arhiteture

is open: arbitrary omplex proof searh proedures may be involved, inlud-

ing, typially, new deision proedures for a speialized area, and this without

threatening the logial integrity of the approah, sine the kernel eventually

heks the orretness of all proof steps.

This approah is made possible when the logi itself is omposed of a re-

strited number of primitive elements. For example, the alulus of indutive

onstrutions is essentially based on one logial quanti�er (8), a very general

indution priniple and the onept of a redution.

This idea has also been followed in a number of suessors to LCF. It is

implemented in two ways in atual systems. One of them onsists of de�ning

an abstrat type for theorems: the latter are reated and derived from eah

other through an interfae, whih proposes only the formation of axioms, and

the use of dedution rules similar to the ones we have presented in Chapter 9.

HOL, for example, is onstruted aording to this arhiteture.

Another possibility onsists of expliitly handling proof terms. This is par-

tiularly suitable to intuitionisti logi, sine proof terms are �-terms: �-terms

are already available, sine we are onsidering a higher-order logi. Atually, as

a theorem is nothing but the type of a �-term, verifying that a formula is proven

boils down to performing type heking. The advantage of this approah, over

the approah based on an abstrat type for theorems, is that it maintains and

provides an exhaustive trae of formal reasonings. This leaves room for ontrol-

ling the latter by an independent system, or for extrating a natural language

explanation from a formal proof [Cos96℄. The di�ulty is to keep proof terms

to a reasonable size. Coq, whih we desribed earlier, is a typial example of

systems based on this priniple.

As the reliability of LCF-tehnology-based proof assistants relies entirely

upon their kernel, muh attention is paid to the latter by the development

teams onerned. However, sine a really powerful logi is available, why not

try to formalize and mehanially hek the kernel itself? Suh a task is far from

simple: on the one hand, the manipulated algorithmi strutures are omplex;

on the other, at the spei�ation level, representing the logial rules is not

su�ient, it is also neessary to prove a number of metatheorems whih govern

Using Type Theory 253

them. These obstales were suessfully takled in the ase of Coq, by B. Barras

[Bar99℄. In onrete terms, this opens up the possibility that the kernel of a

future version of Coq may be obtained by program extration (see � 12.3.4).

We have just seen that there are several options for higher-order logi-

based proof tools. There are also some di�erenes in the logis onsidered. For

example, PVS and Coq inlude dependent types, but HOL does not; typing

judgements are deidable in Coq and in HOL, but not in PVS; HOL and PVS

use a lassial logi, whereas the logi of Coq is onstrutive.

3

Among the three

systems onsidered here, Coq is also the only one where types an themselves

be omputed (by redution); this allows one to further exploit the possibilities

of dependent types.

M

To illustrate the idea, here is a small but typial example where the

latter feature turns out to be useful. We want to represent names,

say a and b, and a spei� type for eah of them:

Indutive name: Set:= a: name j b: name.

Definition ty:= [x : name℄ Cases x of

a) bool

j b) nat end.

We an then onstrut pairs hx; vi , where x is of type name and v is of type tyx:

hb; 3i is suh an objet. At the type-heking stage, the proof tool performs the

redution ty(b)

Æ

! nat.

The proof tools onsidered in this hapter have been, and are, suessfully

used in some industrial appliations, for example in areas related to seurity,

smart ards, protools, et. There is still work in progress for making them

more powerful and more e�ient, on the one hand (for example their use in

ombination with fully automated tehniques based on rewriting or on model-

heking), and easier to use on the other hand, thanks to syntatial devies, or

to graphial interfaes, suh as Poq based on the idea of �proof-by-pointing�

[BKT94℄.

12.6 Notes and Suggestions for Further Reading

The alulus of indutive onstrutions is desribed in the Coq manuals

[HKPM02, TP02℄. The priniples for program extration implemented in Coq

are de�ned in the thesis of Christine Paulin-Mohring [PM89℄. A similar sys-

tem is Nuprl [CAB

+

86℄, whih allows one to develop onstrutive mathematial

theories in a system inspired by the type theory of Martin-Löf. Amongst other

systems based on a higher-order logi, we have HOL, Isabelle and PVS. All are

supplied with user and referene manuals [GM93, Pau94, CAB

+

86, ORS93℄. A

3

However, it should be noted that the exluded middle law an be used in the

Prop universe.

254 Understanding Formal Methods

number of artiles are also available, for example [ORS92℄ on PVS, [Pau90℄ on

Isabelle and [Gor88℄ on HOL.

Valuable priniples for designing and implementing a serious proof assistant

are desribed by Larry Paulson in [Pau92℄. Readers may then be tempted to

try to write their own software. However, before doing so, it is advisable to

read the onlusion of Paulson's artile several times.

Bibliography

[Aba90℄ M. Abadi. An Axiomatization of Lamport's Temporal Logi of

Ations. Tehnial Report 65, Digital Equipment Corporation,

Systems Researh Centre, Otober 1990.

[Abr92℄ J-R. Abrial. The B-Tehnology. In FORTE'92, 5th Int. Conf. on

Formal Desription Tehniques, 1992.

[Abr96℄ J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-

bridge University Press, 1996.

[AGM92a℄ S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Hand-

book of Logi in Computer Siene, volume 1: Bakground: Math-

ematial strutures. Oxford Siene Publiations, 1992.

[AGM92b℄ S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Hand-

book of Logi in Computer Siene, volume 2: Bakground: Com-

putational strutures. Oxford Siene Publiations, 1992.

[AL91℄ A. Asperti and G. Longo. Categories, Types and Strutures: an

Introdution to Category Theory for the Computer Sientist. MIT

Press, 1991.

[AN82℄ A. Arnold and M. Nivat. Comportements de proessus. In Colloque

AFCET � Les mathématiques de l'informatique �, pages 35�68,

1982.

[AN01℄ A. Arnold and D. Niwi«ski. Rudiments of the mu-alulus. Elsevier,

2001.

[Arn94℄ A. Arnold. Finite Transition Systems: Semantis of Communiat-

ing Systems. International Series in Computer Siene. Prentie

Hall, 1994.

[Art91℄ R.D. Arthan. On free type de�nitions in Z. In J.E. Niholls, editor,

Z User Workshop, LNCS. Springer-Verlag, 1991.

[Art98℄ R.D. Arthan. Reursive de�nitions in Z. In J.P. Bowen, A. Fett,

and M.G. Hinhey, editors, ZUM'98, volume 1493 of LNCS, pages

154�171. Springer-Verlag, 1998.

[AU79℄ A.V. Aho and J. Ullman. Universality of data retrieval languages.

In Priniples of Programming Languages, pages 110�120. ACM,

1979.

[Aug98℄ L. Augustsson. Cayenne - a language with dependent types. In

International Conferene on Funtional Programming, pages 239�

250, 1998.

256 BIBLIOGRAPHY

[B-T91℄ Edinburgh Portable Compilers Ltd. B-Tool Version 1.1 - User

Manual/ Tutorial / Referene Manual, 1991.

[B-T93℄ Oxford Siene Park, UK. B-Toolkit Beta-Release Version 1.1 -

User Manual, Referene Manual, 1993.

[Bar77℄ J. Barwise, editor. Handbook of Mathematial Logi. North Hol-

land, 1977.

[Bar84℄ H.P. Barendregt. The Lambda Calulus, its Syntax and Semantis,

volume 103 of Studies in Logi. North Holland, 1984.

[Bar90℄ H. Barendregt. Funtional programming and lambda alulus. In

van Leeuwen [vL90b℄, hapter 7.

[Bar99℄ B. Barras. Auto-validation d'un systèmes de preuves ave familles

indutives. Ph.D. thesis, Université de Paris 7, 1999.

[Bau91℄ F.L. Bauer, editor. Logi, Algebra and Computation, volume F79

of NATO ASI Series. Springer-Verlag, 1991.

[BBC

+

95℄ N. Bjorner, I.A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna,

H.B. Sipma, and T.E. Uribe. STeP: the Stanford Theorem Prover,

Users's Manual. Tehnial report, Stanford University, 1995.

[BBF

+

01℄ B. Bérard, M. Bidoit, A. Finkel, A. Petit, L. Petrui, and Ph.

Shnoebelen. System and Software Veri�ation, Model-Cheking

Tehniques and Tools. Springer, 2001.

[BBFM99℄ P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor:

a suessful appliation of b in a large projet. In Wing et al.

[WWD99℄, pages 369�387.

[BBS93℄ F.L. Bauer, W. Brauer, and H. Shwihtenberg, editors. Logi

and Algebra of Spei�ation, volume F94 of NATO ASI Series.

Springer-Verlag, 1993.

[Bert℄ S. Berezin. The SMV web site, 2000 .

http://www.s.mu.edu/�modelhek/smv.html/.

[BF95℄ Y. Bertot and R. Fraer. Reasoning with exeutable spei�ations.

In Int. Joint Conf. on Theory and Pratie of Software Devel-

opment, TAPSOFT, volume 915 of LNCS. Springer-Verlag, May

1995.

[BG92℄ G. Berry and G. Gonthier. The Esterel Synhronous Program-

ming Language: Design, Semantis, Implementation. Siene of

Computer Programming, 19:87�152, 1992.

[Bir95℄ R.S. Bird. Funtional Algorithm Design. In B. Möller, edi-

tor, Mathematis of Program Constrution, volume 947 of LNCS.

Springer-Verlag, 1995.

[BK90℄ J.C.M. Baeten and J.W. Klop, editors. CONCUR 90, Amsterdam,

volume 458 of Leture Notes in Computer Siene. Springer-Verlag,

1990.

[BKK

+

98℄ P. Borovansky, C. Kirhner, H. Kirhner, P.-É. Moreau,

and C. Ringeissen. An Overview of ELAN. Ele-

troni Notes in Theoretial Computer Siene, 15, 1998.

http://www.elsevier.nl/loate/ents/volume15.html.

BIBLIOGRAPHY 257

[BKL

+

91℄ M. Bidoit, H-J. Kreowski, P. Lesanne, F. Orejas, and D. Sanella,

editors. Algebrai System Spei�ation and Development, a Survey

and Annotated Bibliography, volume 501 of LNCS. Springer-Verlag,

1991.

[BKR92℄ A. Bouhoula, E. Kounalis, and M. Rusinowith. Spike: An auto-

mati theorem prover. In Pro. 1st Int. Conf. on Logi Program-

ming and Automated Reasoning, volume 624 of Leture Notes in

Arti�ial Intelligene, St. Petersburg (Russia), July 1992. Springer-

Verlag.

[BKT94℄ Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In M. Hagiya

and J.C. Mithell, editors, Pro. of the Int. Symp. on Theoretial

Aspets of Computer Software, volume 789 of LNCS, pages 141�

160, Sendai, Japan, April 1994. Springer-Verlag.

[BLJ91℄ A. Benveniste, P. Le Guerni, and C. Jaquemot. Synhronous

programming with events and relations: the SIGNAL language and

its semantis. Siene of Computer and Programming, 16:103�149,

1991.

[BM79℄ R.S. Boyer and J S. Moore. A Computational Logi. Aademi

Press, New York, 1979.

[BN98℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cam-

bridge University Press, 1998.

[Bou94℄ A. Bouhoula. SPIKE: a system for su�ient ompleteness and

parameterized indutive proof. In A. Bundy, editor, Pro. 12th

Int. Conf. on Automated Dedution, volume 814 of Leture Notes in

Arti�ial Intelligene, pages 836�840, Nany (Frane), June 1994.

Springer-Verlag.

[BR95℄ A. Bouhoula and M. Rusinowith. Impliit indution in onditional

theories. Journal of Automated Reasoning, 14(2):189�235, 1995.

[Bra92℄ J.C. Brad�eld. Verifying Temporal Properties of Systems. Progress

in Theoretial Computer Siene. Birkhäuser, 1992.

[Bro89℄ M. Broy, editor. Construtive Methods in Computing Siene, vol-

ume F55 of NATO ASI Series. Springer-Verlag, 1989.

[BW88℄ R. Bird and P. Wadler. Introdution to Funtional Programming.

Prentie Hall, 1988.

[BW90℄ M. Barr and C. Wells. Category Theory in Computer Siene.

Prentie Hall, 1990.

[CAB

+

86℄ R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F.

Cremer, R.W. Harper, D.J. Howe, T.B. Knoblok, N.P. Mendler,

P. Panangaden, J.T. Sasaki, and S.F. Smith. Implementing Math-

ematis with the Nuprl Proof Development System. Prentie-Hall,

1986.

[CDE

+

99℄ M. Clavel, F. Duràn, S. Eker, P. Linoln, N. Martí-Oliet,

J. Meseguer, and J. Quesada. Maude: Spei�ation and Program-

ming in Rewriting Logi. Tehnial report, SRI International, Jan-

uary 1999. http://maude.sl.sri.om.

258 BIBLIOGRAPHY

[CES83℄ E.M Clarke, E.M. Emerson, and A.P. Sistla. Automati veri�a-

tion of �nite state onurrent systems using temporal logi spe-

i�ations: a pratial approah. In Pro. 10th ACM Symp. on

Priniples of Programming Languages, 1983.

[CGP99℄ E.M. Clarke, O. Grumberg, and D.A. Peled. Model Cheking. MIT

Press, 1999.

[CGR93a℄ D. Craigen, S. Gerhart, and T. Ralston. An international sur-

vey of industrial appliations of formal methods, 1 : Purpose, ap-

proah, analysis and onlusions. Tehnial Report 93/626 NIST-

GCR, National Institute of Standards and Tehnology, US Dep. of

Commere, Tehnology Administration, NIST, Computer Systems

Laboratory, Gaithersburg, MD 20899, Marh 1993.

[CGR93b℄ D. Craigen, S. Gerhart, and T. Ralston. An international survey of

industrial appliations of formal methods, 2 : Case studies. Tehni-

al Report 93/626 NISTGCR, National Institute of Standards and

Tehnology, 1993. See [CGR93a℄.

[CH85℄ T. Coquand and G. Huet. A theory of onstrutions. In Kahn

et al. [KMP85℄.

[CK90℄ C.C. Chang and H.J. Keisler. Model Theory. North Holland, 3rd

edition, 1990.

[CL73℄ C.-L. Chang and R. Char-Tung Lee. Symboli Logi and Mehani-

al Theorem Proving. Computer Siene Classis. Aademi Press,

1973.

[CL00℄ R. Cori and D. Lasar. Propositional Calulus, Boolean Algebras,

Prediate Calulus, Completeness Theorems (Mathematial Logi,

a Course with Exerises, part II). Oxford University Press, 2000.

[CL01℄ R. Cori and D. Lasar. Reursion Theory, Godel's Theorems, Set

Theory, Model Theory (Mathematial Logi, a Course with Exer-

ises, part II). Oxford University Press, 2001.

[CM89℄ K.M. Chandy and J. Misra. Parallel Program Design. Addison-

Wesley, Austin, Texas, May 1989.

[CM98℄ G. Cousineau and M. Mauny. The Funtional Approah to Pro-

gramming. Cambridge University Press, 1998.

[CMP02℄ E. Chailloux, P. Manoury, and B. Pagano. Developing Appliations

with Objetive Caml. O'Reilly, 2002.

[Coh90℄ E. Cohen. Programming in the 1990s: An Introdution to the Cal-

ulation of Programs. Texts and Monographs in Computer Siene.

Springer-Verlag, 1990.

[Coq86℄ T. Coquand. An analysis of Girard's Paradox. In Pro. IEEE

Symp. on Logi in Computer Siene, pages 227�236. IEEE, 1986.

[Cos96℄ Y. Cosoy. A natural language explanation for formal proofs.

In C. Retoré, editor, Proeedings of Int. Conf. on Logial As-

pets of Computational Liguistis (LACL), Nany, volume 1328

of LNCS/LNAI. Springer-Verlag, September 1996.

BIBLIOGRAPHY 259

[Cou91℄ B. Courelle, editor. Logique et informatique: une introdution.

olletion didatique. INRIA, 1991.

[CPHP87℄ P. Caspi, D. Pilaud, N. Halbwahs, and J. Plaie. LUSTRE, a

Delarative Language for Real-Time Programming. In Pro. 10th

ACM Symp. on Priniples of Programming Languages, 1987.

[CW97℄ E.A. Cihon and A. Weiermann. Term rewriting theory for the

primitive reursive funtions. Annals of Pure and Applied Logi,

1997.

[dBdRR91℄ J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors.

Foundations of Objet-Oriented Languages, volume 489 of LNCS.

Springer-Verlag, 1991.

[Dev93℄ K. Devlin. The Joy of Sets. Undergraduate Texts in Mathematis.

Springer-Verlag, seond edition, 1993.

[DF98℄ R. Diaonesu and K. Futatsugi. CafeOBJ Report: The Language,

Proof Tehniques, and Methodologies for Objet-Oriented Algebrai

Spei�ation, volume 6 of AMAST Series in Computing. World

Sienti�, 1998.

[Dij76℄ E.W. Dijkstra. A Disipline of Programming. Prentie-Hall, En-

glewood Cli�s, NJ, 1976.

[DJ90℄ N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In van

Leeuwen [vL90b℄, hapter 6, pages 244�320. Also tehnial re-

port 478, LRI.

[dRE98℄ W.-P. de Roever and K. Engelhardt. Data Re�nement: Model-

Oriented Proof Methods and their Comparison. Number 47 in

Cambridge Trats in Theoretial Computer Siene. Cambridge

University Press, 1998.

[DS90℄ E.W. Dijkstra and C.S. Sholten. Prediate Calulus and Program

Semantis. Texts and Monographs in Computer Siene. Springer-

Verlag, 1990.

[Dub00℄ O. Dubuisson. ASN.1 Communiation between Heterogeneous Sys-

tems. Morgan Kaufmann, 2000.

[Dum00℄ M. Dummet. Elements of Intuitionism. Clarendon Press, Oxford,

2nd edition, 2000.

[EM85℄ H. Ehrig and B. Mahr. Fundamental of Algebrai Spei�ation 1,

volume 6 of EATCS Monographs on Theoretial Computer Siene.

Springer-Verlag, 1985.

[EM90℄ H. Ehrig and B. Mahr. Fundamental of Algebrai Spei�ation 2,

volume 21 of EATCS Monographs on Theoretial Computer Si-

ene. Springer-Verlag, 1990.

[Eme90℄ E.A. Emerson. Temporal and Modal Logi. In van Leeuwen

[vL90b℄, hapter 16, pages 995�1072.

[End77℄ H.B. Enderton. Elements of Set Theory. Aademi Press, 1977.

[FG84℄ R. Forgaard and J.V. Guttag. REVE: A term rewriting system

generator with failure-resistant Knuth-Bendix. Tehnial report,

MIT-LCS, 1984.

260 BIBLIOGRAPHY

[Fil99℄ J.-C. Filliâtre. Preuves de programmes impératifs en théorie des

types. Ph.D. thesis, Université de Paris-Sud, 1999. English version

available at http://www.lri.fr/�filliatr.

[Flo67℄ R.W. Floyd. Assigning meanings to programs. Mathematial As-

pets of Computer Sienes, pages 52�66, 1967.

[Gal86℄ J. Gallier. Logi for Computer Siene. Harper and Row, 1986.

[Gal93℄ J. Gallier. Construtive logis part I: a tutorial on proof systems

and typed �-aluli. Theoretial Computer Siene, 110:249�339,

1993.

[GG89℄ S. Garland and J.V. Guttag. An overview of LP, the Larh Prover.

In N. Dershowitz, editor, Pro. 3rd Int. Conf. on Rewriting Teh-

niques and Appliations, volume 355 of Leture Notes in Com-

puter Siene, pages 137�151, Chapel Hill (NC, USA), April 1989.

Springer-Verlag.

[GG90℄ P. Gohet and P. Gribomont. Logique, méthodes pour l'informati-

que fondamentale, volume 1. Hermès, 1990.

[GG91℄ S. Garland and J.V. Guttag. A Guide to LP, The Larh Prover.

Tehnial Report 82, Digital Systems Researh Center, 130 Lytton

Av., Palo Alto, CA 94301, USA, 1991.

[Gir87a℄ J.-Y. Girard. Linear logi. Theoretial Computer Siene, 50:1�

102, 1987.

[Gir87b℄ J.-Y. Girard. Proof Theory and Logial Complexity. Bibliopolis,

Napoli, 1987.

[Gir91℄ J.-Y. Girard. A new onstrutive logi: lassial logi. Mathemat-

ial Strutures in Computer Siene, 1:225�296, 1991.

[GLT89℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7

of Cambridge Trats in Theoretial Computer Siene. Cambridge

University Press, 1989.

[GM91℄ P. Gardiner and C.C. Morgan. Data re�nement of prediate trans-

formers. Theoretial Computer Siene, 87:143�162, 1991.

[GM93℄ M.J.C. Gordon and T.F. Melham. Introdution to HOL: A The-

orem Proving Environment for Higher Order Logi. Cambridge

University Press, 1993.

[GM00℄ J.A. Goguen and G. Malolm, editors. Software Engineering with

OBJ: Algebrai Spei�ation in Ation. Kluwer Aademi Publish-

ers, Boston, 2000. ISBN: 0-7923-7757-5.

[GMW79℄ M.J.C. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF:

A Mehanised Logi of Computation, volume 78 of LNCS. Springer-

Verlag, 1979.

[Gor79℄ M.J.C. Gordon. The Denotational Desription of Programming

Languages. Springer-Verlag, 1979.

[Gor88℄ M.J.C. Gordon. HOL: A Proof Generating System for Higher-

Order Logi. In C. Birtwistle and P.A. Subrahmanyam, editors,

VLSI Spei�ation, Veri�ation and Synthesis. Kluwer Aademi

Publishers, 1988.

BIBLIOGRAPHY 261

[Gri90℄ T. Gri�n. A formulae-as-types notion of ontrol. In Pro. 17th

ACM Symp. on Priniples of Programming Languages. ACM, Or-

lando, 1990.

[Gri91℄ S. Grigorie�. Déidabilité et omplexité des théories logiques. In

Courelle [Cou91℄, pages 7�97.

[HA28℄ D. Hilbert and W. Akermann. Grundzüge der theoretishen Logik.

Springer-Verlag, 1928.

[Hal60℄ P.R. Halmos. Naïve Set Theory. Van Nostrand, Prineton, NJ,

1960.

[Hal93℄ N. Halbwahs. Synhronous Programming of Reative Systems.

Kluwer Aademi Publishers, 1993.

[HB95℄ M.G. Hinhey and J.P. Bowen, editors. Appliations of Formal

Methods. International Series in Computer Siene. Prentie-Hall,

Hemel Hempstead, 1995.

[HB99℄ M.G. Hinhey and J.P. Bowen, editors. Industrial Strength Formal

Methods in Pratie. FACIT Series. Springer-Verlag, London, 1999.

[HBG94℄ R. Hänle, B. Bekert, and S. Gerberding. 3TAP, The Many Valued

Theorem-Prover. Tehnial report, University of Karlsruhe, 1994.

[HC96℄ B. Heyd and P. Crégut. A modular oding of Unity in Coq. In

J. Grundy J. von Wright and J. Harrison, editors, Theorem Prov-

ing in Higher Order Logi, volume 1125 of LNCS, pages 251�266.

Springer-Verlag, Turku, Finland, 1996.

[HK91℄ I. Houston and S. King. CICS projet report, experienes and re-

sults from the use of Z in IBM, volume 551 of LNCS. Springer-

Verlag, 1991.

[HKPM02℄ G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq Proof Assis-

tant, a Tutorial, V7.3. Tehnial report, INRIA Roquenourt and

CNRS-ENS Lyon, 1999�2002.

[HM85℄ M. Hennessy and R. Milner. Algebrai laws for nondeterminism

and onurreny. Journal of the ACM, 32:137�161, 1985.

[HO80℄ G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In

R. Book, editor, Formal Language Theory: Perspetives and Open

Problems, pages 349�405. Aademi Press, New York, 1980.

[Hoa69℄ C.A.R. Hoare. An axiomati basis for omputer programming.

Communiations of the ACM, 12(10):576�580, 1969.

[Hoa85℄ C.A.R. Hoare. Communiating Sequential Proesses. Prentie Hall,

1985.

[Hoa89℄ C.A.R. Hoare. Notes on an Approah to Category Theory for

omputer Sientists. In Broy [Bro89℄, pages 245�305.

[Hol97℄ G.H. Holzmann. The model heker Spin. IEEE Transations on

Software Engineering, 23(5), 1997.

[HS86℄ J.R. Hindley and J.P. Seldin. Introdution to Combinators and

�-alulus. Cambridge University Press, 1986.

262 BIBLIOGRAPHY

[Hue90℄ G. Huet, editor. Logial Foundations of Funtional Programming.

University of Texas at Austin Year of Programming Series. Addi-

son Wesley, 1990.

[Hue92℄ G. Huet. Construtive Computation Theory. In Éole des jeunes

herheurs du GRECO de programmation du CNRS, University of

Bordeaux I, 1992.

[HW73℄ C.A.R. Hoare and N. Wirth. An axiomati de�nition of the pro-

gramming language Pasal. Ata Informatia, 2(4):335�355, 1973.

[ILL75℄ S. Igarishi, R.L. London, and D.C Lukham. Automati program

veri�ation I: a logial basis and its implementation. Ata Infor-

matia, 4:142�185, 1975.

[isoa℄ International Organization for Standardization, Geneva. Infor-

mation Proessing Systems - Open Systems Interonnetion - A

Formal Desription tehnique based on Extended State Transition

Model. ISO/IEC 9074.

[isob℄ International Organization for Standardization, Geneva. Informa-

tion Proessing Systems - Open Systems Interonnetion - A For-

mal Desription tehnique based on the Temporal Ordering of Ob-

servationnal Behavior. ISO/IEC 8807.

[iso℄ International Organization for Standardization, Geneva. Informa-

tion Proessing Systems - Open Systems Interonnetion - Guide-

lines for the Appliation of ESTELLE, LOTOS and SDL. ISO/IEC

TR 10167.

[JJLM91℄ C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. MURAL: A

Formal Development Support System. Springer-Verlag, 1991.

[JKKM92℄ J-P. Jouannaud, C. Kirhner, H. Kirhner, and A. Mégrelis. Pro-

gramming with Equalities, Subsorts, Overloading and Parameter-

ization in OBJ. Journal of Logi Programming, 12(3):257�279,

February 1992.

[Jon90℄ C.B. Jones. Systemati Software Development using VDM. Pren-

tie Hall, seond edition, 1990.

[JRG92℄ I. Jaobs and L. Rideau-Gallot. A Centaur Tutorial. RT 140,

INRIA, Sophia Antipolis, July 1992.

[JS90℄ C.B. Jones and R.C. Shaw. Case Studies in Systemati Software

Development. Prentie Hall, 1990.

[Kah87℄ G. Kahn. Natural Semantis. In STACS'87, volume 247 of LNCS.

Springer-Verlag, Marh 1987.

[Kal90℄ A. Kaldewaij. Programming: The Derivation of Algorithms. Inter-

national Series in Computer Siene. Prentie-Hall, 1990.

[KB70℄ D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal

Algebra. In J. Leeh, editor, Computational Problems in Abstrat

Algebra, pages 263�297. Pergamon Press, 1970.

[Kin69℄ J.C. King. A Program Veri�er. PhD thesis, Carnegie-Mellon Uni-

versity, 1969.

BIBLIOGRAPHY 263

[KM01℄ N. Klarlund and A. Møller. MONA Version 1.4 User Manual.

BRICS Notes Series NS-01-1, Department of Computer Siene,

University of Aarhus, January 2001.

[KMP85℄ G. Kahn, D.B. MaQueen, and G.D. Plotkin, editors. Semantis

of Data Types, volume 173 of LNCS. Springer-Verlag, 1985.

[KP82℄ L. Kirby and J. Paris. Aessible independene results for Peano

arithmeti. Bulletin of London Mathematial Soiety, 14:285�293,

1982.

[Kri93℄ J.-L. Krivine. Lambda-alulus, Types and Models. Series in Com-

puters and their Appliations. Ellis Horwood, 1993.

[KZ95℄ D. Kapur and H. Zhang. An Overview of Rewrite Rule Laboratory

(RRL). Journal of Computer and Mathematis with Appliations,

29(2):91�114, 1995.

[Laf90℄ Y. Lafont. Interation nets. In Pro. 17th ACM Symp. on Prin-

iples of Programming Languages, pages 95�108, Orlando, 1990.

ACM.

[Lal93℄ R. Lalement. Computation as Logi. International Series in Com-

puter Siene. Prentie Hall, 1993.

[Lam94℄ L. Lamport. The temporal logi of ations. ACM Transations on

Programming Languages and Systems, 16(3):872�923, May 1994.

[Lei91℄ D. Leivant. A foundational delineation of omputational feasibility.

In Pro. IEEE Symp. on Logi in Computer Siene, pages 2�11.

IEEE, 1991.

[Les86℄ P. Lesanne. REVE, a Rewrite Rule Laboratory. In J. Siek-

mann, editor, Pro. 8th Int. Conf. on Automated Dedution, Le-

ture Notes in Computer Siene, pages 696�697, Oxford (UK),

1986. Springer-Verlag.

[LR98℄ X. Leroy and F. Rouaix. Seurity properties of typed applets.

In Conferene Reord of POPL 98: The 25th ACM SIGPLAN-

SIGACT Symposium on Priniples of Programming Languages,

San Diego, California, pages 391�403, New York, NY, 1998.

[LS86℄ J. Lambek and P. Sott. Introdution to Higher Order Categorial

Logi, volume 7 of Cambridge Studies in Advaned Mathematis.

Cambridge University Press, 1986.

[Ma71℄ S. Ma Lane. Category Theory for the Working Mathematiian,

volume 5 ofGraduate Texts in Mathematis. Springer-Verlag, 1971.

[MC60℄ J. MCarthy. Reursive funtions of symboli expressions and their

omputation by mahine. Communiations of the ACM, 3(4):184�

195, 1960.

[MC94℄ W.W. MCune. Otter 3.0 referene manual and guide. Tehni-

al report, Argonne National Laboratory, 9700 South Cass Avenue

Argonne, Illinois 60439-4801, January 1994.

[MM93℄ K.L. MMillan. Symboli Model Cheking. Kluwer Aademi Pub-

lishers, 1993.

264 BIBLIOGRAPHY

[Mey88℄ B. Meyer. Objet-oriented Software Constrution. Prentie Hall,

1988.

[Mey92℄ B. Meyer. Ei�el: The Language. Prentie Hall, 1992.

[Mil87℄ R. Milner. A proposal for Standard ML. In ACM Conf. on Lisp

and Funtional Programming, 1987.

[Mil89℄ R. Milner. Communiation and Conurreny. Prentie Hall, 1989.

[ML84℄ P. Martin-Löf. Intuitionisti Type Theory. Bibliopolis, Napoli,

1984.

[Mor90℄ C.C. Morgan. Programming from Spei�ation. International Series

in Computer Siene. Prentie Hall, 1990.

[MT91℄ R. Milner and M. Tofte. Co-indution in relational semantis. The-

oretial Computer Siene, 87:209�220, 1991.

[Mur91℄ C. Murthy. An evaluation semantis for lassial proofs. In Pro.

IEEE Symp. on Logi in Computer Siene. IEEE, 1991.

[NN92℄ H.R. Nielson and F. Nielson. Semantis with Appliations. A For-

mal Introdution. Wiley, 1992.

[NNGG89℄ E. Nagel, J.R. Newman, K. Gödel, and J-Y. Girard. Le théorème

de Gödel. Seuil, 1989.

[ORS92℄ S. Owre, J.M. Rushby, and N. Shankar. PVS: a prototype veri�-

ation system. In 11th Conf. on Automated Dedution (CADE),

LNAI 607, pages 748�752. Springer-Verlag, 1992.

[ORS93℄ S. Owre, J.M. Rushby, and N. Shankar. The PVS Spei�ation

Language (Beta Release). Computer Siene Laboratory, SRI In-

ternational, 1993.

[Par95℄ C. Parent. Synthesizing proofs from programs in the alulus of

indutive onstrutions. In B. Möller, editor, Proeedings 3rd Int.

Conf. on Mathematis of Program Constrution, MPC'95, Kloster

Irsee, Germany, 17�21 July 1995, volume 947, pages 351�379.

Springer-Verlag, Berlin, 1995.

[Pau90℄ L.C. Paulson. Isabelle: the 700 next theorem provers. In

P. Odifreddi, editor, Logi and Computer Siene, pages 361�386.

Aademi Press, 1990.

[Pau91℄ L.C. Paulson. ML for the Working Programmer. Cambridge Uni-

versity Press, 1991.

[Pau92℄ L.C. Paulson. Designing a theorem prover. In Abramsky et al.

[AGM92b℄, pages 415�475.

[Pau93℄ L.C. Paulson. Introdution to Isabelle. Tehnial Report 280,

University of Cambridge, Computer Laboratory, 1993.

[Pau94℄ L.C. Paulson. Isabelle: A Generi Theorem Prover, volume 828 of

LNCS. Springer-Verlag, 1994.

[PH77℄ J. Paris and L. Harrington. A mathematial inompleteness in

Peano arithmeti. In Barwise [Bar77℄, hapter D.8.

[PJV01℄ Benjamin C. Piere, Trevor Jim, and Jerome Vouillon. Uni-

son: A portable, ross-platform �le synhronizer, 1999�2001.

http://www.is.upenn.edu/�bpiere/unison.

BIBLIOGRAPHY 265

[Plo81℄ G.D. Plotkin. a Strutural Approah to Operational Semantis.

Tehnial Report DAIMI-FN-19, University of Aarhus, 1981.

[PM89℄ C. Paulin-Mohring. Extration de programmes dans le alul des

onstrutions. Thesis, Université de Paris VII, 1989.

[Pnu77℄ A. Pnueli. The temporal logi of programs. In Pro. 18th IEEE

Symp. on Foundations of Computer Siene (FOCS'77), pages 46�

57, Providene, RI, USA, 1977.

[PST91℄ B. Potter, J. Sinlair, and D. Till. An Introdution to Formal Spe-

i�ation and Z. International Series in Computer Siene. Prentie

Hall, 1991.

[QS82℄ J.P. Queille and J. Sifakis. Spei�ation and veri�ation of onur-

rent systems in esar. In Pro. Int. Symp.on Programming, volume

137 of LNCS, pages 337�351. Springer-Verlag, 1982.

[Rab77℄ M.O. Rabin. Deidable theories. In Barwise [Bar77℄, hapter C.3.

[Rey85℄ J.C. Reynolds. Polymorphism is not set-theoreti. In Kahn et al.

[KMP85℄, pages 145�156.

[Rob65℄ J.A. Robinson. A mahine oriented logi based on the resolution

priniple. Journal of the ACM, 12(1):23�41, 1965.

[Rus93℄ J.M. Rushby. Formal methods and the erti�ation of ritial sys-

tems. Tehnial Report CSL-93-7, SRI International, Menlo Park,

1993.

[RW69℄ G.A. Robinson and L. Wos. Paramodulation and theorem proving

in �rst order theories with equality. Mahine Intelligene, 4:135�

150, 1969.

[Saa97℄ M. Saaltink. The Z/EVES system. In ZUM '97: Z Formal Spei-

�ation Notation. 11th International Conferene of Z Users. Pro-

eedings, pages 72�85, Berlin, Germany, 3-4 1997. Springer-Verlag.

[Sh77℄ K. Shütte. Proof Theory. Springer-Verlag, Berlin, 1977.

[Sh88℄ D.A. Shmidt. Denotational Semantis. A Methodology for Lan-

guage Development. Wm.C. Brown Publishers, Dubuque, Iowa,

1988.

[SDM92℄ C. Da Silva, B. Dehbonei, and F. Mejia. Formal Spei�ation in the

Development of Industrial Appliations: the Subway Speed Control

Mehanism. In M. Diaz and R. Groz, editors, FORTE'92. North

Holland, 1992.

[Set89℄ R. Sethi. Programming Languages: Conepts and Construts. Ad-

dison Wesley, 1989.

[Sho77℄ J.R. Shoen�eld. Axioms of set theory. In Barwise [Bar77℄, hapter

B.1.

[Sho93℄ J.R. Shoen�eld. Reursion Theory, volume 1 of Leture Notes in

Logi. Springer-Verlag, 1993.

[Sif90℄ J. Sifakis, editor. Pro. 1st Int. Workshop on Automati Veri�a-

tion Methods for Finite State Systems, volume 407 of Leture Notes

in Computer Siene. Springer-Verlag, 1990.

266 BIBLIOGRAPHY

[SOR93a℄ N. Shankar, S. Owre, and J.M. Rushby. A Tutorial on Spei�ation

and Veri�ation Using PVS. In Tutorial Material of FME'93, pages

357�406b. IFAD, 1993.

[SOR93b℄ N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Cheker:

a Referene Manual (Draft). Tehnial report, SRI, Menlo Park,

CA, January 1993.

[Spi88℄ J.M. Spivey. Understanding Z: A Formal Language and its Formal

Semantis, volume 3 of Cambridge Trats in Theoretial Computer

Siene. Cambridge University Press, 1988.

[Spi89℄ J.M. Spivey. The Z Notation: A Referene Manual. International

Series in Computer Siene. Prentie Hall, 1989.

[Sti92℄ C. Stirling. Modal and temporal logis. In Abramsky et al.

[AGM92b℄, hapter 5, pages 477�563.

[Sto77℄ J.E. Stoy. Denotational Semantis: The Sott-Strahey Approah

to Programming Language Theory. MIT Press, 1977.

[Tak75℄ G. Takeuti. Proof Theory, volume 81 of Studies in Logi. North

Holland, Amsterdam, 1975.

[TBK92℄ L. Théry, Y. Bertot, and G. Kahn. Real theorem provers deserve

real user-interfaes. RR 1684, INRIA, Sophia-Antipolis, May 1992.

[Ter93℄ D. Terrasse. Translation from Typol to Coq. In J. Despeyroux,

editor, Pro. of the Tehnial Workshop BRA on Proving Proper-

ties of Programming Languages, INRIA, Sophia-Antipolis (Frane),

September 1993.

[Tho91℄ S. Thomson. Type Theory and Funtional Programming. Interna-

tional Computer Siene Series. Addison Wesley, 1991.

[TP02℄ The Coq Development Team and LogiCal Projet. The Coq Proof

Assistant Referene Manual, V7.3. Tehnial report, INRIA, 1999�

2002.

[TvD88℄ A.S. Troelstra and D. van Dalen. Construtivism in Mathemat-

is: An Introdution I and II, volume 121, 123 of Studies in Logi

and the Foundations of Mathematis. North-Holland, Amsterdam,

1988.

[TVD00℄ I. Toyn, S.H. Valentine, and D.A. Du�y. On Mutually Reursive

Free Types in Z. In ZB2000, LNCS. Springer-Verlag, 2000.

[Var01℄ M.Y. Vardi. Branhing vs. linear time: Final showdown. In T. Mar-

garia and W. Yi, editors, Tools and Algorithms for the Constru-

tion and Analysis of Systems, volume 2031 of LNCS, pages 1�22.

Springer-Verlag, April 2001.

[vG90a℄ A.J.M. van Gasteren. On the Shape of Mathematial Arguments,

volume 445 of LNCS. Springer-Verlag, 1990.

[vG90b℄ R.J. van Glabbeek. The linear time � branhing time spetrum.

In Baeten and Klop [BK90℄, pages 278�297.

[vH67℄ J. van Heijenoort, editor. From Frege to Gödel, a Soure Book in

Mathematial Logi, 1879-1931. Harvard University Press, 1967.

BIBLIOGRAPHY 267

[vL90a℄ J. van Leeuwen, editor. Handbook of Theoretial Computer Siene,

volume A: Algorithms and Complexity. Elsevier, 1990.

[vL90b℄ J. van Leeuwen, editor. Handbook of Theoretial Computer Siene,

volume B: Formal Models and Semantis. Elsevier, 1990.

[Wai91℄ S.S. Wainer. Computability - Logial and Reursive Complexity.

In Bauer [Bau91℄, pages 237�264.

[Wai93℄ S.S. Wainer. Four Letures on Primitive Reursion. In Bauer et al.

[BBS93℄, pages 377�410.

[WL88℄ J.C.P. Woodok and M. Loomes. Software Engineering Mathe-

matis. Pitman, 1988.

[Wor92℄ J.B. Wordsworth. Software Development with Z. International

Computer Siene Series. Addison Wesley, 1992.

[WWD99℄ J.M. Wing, J.C.P. Woodok, and J. Davies, editors. FM'99 � For-

mal Methods, volume 1708-1709 of LNCS. Springer-Verlag, 1999.

Index

The numbers in the form p

n

refer to footnote n on page p. The bold numbers refer to

de�nitions.

Symbols

? . 155

^ . 46, 77

_ . 46, 77

: . 46, 77

8 . 80

88 . 139

8

2

. 90, 222

9 . 80

9

2

. 90

!48, 77, 214, 216

) . 46, 77

() . 47, 77

� . 77

�

! . 205

�

!

�

. 206

� . 138

2 . 141

3 . 141

; . 142

2 .16

� . 46

� . 77

\ .20

[.20

� . 20

� . 46

n . 46

P . 46

P

F

. 50

` . 149

j= . 149

j=

M

. 92

 . 138

a 149, 152, 161, 163

j= . 92

B . 20

N .22

Q . 22

R .22

Z . 22

? . 20

A

�-onversion . 205

Abrial . 105

absorbing . 49

abstration 205, 223

Akermann, funtion 61, 240

ACT1 . 201

ation .130

TLA .144

Ada . 190, 196

AF2 . 228

algebra

Boolean . 179

heterogeneous, or �-algebra . .88

initial 88, 226

algorithm . 61

primitive reursive60

anti-symmetri 48

appliation . 205

arithmeti .85

and set theory 117

of Presburger 186

seond-order funtional228

arithmetial hierarhy 64

ASN1 . 38

assoiative . 49

automaton . 130

axiom . 92

of Zermelo116

of Zermelo�Fraenkel 114

of Hilbert�Akermann 151

logial 149, 151

non-logial 149, 152

270 Understanding Formal Methods

of hoie 55, 115, 123, 213

of in�nity 115

of regularity 115

of replaement (shema) 114

of separation (shema)114

proper149, 152

shema . 151

B

�-redution . 205

B (method) 2, 91, 105�110, 113, 126,

190

BDD . 147

BHK . 214

bijetion . 49

bisimulation 124, 147

Boolean

ring . 179

bound

lower . 48

upper . 48

Boyer�Moore . 9

Brouwer . 42

C

C (language) 32, 36, 38, 74

CafeOBJ . 201

alulus of indutive onstrutions

234, 237

Cantor . 39, 207

Cartesian square 46

CCS 134, 142, 147

Centaur . 187

hain . 52

Churh44, 184, 204, 211

integers . 208

thesis . 44

Churh�Rosser 211

lass . 113

lassialsee logique

lause . 170

Horn . 171

CLU . 196

o (Unity operator) 142

oerion .193

Cohen . 57, 123

ombinator .208

�xed-point 221

paradoxial 221

ommutative . 49

omplete

logi . 183

theory .184

ompleteness 41, 183

ompletion . 182

omplexity . 186

logial . 64

omposition . 48

omprehension 46, 114

omputability19, 44

theory . 58

on�uene .211

onsequene

dedutive 149, 152

logial .92

logial, semanti 40

semanti . 92

onsisteny .185

of arithmeti 186

of the �-alulus 211

relative .123

onstant . 206

onstrutions .237

onstrutor .195

ontinuum hypothesis 57

Coq 3, 146, 162, 187, 230, 233

Coquand . 232

orretness

partial .18

total .19, 24

ountable . 50

CSP 105, 136, 147

CTL . 141

CTL* 138�140, 230

Curry�Howard

orrespondene . . .215, 217, 228,

241

isomorphism see orrespondene

urry�ation . 207

ut

elimination 166

rule . 164

D

Æ-rule . 206

deadlok free . 127

deidable

logi . 183

problem 62, 189

theory .185

deision proedure58

delarative . 107

5

Dedekind . 39, 207

dedution

natural .152

de�ned (relation) 48

Desartes .233

Devos . 204

di�erene .46

Index 271

Dijkstra33, 69, 176

disjoint .46

domain 48, 78, 102

E

Ei�el .74, 190

equality

between two sets 46

Esterel . 136, 148

exluded middle 42, 63, 160, 213

exeution . 132

extension . 20, 59

extration

program .230

F

F (system F) 222, 226�228

fairness .127, 133

family . 50

�nite . 50

�rst-order . 80

�xed point57, 120, 143

ombinator210

Floyd . 33, 74

form

normal . 211

formal proof . 41

formula . 80

atomi . 80

losed . 92

Fraenkel . 44

free .see type

funtion . 48

omputable 44, 207

partial 31, 87, 100, 103, 104

partial reursive 62

primitive reursive60

reursive . 61

Skolem .173

total .87

G

Gödel . . 40, 44, 57, 87, 123, 183, 185,

186

generalization rule150

generiity122, 190

Gentzen . . 40, 152, 160, 163, 168, 217

Girard . 222, 231

Gordon . 34

guarded ommands 73, 105

H

Haskell . 36, 221

Heijenoort . 64

Herbrand 40, 44, 170, 185

Heyting 42, 215, 227

Hilbert . 39

system . 150

Hoare .33, 65

HOL . 3, 162, 253

Huet . 232

I

idempotent .49

identity . 49

identity relation 48

imprediative 44, 119

imprediativity 222

inluded .46

inonsistent (theory) 185

indution . 27, 51

and set theory 117

shema . 86

strutural 239

well-founded55

indutive de�nition238

in�nite . 50

inhabitant .203

initial . see model

injetive .49

interation net 232

interpretation

of a formula 83

of a proposition 78

of a type 198, 204

of Heyting 214

intersetion .20

intuitionisti see logi

invariant 17, 23, 97, 139

inverse . 49

of a relation 49

irreduible . 206

Isabelle 146, 187, 253

isomorphi . 56

isomorphism50, 56

J

judgement . 161

K

Knaster . 58

Krivine .228

L

�-alulus . 204

pure . 206

simply typed 216

with onstants 206

with pairs 206

labeled transition system 130

272 Understanding Formal Methods

Lafont .232

Lamport .133, 144

langage

equational84

language

algebrai spei�ation 85

�rst-order 80

funtional 5, 10, 36, 221

LCF . 252

leadsto . 142

Lego . 233

Leibniz . 84, 178

lifeyle . 4

literal . 170

liveness .127, 140

LJ . 163

LK . 163

logi .75

lassial/intuitionisti42

onstrutive 203, 213

�xed-point94

Hennessy�Milner 142

higher-order 90

intuitionisti 160, 213

linear213, 232

multi-sorted 88

ordo-sorted see OBJ

prediate . 80

propositional 75

seond-order90

monadi 138

temporal 137�146, 175

branhing 141

linear . 141

three-valued 88, 104

LOTOS . 136, 201

Löwenheim . 93

lower bound . 48

LP . 146, 182

LTL . 141

Lustre . 136, 148

M

�-alulus 143, 148

Martin-Löf 43, 232

matrix . 173

Maude .201

metalanguage 111, 152

metatheorem .152

Milner . 134

minimum .56

Mithell . 232

ML 5, 10, 36, 38, 74, 221

model . 92

initial . 198

Kripke . 130

non-standard 87

of set theory113

oriented approah 40

standard for arithmeti 87

theory . 40

model heking 147, 148

modus ponens150

MONA . 91

monotone . 56

morphism . 50

multiset . 50

N

NJ . 154, 160

NK .160

Noetherian . 52

normal

form 206, 211

proof .217

strategy . 212

normalization 217, 241

strong 217, 220

NP-omplete 187

9

Nuprl . 230, 253

O

OBJ . 89, 201

objet . 15

1

Objetive Caml .74

operation .49

order . 48

lexiographi ordering 53

partial .48

total . 48

well . 56

ordinal . 56

Otter . 175

P

pair . 46

paradox

Russell's 38, 113

paradoxial

ombinator210

parallel omposition

Unity . 128

paramodulation 85

partial . 48

orretness 25

reursive see funtion

Pasal 38, 43, 45, 60, 74

path . 132

Peano 85, 117, 185

Index 273

PLTL . 141

polymorphism 190, 221

ad-ho . 190

parametri 122, 190

Post .183

postondition .17

powerset . 46

preondition .17

weakest . 72

predeessor .52

prediate

harateristi 88

reursive . 62

symbol . 76

transformer 72, 91

prediative . 43

prenex . 173

Presburger . 186

presriptive . 107

5

primitive reursive see funtion

produt

Cartesian .20

dependent229

synhronized 133

program synthesis 230

progress . 127, 140

projetion . 49

Prolog . 171, 228

proof 150, 154, 204

normal . 217

obligation 103

theory . 41

property

oriented approah 40

proposition . 77

atomi75, 77

symbol . 75

protool . 229

prototyping 5, 221

provable . 41

PVS 3, 57, 187, 251, 253

Q

quanti�ation

existential 80

seond-order221

universal . 80

quanti�er

existential 80

universal . 80

R

Raise . 88, 105

reahability127, 129, 140

realizability . 250

reursive see funtion

reursively axiomatizable 86

redex . 205

re�nement 74, 101, 105, 109

re�exive . 48

refutable . 41

relation . 48

arithmetial 64

equivalene 48

Noetherian 52

transition 130

resolution priniple 170

REVE . 182

rewriting85, 181, 200, 212

Reynolds 122, 222

Robinson . 170

Rosser . 185

RRL . 182

rule

ontration 164

ut . 164

elimination 154, 240

generalization 150

golden . 178

introdution154

left introdution163

logial . 165

resolution 170

rewriting 182

strutural 164

thinning . 164

weakening 164

Russell . 43

Russell's paradox 38

S

safety . 127, 140

satisfation . 92

senario . 132

shema . 86

Z .95

axiom . 151

alulus . 97

Sheme . 36

Shröder . 183

SDL . 136

setion . 56

seurity .1

semantial tableaux 170

semantis 3, 5, 17, 33

axiomati 33

denotational 33, 102

natural 161, 187

operational 33, 133

274 Understanding Formal Methods

operational _ 51

8

strutural operational 187

semi-deidable212

logi . 183

problem . 63

semi-deision proedure 58

sequent . 161

alulus . 163

lassial . 163

intuitionisti 164

set

intuitive notion 16

reursive . 62

reursively enumerable 63

theory see theory

Signal . 148

signature 88, 195, 227

singleton . 46

Skolem . 44

Skolem normal form173

skolemization 173

SMV . 148

sort .88, 195, 203

sound

dedution system 41

logi . 183

Spike . 182

SPIN . 148

state . 8, 130

stable . 127

state mahine 130

STeP . 146, 148

Stone . 180

Stoy . 34

stritly inluded 46

strong (assertion)72

stuttering 133, 135

subformula property166

subset . 46

proper .46

substitution . 83

generalized 107

simple .107

sumsee type, 38, 220

dependent229

of types, of sets see type

superset . 46

surjetive .49

symmetri .48

di�erene .46

synhronization vetor 133

T

3

T

A

P . 170

Tarski . 41, 58

tautology .92

veri�ation 169

term . 80

onstant .77

theorem .151

Churh�Rosser 211

Gentzen's Hauptsatz 166

ompaity 94

ompleteness 183, 185

dedution 88, 152

inompleteness

(seond theorem of Gödel) 186

of Knaster�Tarski 58

of Löwenheim 93, 113

of Herbrand 185

of Turing 185

semi-deidability 184

theory . 92, 184

extension 112

generated 92

model 40, 91

proof 41, 149

set 38, 44, 111, 206

type 43, 203, 237

TLA 144�146, 147

total . 48

orretness 25

trae . 132

trajetory . 132

transition system130

transitive .48

tree domain . 83

Turing 33, 44, 185

mahine 45, 212, 221

typable . 215

type . 43

Z . 100

abstrat data195

abstrat data type 112, 160, 194

algebrai/axiomati 196

and set 111, 117, 190

as a guide 225

heking .189

dependent . . . 191, 221, 227, 229

free (in Z) 100

inferene 221

produt 219, 228

sum . . 21, 38, 100, 220, 225, 228

theory see theory

U

undeidable

logi . 183

problem . 62

Index 275

unde�ned . 88

uni�ation172, 221

6

union . 20

Unity 125�129, 134, 144, 146, 147

temporal logi 141

unless . 142

upper bound . 48

V

valid

formula .92

value .195

truth . 78

variable

bound . 82

free . 82

logial .80

logial and program . 66, 83, 126

program .66

variant . 24

VDM 88, 102�105

W

weak (assertion) 72

well order . 56

well-founded .52

Z

Z (language) 2, 39, 95�102, 113

Zermelo . 44

Zermelo�Fraenkel 100, 111

ZF . 100, 113

ZFC . 115

View publication statsView publication stats

https://www.researchgate.net/publication/279352680

