Department of Electrical Engineering

Final Assignment
Date: 23-09-2020

Course Details		
Course Title: Electro Magnetic Field Theory	Module:	
Instructor:	Total Marks:	50

Student Details

Name:
Student ID:

Q1:	(a)	Determine the magnetic field at the center of the semicircular piece of wire with radius 0.20 m . The current carried by the semicircular of wire is 150 A .	Marks 12
			CLO 2
	(b)	Find the force between two charges when they are brought in contact and separated by 4 cm apart, charges are 2 nC and -1 nC , in $\mu \mathrm{N}$.	Marks 08
			CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a circular loop with a radius of 0.05 m . 2 amp is the reading of the current flowing through this closed loop.	Marks 10
			CLO 2
	(b)	Determine the charge that produce an electric field strength of $40 \mathrm{v} / \mathrm{cm}$ at a distance of 30 cm in vacuum (in $10^{-8} \mathrm{c}$)	Marks 05
			CLO 2
Q3:	(a)	Given the time-varying magnetic field $\mathrm{B}=\left(0.5 a_{x}+0.6 a_{y}-\right.$ $\left.0.3 a_{z}\right) \cos 5000 t T$ and a square filamentary loop with its corners at $(2,3,0),(2,-3,0)$, and $(-2,3,0)$ and $(-2,-3,0)$, find the time-varying current flowing in the general a_{φ} direction if the total loop resistance is $400 \mathrm{k} \Omega$.	Marks 15
			CLO 3

