Recursive Definition

Recursive Definition (RD):

An RD is a three step process to validate the instances of any given language. In which

- 1. First we specify some basic objects in the set.
- 2. Second, we give Rules for constructing more objects.
- 3. Third, we declare that only those objects are valid that are in accordance with Rule-1 and rule-2.

A Recursive Definition is called Recursive because one of the rules is called reclusively by itself again and again.

Example-1: RD for Even Numbers.

Rule-1:	2 is in Even	(Hint: Basic object of Even Numbers is 2)		
Rule-2:	If x is in Even, then so is $x+2$	(Hint: Rule for constructing more objects in		
Even Numbers)				

Let's try to understand it by proving that 12 is in Even or not.

Proof:

By Rule-1:	2 is in Even		
By Rule-2:	2+2 = 4	\rightarrow	4 is in Even
By Rule-2:	4 + 2 = 5	\rightarrow	6 is in Even
By Rule-2:	6+2 = 8	\rightarrow	8 is in Even
By Rule-2:	8+2 = 10	\rightarrow	10 is in Even
By Rule-2:	10+2 = 12	\rightarrow	12 is in even
Hence Proved	1		

Example-2: RD for Polynomials.

Rule-1:Any number is in PolynomialRule-2:The variable x is in PolynomialRule-3:If p and q are in Polynomials then so arep + qp - qpq OR p*q p^q (p)

Show that $3x^2 + 7x - 9$ is in Polynomial using above RD.

Proof:

By Rule-1: By Rule-2: By Rule-3: By Rule-3: By Rule-1: By Rule-3: By Rule-1: By Rule-3: Hence Proved	3 is in Polynomial x is in Polynomial 3*x is in Polynomial 3x ² is in Polynomial 7 is in Polynomial 3x ² +7 is in in Polynomial 9 is in Polynomial 3x ² +7-9 is in Polynomial	\rightarrow \rightarrow \rightarrow	$3x^2$ is in Polynomial $3x^2+7$ is in Polynomial $3x^2+7-9$ is in Polynomial		
Exapmle-3:	RD for $L = x^+ = \{x \ xx \ xxxx \ xxxxx \ xxxxx \ \dots \}$				
Rule-1: Rule-2:	x is in L If w is any word in L, then xw will also be in L				
Example-4:	RD for $L = x^* = \{ ^x x xx xxx xxx \}$				
Rule-1: Rule-2:	^ is in L If w is in L, then xw is also in L				
Example-5:	RD for Kleene Closure				
Rule-1: Rule-2: Rule-3:	If S is a language, then all the words of S are in S*. ^ is in S*. If x and y are in S*, then so is their concatenation xy.				
Example-6:	RD for Arithmetic Expression (AE)				
Rule-1: Reule-2: Rule-3:	Any number (+ve, -ve or 0) is in AE If x is in AE, then so are i. (x) ii. $-x$ If x and y are in AE, then so are i. $x+y$ ii. $x-y$ iii. x^*y iv. x/y v. x^y				

Theorem: An AE cannot contain the character \$.

Proof:

By Rule-1: \$\$ is not part of any number, so it cannot be included in an AE.
By Rule-2: As x does not contain \$, so as (x) or (-x) cannot contain \$.
By Rule-3: As neither x nor y can contain \$, so any of the expressions defined by Rule-3 can also not contain \$.

Therefore: the character \$ can never get into an AE.

You may watch the following video to make your concepts more clear.

https://www.youtube.com/watch?v=2-3kzQU_pfM