Department of Electrical Engineering

Subject: Radio Electronics (ELECTIVE V)

Final Assignment

Max Marks: 50

Question. 1 (15)

i. How can a divide-by-two architecture can help reducing some of the problems of DC transmitter?
ii. What is the optimal impedance for high power and high voltage transmission over a long distance and how is this number obtained?
iii. Determine the height of antenna required to transmit the following two signal over a distance of 10 kilometers. Based on obtained results, discuss the need for modulation
a. $2.5 \cos 5 \times 10^{3} \pi t$
b. $7.35 \cos 2.25 \times 10^{6} \pi t$

Question. 2 (10)

Direct conversion Transmitters have issues of I/Q mismatch, Carrier leakage, Mixer linearity, TX linearity and Oscillator pulling. Discuss the effects of all these mentioned issues with the help of illustrations and mathematical models.

Question. 3 (10)

i. An analog multiplier "mixes" its two inputs below, ideally producing $y(t)=k x_{1}(t) x_{2}(t)$, where k is a constant. Assume $x_{1}(t)=A_{1} \cos \omega_{1} t$ and $x_{2}(t)=A_{2} \cos \omega_{2} t$.
a. If the mixer is ideal, determine the output frequency components.
b. If the input port sensing $x_{2}(t)$ suffers from third-order nonlinearity, determine the output frequency components
ii. Determine the PM and FM signals in response to
a. $X_{B B}(t)=A_{0}$
b. $X_{B B}(t)=\alpha t$

Question. 4 (15)

The frequency table for different GSM bands is shown below:

Band	Uplink (MHz)	Downlink (MHz)
GSM 850	$824-849$	$869-894$
GSM 900	$876-915$	$921-960$
GSM 1800	$1710-1785$	$1805-1880$
GSM 1900	$1850-1910$	$1930-1990$

Each band comprise of channels, which are spaced 200kHz apart (for example GSM 850 uplink band have channel center frequencies at $824.0,824.2,824.4, \ldots, 848.8,849.0 \mathrm{MHz}$). We want to use a PLL to generate the center frequencies for all channels in all four bands.

Calculate the range of the division factors N and M if the reference frequency (fref) is 8 MHz (generated from a crystal oscillator). Assume the factors N and M have to be integers.

