Propositional Logic

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Wrapping **parentheses**: (...)
- Sentences are combined by **connectives**:
 - \wedge ...and[conjunction] \vee ...or[disjunction] \Rightarrow ...implies[implication / conditional] \Leftrightarrow ..is equivalent[biconditional] \neg ...not[negation]
- Literal: atomic sentence or negated atomic sentence

Examples of PL sentences

- P means "It is hot."
- Q means "It is humid."
- R means "It is raining."
- $(P \land Q) \rightarrow R$

"If it is hot and humid, then it is raining"

• $Q \rightarrow P$

"If it is humid, then it is hot"

• A better way:

Hot = "It is hot" Humid = "It is humid"

Raining = "It is raining"

Propositional logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols, like P and Q.
- User defines the **semantics** of each propositional symbol:
 - P means "It is hot"
 - Q means "It is humid"
 - R means "It is raining"
- A sentence (well formed formula) is defined as follows:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then (S \vee T), (S \wedge T), (S \rightarrow T), and (S \leftrightarrow T) are sentences
 - A sentence results from a finite number of applications of the above rules

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**.
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its **truth value** (True or False).
- A **model** for a KB is a "possible world" (assignment of truth values to propositional symbols) in which each sentence in the KB is True.

More terms

- A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actually like or how the semantics are defined. Example: "It's raining or it's not raining."
- An **inconsistent sentence** or **contradiction** is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- Pentails Q, written P |= Q, means that whenever P is True, so is Q. In other words, all models of P are also models of Q.

Truth tables

And			Or		
р	q	$p \cdot q$	$p q \qquad p \lor q$		
T T F F	T F T F	$T \ F \ F \ F \ F$	$\begin{array}{c cccc} T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$		
	<i>If</i>	then	Not		
р	If q	then $p \rightarrow q$	$P \qquad P$		

Truth tables II

The five logical connectives:

P	Q	$\neg P$	$P \land Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	Тпие	Тгие
False True	True False	True False	False False	Тпіе Тпіе	True False	False False
Тгие	Тгие	False	Тпие	Тпие	Ттие	True

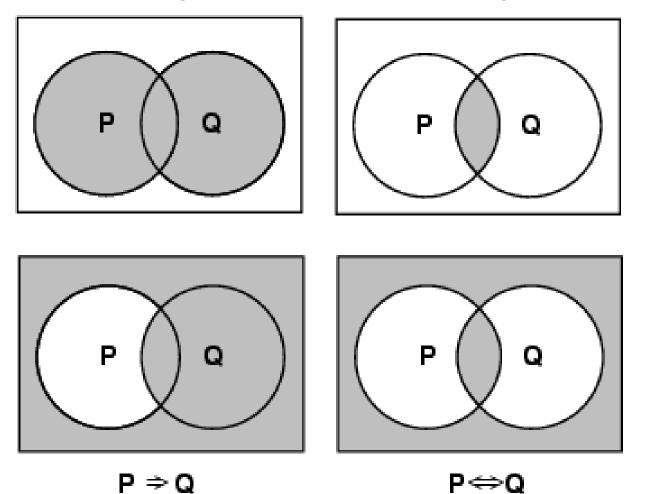
A complex sentence:

Р	Н	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \implies P$
False	False	False	False	True
False	Тпие	True	False	True
True	False	True	True	True
True	Тпие	Тгие	False	Тrue

Models of complex sentences

P∨Q

P∧Q



Inference rules

- Logical inference is used to create new sentences that logically follow from a given set of predicate calculus sentences (KB).
- An inference rule is **sound** if every sentence X produced by an inference rule operating on a KB logically follows from the KB. (That is, the inference rule does not create any contradictions)
- An inference rule is **complete** if it is able to produce every expression that logically follows from (is entailed by) the KB. (Note the analogy to complete search algorithms.)

Sound rules of inference

- Here are some examples of sound rules of inference
 - A rule is sound if its conclusion is true whenever the premise is true
- Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	A, B	$A \wedge B$
And Elimination	$A \wedge B$	А
Double Negation	$\neg \neg A$	А
Unit Resolution	$A \lor B, \neg B$	А
Resolution	$\mathbf{A} \lor \mathbf{B}, \neg \mathbf{B} \lor \mathbf{C}$	$\mathbf{A} \lor \mathbf{C}$

Proving things

- A **proof** is a sequence of sentences, where each sentence is either a premise or a sentence derived from earlier sentences in the proof by one of the rules of inference.
- The last sentence is the **theorem** (also called goal or query) that we want to prove.
- Example for the "weather problem" given above.

1 Humid	Premise	"It is humid"	
2 Humid→Hot	Premise	"If it is humid, it is hot"	
3 Hot	Modus Ponens(1,2)	"It is hot"	
4 (Hot∧Humid)→Rain	1 Premise	"If it's hot & humid, it's raining"	
5 Hot^Humid	And Introduction(1,2) "It is hot and humid"		
6 Rain	Modus Ponens(4,5)	"It is raining"	

Horn sentences

• A Horn sentence or Horn clause has the form: $P1 \land P2 \land P3 \dots \land Pn \rightarrow Q$ or alternatively $(P \rightarrow Q) = (\neg P \lor Q)$

 $\neg P1 \lor \neg P2 \lor \neg P3 \ldots \lor \neg Pn \lor Q$

where Ps and Q are non-negated atoms

- To get a proof for Horn sentences, apply Modus Ponens repeatedly until nothing can be done
- We will use the Horn clause form later

Propositional logic is a weak language

- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of information FOL adds relations, variables, and quantifiers, e.g.,
 - "Every elephant is gray": $\forall x \text{ (elephant(x) } \rightarrow \text{gray(x))}$
 - *"There is a white alligator ":* ∃ x (alligator(X) ^ white(X))

Example

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Example II

• In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might have:

P = "person"; Q = "mortal"; R = "Confucius"

- so the above 3 sentences are represented as:
 P → Q; R → P; R → Q
- Although the third sentence is entailed by the first two, we needed an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes "person" and "mortal"
- To represent other individuals we must introduce separate symbols for each one, with some way to represent the fact that all individuals who are "people" are also "mortal"

The "Hunt the Wumpus" agent

- Some atomic propositions:
 - S12 = There is a stench in cell (1,2)
 - B34 = There is a breeze in cell (3,4)
 - W22 = The Wumpus is in cell (2,2)
 - V11 = We have visited cell (1,1)
 - OK11 = Cell (1,1) is safe.

etc

• Some rules:

```
\begin{array}{l} (\text{R1}) \neg \text{S11} \rightarrow \neg \text{W11} \land \neg \text{W12} \land \neg \text{W21} \\ (\text{R2}) \neg \text{S21} \rightarrow \neg \text{W11} \land \neg \text{W21} \land \neg \text{W22} \land \neg \text{W31} \\ (\text{R3}) \neg \text{S12} \rightarrow \neg \text{W11} \land \neg \text{W12} \land \neg \text{W22} \land \neg \text{W13} \\ (\text{R4}) \quad \text{S12} \rightarrow \text{W13} \lor \text{W12} \lor \text{W22} \lor \text{W11} \\ \text{etc} \end{array}
```

• Note that the lack of variables requires us to give similar rules for each cell

After the third move

- We can prove that the Wumpus is in (1,3) using the four rules given.
- See R&N section 7.5

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square
^{1,3} w:	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
^{1,2} А S ОК	2,2 OK	3,2	4,2	
1,1 V OK	^{2,1} В V ОК	3,1 Pl	4,1	

Proving W13

- Apply MP with \neg S11 and R1: \neg W11 $\land \neg$ W12 $\land \neg$ W21
- Apply And-Elimination to this, yielding 3 sentences: $\neg W11, \neg W12, \neg W21$
- Apply MP to ~S21 and R2, then apply And-elimination: \neg W22, \neg W21, \neg W31
- Apply MP to S12 and R4 to obtain: W13 \times W12 \times W22 \times W11
- Apply Unit resolution on $(W13 \lor W12 \lor W22 \lor W11)$ and $\neg W11: W13 \lor W12 \lor W22$
- Apply Unit Resolution with (W13 \vee W12 \vee W22) and \neg W22: W13 \vee W12
- Apply UR with (W13 \vee W12) and \neg W12: W13
- QED

Problems with the propositional Wumpus hunter

- Lack of variables prevents stating more general rules
 We need a set of similar rules for each cell
- Change of the KB over time is difficult to represent
 - Standard technique is to index facts with the time when they're true
 - This means we have a separate KB for every time point

Summary

- The process of deriving new sentences from old one is called **inference**.
 - Sound inference processes derives true conclusions given true premises
 - **Complete** inference processes derive all true conclusions from a set of premises
- A valid sentence is true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then—given its premise—its consequent can be derived
- Different logics make different **commitments** about what the world is made of and what kind of beliefs we can have regarding the facts
 - Logics are useful for the commitments they do not make because lack of commitment gives the knowledge base engineer more freedom
- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
 - It has a simple syntax and simple semantics. It suffices to illustrate the process of inference
 - Propositional logic quickly becomes impractical, even for very small worlds