

## Iqra National University, Peshawar Department of Electrical Engineering



summers

| Course Code:  | ET 273                      |          |     | Course Title:       |    | Power Transmission &  |         |
|---------------|-----------------------------|----------|-----|---------------------|----|-----------------------|---------|
|               |                             |          |     |                     |    | Distribution          |         |
| Prerequisite: | Electrical Network Analysis |          |     | Instructor:         |    | Engr. Sanaullah Ahmad |         |
| Module:       | 7                           | Program: | BEE | <b>Total Marks:</b> | 50 | Time Allowed:         | 120 min |

Note: Attempt all questions.CLO: Course learning outcome

| Q1 | (a) | A single phase transmission line has two parallel conductors 2 m apart, the radius of each conductor being 1.2 cm. Calculate the loop inductance per km length of the line?                                                                                                                               | Marks<br>(10)<br>CLO 3 |  |  |  |  |  |  |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|--|
|    | (b) | A single phase overhead transmission line delivers 1100 kW at 33 kV at 0.8 p.f. lagging.<br>The total resistance and inductive reactance of the line are 10 $\Omega$ and 15 $\Omega$ respectively.<br>Determine: (i) sending end voltage (ii) sending end power factor and (iii) transmission efficiency. |                        |  |  |  |  |  |  |
| Q2 | (a) | <b>Describe</b> electricity tariff, explain different classes of tariff with examples?                                                                                                                                                                                                                    | Marks<br>(15)<br>CLO 4 |  |  |  |  |  |  |
|    | (b) | Single phase a.c. distributor AB 300 metres long is fed from end A and is loaded as under :                                                                                                                                                                                                               |                        |  |  |  |  |  |  |
|    |     | (i) 100 A at 0.707 p.f. lagging 200 m from point A (                                                                                                                                                                                                                                                      |                        |  |  |  |  |  |  |
|    |     | (ii) 200 A at $0.8$ p.f. lagging 300 m from point A.                                                                                                                                                                                                                                                      |                        |  |  |  |  |  |  |
|    |     | The load resistance and reactance of the distributor is $0.2$ ohm and $0.1$ ohm per kilometre.                                                                                                                                                                                                            |                        |  |  |  |  |  |  |
|    |     | Calculate the total voltage drop in the distributor. The load power factors refer to the voltage                                                                                                                                                                                                          |                        |  |  |  |  |  |  |
|    |     | at the far end.                                                                                                                                                                                                                                                                                           |                        |  |  |  |  |  |  |
|    |     |                                                                                                                                                                                                                                                                                                           |                        |  |  |  |  |  |  |
|    |     | A 200 m C 100 m B<br>$I_1 = 100 \text{ A}$ $I_2 = 200 \text{ A}$<br>$\cos \phi_1 = 0.707 \text{ lag}$ $\cos \phi_2 = 0.8 \text{ lag}$                                                                                                                                                                     |                        |  |  |  |  |  |  |
|    |     |                                                                                                                                                                                                                                                                                                           |                        |  |  |  |  |  |  |