PAVEMENT MATERIALS Lecture 5

Course Heads

♦ SUBGRADE

- Investigation
- Material Classification/Identification
- Material Evaluation
- Material Selection
- Construction of Subgrade
- ♦ QA/QC
- Post Construction Investigation

Subgrade Evaluation

Penetration Tests (SPT, CPT, DCPT...) In-situ CBR

Laboratory

California Bearing Ratio (CBR) Test
Triaxial Compression Test (Static)
Direct Shear Test

California Bearing Ratio (CBR)

- The CBR (California Bearing Ratio) test measures the resistance of the soil to penetration.
- A piston with an end area of 3 square inches is pressed into a six inch diameter, five inch tail soil specimen in a steel compaction mold at a standard rate of 0.05 inches per minute. The load required to force the piston into the soil is measured at given penetration intervals.
- The resulting penetrations are compared to the penetration recorded for a standard, well-graded crushed stone to get the bearing ratio as a percentage of the standard.
- Because this test is arbitrary in nature, it has many limitations.
- An advantage is the relatively simple equipment needed and the large amount of historical data available for correlating results with field performance.
- Another disadvantage is that the test method is very sensitive to the method of specimen preparation.
- There have been significant modifications to the original CBR method to improve its applicability.

California Bearing Ratio (CBR)

Compact by static pressure or by impact

California Bearing Ratio (CBR)

Fig. 7-11 The California bearing ratio test. (After Walker, Yoder, Foster, and Johnson [22].)

CBR

Triaxial Test

Triaxial / Direct Shear

What is the outcome of Triaxial & Direct Shear Test?

Cohesion (c, c_u....)
 Angle of Internal Friction (φ, φ_u, φ')

♦ Use

Design (Embankments and other layers??)
Relative Improvement/Comparison etc...
Failure Criteria
Quality Control.....

Settlement / Consolidation

♦ Field

Penetration Tests
Plate Load Tests (k, E)

Laboratory

Triaxial Compression Test (Static) E_i, E_s
 Consolidation Test (C_c, c_v....)

Plate Load Test

What is Stiffness?

*Types*Static
Dynamic

Design (Mechanistic)
Comparative Study
Quality Control

Stiffness Response against
 Repetitive Loads

*Difference with Static Load*Load Intensity
Load Duration
Load Repetition

Elastic and Resilient Behavior

- A prediction of <u>Stresses</u>, <u>Strains</u>, and <u>Deflections</u> induced in a layered pavement structure under traffic wheel loading requires an understanding of the stress-strain behavior of the materials comprising the structure.
- Elasticity ??
 Resilience ??

Resilient Behavior

- Specifically, the elements in a pavement structure are subjected to a series of rapidly applied and rapidly released stresses on vertical and horizontal planes.
- While the magnitudes of the stress variation will differ between points in the same layer, the basic pattern is similar throughout the pavement structure.
- Another way of representing this situation is that the orientation of the principal stress axes of an element of material is gradually rotated as a wheel load moves along the surface.
- At an instant when the load is directly above the element, the principal stresses are oriented horizontally and vertically.
- Due to the fact that the principal stress rotates as the wheel load approaches and passes over an element, <u>a reversal of</u> shear stresses occurs on vertical and horizontal planes of an element.

Resilient Behavior

Resilient Modulus Test

Resilient Behavior

 Combined Stress-Strain behavior is typically expressed in terms of <u>Modulus</u>.

The major component of deformation or strain that is induced by a single wheel load is not permanent or associated with rupture; it is recoverable (Resilient).

 Therefore, it is appropriate to identify the <u>Resilient</u> <u>Modulus</u> as the required input to determine the stresses, strains, and deflections in a pavement structure under wheel loadings.

Resilient Modulus Tests

 Ideally, to estimate resilient Modulli of the materials comprising a pavement structure in the laboratory one would apply <u>Stress State Histories</u> to a specimen associated with a moving wheel load passing over a representative element at some depth in the structure.

Laboratory

Resilient Modulus Equipment (Repetitive Loading)

♦ Field

- Non-destructive Testing (FWD)
- Back-calculation of Modulli

Resilient Modulus Test

 A number of test systems and procedures have been used to determine the resilient modulus of pavement materials, all based on the basic repeated-load tests:

- (1) Direct Tension
- (2) Beam Flexure
- (3) Indirect Diametral Tension
- (4) Uniaxial
- (5) Triaxial Compression

Bound Material

Unbound Material

Resilient Modulus Test

Diametral Indirect Tension Test

 is used for bound materials, such as asphalt concrete or cement-treated base

<u>Cyclic Triaxial Compression Test</u>

 is used for unbound materials, such as cohesionless base course soils or cohesive subgrade soils.

Uniaxial Compression Test

is used for bound materials such as asphalt concrete

Resilient Modulus

Test Parameters
Load Intensity
Load Duration
Load Repetition

Relation with CBR ??

Mr = 1500 x CBR
 Mr = 2555 x CBR^{0.64}

AASHTO 1993 AASHTO 2002

M_r for Different Soils

THANK YOU