P&VEMENT M&TERI&LS

Engr. Shabir Ahmad Lecturer CED, INU

COURSE HEADS

- STABILIZED
- SUBBASE
- BASE COURSE
 - UNBOUND
 - BOUND
- SURFACE COURSES

SEQUENCE

- <u>SUBGRADE</u>
- MATERIAL CLASSIFICATION/IDENTIFICATION
- INVESTIGATION
- MATERIAL EVALUATION
- MATERIAL SELECTION
- CONSTRUCTION OF SUBGRADE
- QA/QC
- POST CONSTRUCTION INVESTIGATION

SUBGRADE INVESTIGATIONS

• SOIL INVESTIGATIONS ?

• A COMPLETE PICTURE OF **SUBSURFACE CONDITIONS**

• AS FAR AS POSSIBLE

<u>SUBSURFACE CONDITIONS</u>

- SOIL/ROCK STRATA (TYPE, LAYERS, THICKNESS, EXTENT)
 - <u>TO DEPTH OF SIGNIFICANCE</u>
- HYDROLOGICAL CONDITIONS
- ENGINEERING PROPERTIES
 - STRENGTH, DENSITY, MOISTURE, COMPRESSIBILITY, STABILITY (FROST, EXPANSION),

PERMEABILITY, CAPILLARITY

FIELD EVALUATIONS

METHODS OF EXPLORATIONS

- EXCAVATIONS
 - DRILLING
 - TEST PITS
- SAMPLING

- Ref. to Geotechnical Site Investigation and Instrumentation (Previous Course)
- GEOPHYSICAL TESTING
 - SURFACE SEISMIC
 - ELECTRICAL RESISTIVITY
 - (DRILLING, SAMPLING, TESTING) (VIDEOS)

GEOPHYSICAL TESTING BRIEFINIROLLCTION

<u>WHAT ?</u>

• <u>GEOPHYSICAL EXPLORATION CONSISTS OF</u> <u>MAKING INDIRECT MEASUREMENTS</u>

- FROM THE EARTH'S SURFACE OR IN BOREHOLE
- TO OBTAIN SUBSURFACE INFORMATION.

<u>WHY ?</u>

- REQUIREMENT OF GEOTECHNICAL INVESTIGATIONS
 - GROUPING OF THE SUBSURFACE STRATA WITH SIMILAR GEOTECHNICAL PROPERTIES
 - STRENGTH
 - STIFFNESS
- GEOPHYSICAL EXPLORATION HELPS IN
- RAPID LOCATION AND CORRELATION OF GEOLOGICAL FEATURES
 - STRATIGRAPHY
 - LITHOLOGY
 - DISCONTINUITIES
 - GROUND WATER
- IN-SITU MEASUREMENT OF
 - MODULLI AND DENSITIES

HOW ?

• **GENERAL TECHNIQUES**

- SEISMIC
- ELECTRICAL
- SONIC
- MAGNETIC
- RADAR
- GRAVITY

SEISMIC TECHNIQUES

- <u>PRINCIPLE</u>
 - DIFFERENCE IN STIFFNESS OF DIFFERENT SOIL/ROCK LAYERS

• <u>PROCEDURE</u>

- AN ELASTIC WAVE IS GENERATED IN THE GROUND
 - BY IMPACTIVE FORCE (FALLING WEIGHT OR HAMMER BLOW)
 - EXPLOSIVE CHARGE
- RESULTING GROUND MOTION IS MEASURED USING VIBRATION
 DETECTORS (GEOPHONES)
- TIME ELAPSED WILL HELP TO EVALUATE DIFFERENT <u>WAVE VELOCITIES</u> IN DIFFERENT LAYERS

SEISMIC TECHNIQUES

- WAVE TYPES
 - LONGITUDINAL WAVES (P WAVES)
 - TRANSVERSE OR SHEAR WAVES (S WAVES)
 - RAYLEIGH WAVES
 - LOVE WAVES

- <u>METHODS</u>
 - **REFRACTION**
 - **REFLECTION**
 - CROSS-HOLE
 - DOWN-HOLE

REFRACTION AND REFLECTION

Figure 3-1. Schematic of seismic refraction survey

Refracted Wave Reflected Wave

SEISMIC REFRACTION

APPLICATIONS

Method	Basic Measurement	Application	Advantages	Limitations					
		Surface		· · · · · · · · · · · · · · · · · · ·					
Refraction seismic	Travel time of compressional waves through subsurface layers	Velocity determination of compression wave through subsurface. Depths to contrasting interfaces and geologic correlation of horizontal layers	Rapid, accurate, and relatively economical technique. Interpretation theory generally straightforward and equipment readily available	Incapable of detecting material of lower velocity underlying higher velocity. Thin stratum sometimes not detectable. Interpretation is not unique					
Reflection seismic	Travel time of compressional waves reflected from subsurface layers	Mapping of selected reflector horizons. Depth determinations, fault detection, discontinuities, and other anomalous features	Rapid, thorough coverage of given site area. Data displays highly effective	Even with recent advances in high- resolution, seismic technology applica to civil works projects is limited in area resolution					
	· · · · · · · · · · · · · · · · · · ·	Borehole							
Uphole/downhole Vertical travel time of com- (seismic) pressional and/or shear waves		Velocity determination of vertical P- and/or S-waves. Identification of low-velocity zones	Rapid technique useful to define low- velocity strata. Interpretation straightforward	Care must be exercised to prevent undesirable influence of grouting or casing					
		of low-velocity zones (Sheet 2 of 5	straightforward	casing					

<u>APPLICATIONS</u>

Table 4-2 Numerical Rating of Geophysic	al Metho	ds to	o Pro	ovide	Spec	cific E	Enain	eerina	Para	mete	rs ¹ Ei	naine	erino	I App	licati	on										
Geophysical Method	Depth to Rock	P-Wave Velocity	S-Wave Velocity	Shear Modulus	Young's Modulus	Poisson's Ratio	Lithology	Material Boundaries Stratigraphy	Dip of Strata	Density	In Situ State of Stress	Temperature	Permeability	Percent Saturation	Ground water Table	Ground water Quality	Ground water Aquifers	Flow Rate and/or Direction	Borehole Diameter	Obstructions	Rippability	Fault Detection	Cavity Detection	Cavity Delineation	Location of Ore Bodies	Borehole Azimuth and Inclination
Surface				÷																						
Refraction (seismic)	4	4	4	4	4	4	1	3	4	2	1	0	0	2	2	0	2	0	0	2	4	3	2	2	3	0
Reflection (seismic)	4	0	0	0	0	0	1	4	4	0	0	0	0	0	2	0	1	0	0	2	0	4	3	3	3	0
Uphole/downhole (seismic)	4	4	4	4	4	4	1	4	0	2	1	0	0	2	2	0	2	0	0	1	2	3	0	2	2	0
Crosshole (seismic)	4	4	4	4	4	4	1	4	2	2	1	0	0	2	2	0	2	0	0	3	2	3	3	2	3	0
									(Cont	inued)														

¹ Numerical rating refers to applicability of method in terms of current use and future potential:

0 = Not considered applicable

1 = Limited

2 = Used or could be used, but not best approach

3 = Excellent potential but not fully developed

4 = Generally considered as excellent approach; state of art well developed

A = In conjunction with other electrical and nuclear logs

² Methods not included in EM 1110-1-1802.

Airborne or inhole survey capability not considered.

APPLICATIONS

Table 3-1 Typical/Representative Various Materials	Field Values o	f V_{P} , p_b and	∨ for
Material	V _P (m/s)	p _{b,dry} (mg/m³)	v
Air	330	··· · · ·	
Damp loam	300-750		
Dry sand	450-900	1.6-2.0	0.3-0.35
Clay	900-1,800	1.3-1.8	~0.5
Fresh, shallow water	1,430-1,490	1.0	
Saturated, loose sand	1,500		
Basal/ lodgement till	1,700-2,300	2.3	
Rock			0.15-0.25
Weathered igneous and metamorphic rock	450-3,700		
Weathered sedimen- tary rock	600-3,000		
Shale	800-3,700		
Sandstone	2,200-4,000	1.9-2.7	
Metamorphic rock	2,400-6,000		
Unweathered basalt	2,600-4,300	2.2-3.0	
Dolostone and limestone	4,300-6,700	2.5-3.0	
Unweathered granite	4,800-6,700	2.6-3.1	
Steel	6,000		

LIMITATION

- IN CASE OF SATURATED MEDIA ?
- WAVES WILL PASS THROUGH WATER (1500 M/S) AND NOT THROUGH THE SOIL STRUCTURE

ELECTRICAL TECHNIQUES

- **PRINCIPLE**
 - DIFFERENCE IN ELECTRICAL RESISTIVITY OF DIFFERENT SOIL/ROCK LAYERS
- <u>PROCEDURE</u>
 - AN ELECTRICAL CURRENT IS MADE TO FLOW THROUGH THE GROUND
 UNDER AN ELECTRICAL POTENTIAL
 - RESULTING APPARENT RESISTIVITY OF THE GROUND IS MEASURED.

THEORY OF MEASUREMENTS

(After U.S. Army Corps of Engineers.)

APPARENT RESISTIVITY

Figure 2. Common arrays used in resistivity surveys and their geometric factors.

DIFFERENT MODELS

Figure 3. The three different models used in the interpretation of resistivity measurements.

2-D MODELS

2-D MODELS

51

APPLICATIONS

Table 4-1 (Continued)																				•							
Method	thod Basic Measurement					Application						A	Advantages							Lin	nitati	ons					
									Surf	ace (Conti	inued	l)										•				
Electrical resistivity	Electrical resista volume of mater probes	ince ial be	of a etwee	en	C m si R d	ompl nic. C and a liver b etecti	emen luarry nd gr potton on	tary t rock avel (n stu	o refrac , groun prospec dies an	ction d wat cting. d cav	seis- ter, vity	EC Ci m	conor an de ateria	mical atect la als	nond arge	estru bodie	ctive es of "	techn soft"	ique.	Lat ofte rela gro cor sei	eral c en int ated; sons ssly i njunc smic	chang erpre hence , dept in erro tion w	jes in ted ir e, for th dei or. S <i>r</i> ith of	calci acorre this a termi hould ther n	ulated and o natior I be u netho	l resis as dep ther as can sed in ds, e.ş	tance th be g.,
Table 4-2 Numerical Rating	of Geophysical N	letho	ods to	o Pro	vide	Spec	ific E	ingin	eering	Para	meter	rs¹ Er	igine	ering	App	licati	on										
Geophysical Metho	d	Depth to Rock	P-Wave Velocity	S-Wave Velocity	Shear Modulus	Young's Modulus	Poisson's Ratio	Lithology	Material Boundaries Stratigraphy	Dip of Strata	Density	In Situ State of Stress	Temperature	Permeability	Percent Saturation	Ground water Table	Ground water Quality	Ground water Aquifers	Flow Rate and/or Direction	Borehole Diameter	Obstructions	Rippability	Fault Detection	Cavity Detection	Cavity Delineation	Location of Ore Bodies	Borehole Azimuth and Inclination
Electrical resistivity		3	0	0	0	0	0	1	3	2	0	0	0	2	1	4	0	4	2	0	3	2	C) 4		4	0
• • •	۰ ۰	-	-	-	-		-	-	_																		

APPLICATIONS

Table 1. Resistivities of some common rocks, minerals and chemicals.

Material	Resistivity (Ω•m)	Conductivity (Siemen/m)
Igneous and Metamorphic Rocks Granite	$5x10^{3} - 10^{6}$	$10^{-6} - 2x10^{-4}$
Basalt	$10^3 - 10^6$	$10^{-6} - 10^{-3}$
Slate	$6x10^2 - 4x10^7$	$2.5 \times 10^{-8} - 1.7 \times 10^{-3}$
Marble	$10^2 - 2.5 \times 10^8$	$4x10^{-9} - 10^{-2}$
Quartzite	$10^2 - 2x10^8$	$5 \times 10^{-9} - 10^{-2}$
Sedimentary Rocks Sandstone	$8 - 4x10^{3}$	$2.5 \times 10^{-4} - 0.125$
Shale	$20 - 2x10^{3}$	$5 \times 10^{-4} - 0.05$
Limestone	$50 - 4x10^2$	$2.5 \times 10^{-3} - 0.02$
Soils and waters Clay Alluvium Groundwater (fresh) Sea water Chemicals Iron 0.01 M Potassium chloride 0.01 M Sodium chloride 0.01 M acetic acid Xylene	$ \begin{array}{r} 1 - 100 \\ 10 - 800 \\ 10 - 100 \\ 0.2 \\ 9.074 \times 10^{-8} \\ 0.708 \\ 0.843 \\ 6.13 \\ 6.998 \times 10^{16} \\ \end{array} $	$\begin{array}{c} 0.01 - 1 \\ 1.25 \times 10^{-3} - 0.1 \\ 0.01 - 0.1 \\ 5 \\ 1.102 \times 10^{7} \\ 1.413 \\ 1.185 \\ 0.163 \\ 1.429 \times 10^{-17} \end{array}$

- A GPR works on the principle of measuring a contrast in 'Dielectric Constant' of different materials
- The equipment consists of an Antenna which sends a signal into the ground and a receiver which receives back the reflected signal
- The signals could be reflected from different interfaces; for e.g. soil horizons, the groundwater surface, soil/rock interfaces, man-made objects, or any other interface possessing a contrast in dielectric properties.

- GPR surveys conducted on gridded areas
- Transmitter send Short impulses of high-freq EM wave
- Receiver antenna recives back the reflected waves to ascertain relative changes in dielectric properties of subsurface materials
- Depth of exploration is soil dependent (up to 30 m in dry sands; only 3 m in wet saturated clay)

•Results Locating Underground utilities

•Results Locating Underground utilities

•Results Locating Underground utilities

•Results Locating Burried Objects

GPR Survey to Locate Underground Storage Tanks

•Results Stratigraphy

•Results Stratigraphy

•Results Infrastructure Imaging

•Results Infrastructure Imaging

- •Transillumination measurement between two boreholes
- •Variations in travel time and signal amplitude indicate structure changes between the transmitter and receiver

•Results Horizontal Profiling

