## P&VEMENT M&TERI&LS Lecture 2

Engr. Shabir Ahmad

Lecturer CED, INU

### **Course Heads**

- Subgrade
  - Natural
  - Stabilized
- Subbase
- Base Course
  - Unbound
  - Bound
- Surface Courses

### Course Agenda

- Material Identification
- Material Evaluation
- Material Selection
- Material Compaction/Construction
- Quality Evaluation During Construction
- Quality Evaluation After Construction

## Sequence

#### SUBGRADE

- Investigation
- Material Classification/Identification
- Material Evaluation
- Material Selection
- Construction of Subgrade
- QA/QC
- Post Construction Investigation

- Soil Investigations ?
- A complete picture of <u>Subsurface Conditions</u>
   as far as possible
- Subsurface Conditions
- Soil/Rock Strata (Type, Layers, Thickness, Extent)
  - <u>To Depth of Significance</u>
- Water Table
- Engineering Properties
  - Strength, Density, Moisture, Compressibility, Stability (Frost, Expansion), Permeability, Capilarity

# Subsurface Conditions can be entirely different from what is visible on surface



# Subsurface Conditions can be entirely different from what is visible on surface



A complex landscape sculptured by water

What if we do not correctly evaluate soil properties or understand subsurface condition ???

#### INCOMPLETE / INACCURATE SITE INVESTIGATIONS

- Leaning Tower of Pisa in Italy
- 185-foot tower, whose top lies 15 feet south of the base (~ 5 degrees tilt)
- A weak foundation of silty alluvial soil (formed by water).



### **Objectives of Investigations**

#### To determine

- The geologic, seismologic, hydrological and other subsurface conditions that influence selection of the project site
- The characteristics of the foundation soils and rocks
- Geotechnical conditions which influence project safety, design, and construction
- Sources of construction materials

#### **General Procedure**

| Desk Study                    | • All possible info about all candidate sites are gathered                       |
|-------------------------------|----------------------------------------------------------------------------------|
| Site Reconnaissance           | • Site is visited to gather / confirm initial data                               |
| Preliminary<br>Investigations | <ul> <li>Include prelim BHs and prelim tests</li> </ul>                          |
| Main Investigations           | • Detailed investigations: insitu tests, sampling, and Lab Test                  |
| Geotechnical Report           | <ul> <li>All findings are Presented</li> <li>Recommendations are made</li> </ul> |

#### GENERAL STEPS

- <u>1. Collection of Preliminary Data</u>
  - General Geology of the Site
  - History of the Site (Existing Reports...)
  - Pavement Details
- <u>2. Reconnaissance</u>
  - Site Visit
  - General Topography
  - General Ground Slope
    - Plain, Rolling, Hilly......
  - Property in Proposed ROW
  - Presence of Water Courses
  - Soil Stratification from Deep Cuts
  - Prospect Material Sources
  - Any Local Problems (Floods, Cracks, Subsidence.....)

#### <u>3. SITE WORKS</u>

- Test Pits
- Boring/Drilling
- Sampling
- In-situ Density/Moisture
- Testing (SPT, CPT,....)
- <u>4. LABORATORY</u>
  - Classification Tests (Sieve Analysis, Atterberg Limits)
  - Strength
  - Consolidation/Settlement/Expansion
  - Resilient Modulus
  - Permeability
  - Chemical Testing
- <u>5. REPORT</u>





#### **Trial Pits**



Figure 1-1.--Sampling trench. PX-D-4784.

- Spacing ?
- Depth ? (very important) 1m to 10m?

#### No General Binding Rule

- Depends on
  - Nature of Road
    - Primary, Secondary, Low Volume.....
  - Amount of Uniformity of Soil Strata
    - Laterally and Vertically



| Type of Job                                                               | Type of Soil in Horizontal Dir. |                  |           | Atin Number of Perchalog          | Donth (m)   | Semular             |  |
|---------------------------------------------------------------------------|---------------------------------|------------------|-----------|-----------------------------------|-------------|---------------------|--|
|                                                                           | Uniform                         | Average          | Erratic   | Min. Number of borenoies          |             | Samples             |  |
| One/Two Storey Building                                                   | 50                              | 25               | 10-15     | 3                                 | C1,C2,C3,C4 | *                   |  |
| Multistorey Build.                                                        | 30                              | 15               | 8-10      | 5                                 | C1,C2,C3,C4 | UD for first 3m & * |  |
| Abutment & Bridge Pier                                                    | -                               | 20               | 10        | 1 to 2 for ea. Fdn.               | C1,C2,C3,C4 | Continuous UD       |  |
| Highways and Roads                                                        | 300-500                         | 150              | 100       | Lane Dependent (75-150m)          | 2-3m        | UD and D            |  |
| Airports/Airfields                                                        | 300-500                         | 150              | 100 (pre) | 30m grid (runway), 60-75m (other) | 6m          | UD and D            |  |
| Dams (Main Embankment)                                                    | Grid to define complete strata  |                  |           | -                                 | C1,C2,C3,C4 | Continuous UD       |  |
| Dams (Abutments)                                                          | Define comple                   | ete strata (150- | 300m)     | -                                 | C1,C2,C3,C4 | Continuous UD       |  |
| Dams (Power Plant,Spillways etc.)                                         | 30                              | 15               | 8-10      | -                                 | C1,C2,C3,C4 | Continuous UD       |  |
| * 0.15, 0.75, 1.5, 2.25, 3.0, 3.75, 4.5, and at 1.5m intervals thereafter |                                 |                  |           |                                   |             |                     |  |

For Borrow Areas, a grid of Boreholes is to be performed to access the type, nature, and extent of material present.

#### Depth of Significance

#### Minimum Exploration Depth

- 2m for natural (in-situ) subgrades
- 3Xtimes the average width of embankment
- 2Xtimes the width of Foundations of Structures
- 2Xtimes the width of pile below the proposed pile length
- Practical Depth for Borrow Areas
- Penetrate all layers which are
  - loose/soft
  - having variation of water table
  - frost susceptible
  - liquifiable under dynamic loading

## Field Evaluations

#### Methods of Explorations

- Excavations
  - Drilling
  - Test Pits
- Sampling
- Testing in the field
- Geophysical Testing
  - Surface Seismic
  - Electrical Resistivity

# THANK YOU