▶ FIGURE 1–16

Hole current in intrinsic silicon.

When a valence electron moves left to right to fill a hole while leaving another hole behind, the hole has effectively moved from right to left. Gray arrows indicate effective movement of a hole.

SECTION 1–3 CHECKUP	 Are free electrons in the valence band or in the conduction band? Which electrons are responsible for electron current in silicon?
	3. What is a hole?4. At what energy level does hole current occur?

1-4 **N**-Type and **P**-Type Semiconductors

Semiconductive materials do not conduct current well and are of limited value in their intrinsic state. This is because of the limited number of free electrons in the conduction band and holes in the valence band. Intrinsic silicon (or germanium) must be modified by increasing the number of free electrons or holes to increase its conductivity and make it useful in electronic devices. This is done by adding impurities to the intrinsic material. Two types of extrinsic (impure) semiconductive materials, *n*-type and *p*-type, are the key building blocks for most types of electronic devices.

After completing this section, you should be able to

- **Describe the properties of** *n***-type and** *p***-type semiconductors**
 - Define doping
- Explain how *n*-type semiconductors are formed
 - Describe a majority carrier and minority carrier in *n*-type material
- Explain how *p*-type semiconductors are formed
 - Describe a majority carrier and minority carrier in p-type material

Since semiconductors are generally poor conductors, their conductivity can be drastically increased by the controlled addition of impurities to the intrinsic (pure) semiconductive material. This process, called **doping**, increases the number of current carriers (electrons or holes). The two categories of impurities are *n*-type and *p*-type.

N-Type Semiconductor

To increase the number of conduction-band electrons in intrinsic silicon, **pentavalent** impurity atoms are added. These are atoms with five valence electrons such as arsenic (As), phosphorus (P), bismuth (Bi), and antimony (Sb).

As illustrated in Figure 1–17, each pentavalent atom (antimony, in this case) forms covalent bonds with four adjacent silicon atoms. Four of the antimony atom's valence electrons are used to form the covalent bonds with silicon atoms, leaving one extra electron. This extra electron becomes a conduction electron because it is not involved in bonding. Because the pentavalent atom gives up an electron, it is often called a *donor atom*. The number of conduction electrons can be carefully controlled by the number of impurity atoms added to the silicon. A conduction electron created by this doping process does not leave a hole in the valence band because it is in excess of the number required to fill the valence band.

FIGURE 1–17

Pentavalent impurity atom in a silicon crystal structure. An antimony (Sb) impurity atom is shown in the center. The extra electron from the Sb atom becomes a free electron.

Majority and Minority Carriers Since most of the current carriers are electrons, silicon (or germanium) doped with pentavalent atoms is an *n*-type semiconductor (the *n* stands for the negative charge on an electron). The electrons are called the **majority carriers** in *n*-type material. Although the majority of current carriers in *n*-type material are electrons, there are also a few holes that are created when electron-hole pairs are thermally generated. These holes are *not* produced by the addition of the pentavalent impurity atoms. Holes in an *n*-type material are called **minority carriers**.

P-Type Semiconductor

To increase the number of holes in intrinsic silicon, **trivalent** impurity atoms are added. These are atoms with three valence electrons such as boron (B), indium (In), and gallium (Ga). As illustrated in Figure 1–18, each trivalent atom (boron, in this case) forms covalent bonds with four adjacent silicon atoms. All three of the boron atom's valence electrons are used in the covalent bonds; and, since four electrons are required, a hole results when each trivalent atom is added. Because the trivalent atom can take an electron, it is often referred to as an *acceptor atom*. The number of holes can be carefully controlled by the number of trivalent impurity atoms added to the silicon. A hole created by this doping process is *not* accompanied by a conduction (free) electron.

Majority and Minority Carriers Since most of the current carriers are holes, silicon (or germanium) doped with trivalent atoms is called a *p*-type semiconductor. The holes are the majority carriers in *p*-type material. Although the majority of current carriers in *p*-type material are holes, there are also a few conduction-band electrons that are created when electron-hole pairs are thermally generated. These conduction-band electrons are *not* produced by the addition of the trivalent impurity atoms. Conduction-band electrons in *p*-type material are the minority carriers.

► FIGURE 1–18

Trivalent impurity atom in a silicon crystal structure. A boron (B) impurity atom is shown in the center.

SECTION 1–4 CHECKUP

1. Define doping.

- 2. What is the difference between a pentavalent atom and a trivalent atom?
- 3. What are other names for the pentavalent and trivalent atoms?
- 4. How is an *n*-type semiconductor formed?
- 5. How is a *p*-type semiconductor formed?
- 6. What is the majority carrier in an *n*-type semiconductor?
- 7. What is the majority carrier in a *p*-type semiconductor?
- 8. By what process are the majority carriers produced?
- 9. By what process are the minority carriers produced?
- 10. What is the difference between intrinsic and extrinsic semiconductors?

1–5 THE **PN** JUNCTION

When you take a block of silicon and dope part of it with a trivalent impurity and the other part with a pentavalent impurity, a boundary called the *pn* junction is formed between the resulting *p*-type and *n*-type portions. The *pn* junction is the basis for diodes, certain transistors, solar cells, and other devices, as you will learn later.

After completing this section, you should be able to

- **Describe how a** *pn* junction is formed
 - Discuss diffusion across a pn junction
- Explain the formation of the depletion region
 - Define *barrier potential* and discuss its significance State the values of barrier potential in silicon and germanium
- Discuss energy diagrams
 - Define energy hill

A *p*-type material consists of silicon atoms and trivalent impurity atoms such as boron. The boron atom adds a hole when it bonds with the silicon atoms. However, since the number of protons and the number of electrons are equal throughout the material, there is no net charge in the material and so it is neutral.