Optical Communications Lecture 10

Engr. Madeha Mushtaq Department of Computer Science Iqra National University

Wavelength Division Multiplexing (WDM)

- Time division multiplexing (TDM) pack many channels into a SONET/SDH network.
- A practical upper limit using developing technology is 40 Gbps.
- An alternative is to assign different frequencies to different channels, multiplex them for carrying information over fibers and finally demultiplex at the receiver end.
- The wavelength division multiplexing (WDM) is the same as frequency division, except that the terminology is used for optical frequencies.

Wavelength Division Multiplexing (WDM)

- WDM is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of light.
- This technique enables bidirectional communications over one strand of fiber.

Wavelength Division Multiplexing (WDM)

Features of WDM

Bandwidth:

- The fact that one can use different wavelengths over the same channel increases bandwidth capacity enormously.
- Most WDM systems work in the C-band around 1550 nm.
- Since WDM carries each signal independently of other signal, each channel has a dedicated bandwidth.
- Signals arrive at the destination at the same time and not in different time slots as is the case with TDM.

Features of WDM TDM WDM

Features of WDM

Independent of bit-rates and formats:

- WDM can support multiple protocols.
- Each signal can be carried at different bit rates. For instance, one signal can be carried a OC-12 while another at OC-48.
- Similarly, signals can be carried over different formats like SONET, ATM etc.

WDM Components

- The essential components of a WDM system are primarily those of any network i.e. transmitters, link and receivers.
- In addition, the system would require other components such as switches, modulators, amplifiers etc.
- In case of WDM technology, the transmitters are laser sources with stable tunable wavelengths.
- Before sending the signal through the link, multiplexers mix the wavelengths.
- Link is low loss optical fiber while at the receiver end there are photo detectors and wavelength demultiplexers.

Optical Couplers

- Optical couplers are devices which split light to divert them into multiple paths or combine light from multiple paths to channel them into a single path.
- Light signal propagates differently from electric signal.

Optical Couplers

Directional Couplers:

- In Directional couplers , light energy generally flows in one direction though they are capable of allowing flow in the other direction as well.
- For instance, in the Y-shaped coupler shown here, a signal arriving at port 1 would be distributed to port 2 and 3 and would travel from left to right.
- However, if a signal arrives at port 2 (or 3), it would only go to port 1 because of geometry.
- Directional couplers can be designed such that a predetermined percentage of optical power is output into a particular port.

Optical Couplers

Star Couplers:

- Star couplers are passive devices which connect multiple inputs with i multiple outputs.
- Star couplers can be both directional and non-directional.
- Couplers may be designed to be wavelength selective which channel different wavelengths in different directions.
- These are used in making wavelength division multiplexers and demultiplexers.

Optical Amplifiers

- Inline signal amplification is done by placing optical amplifiers along the fiber span.
- Erbium doped fiber amplifiers (EDFA) are generally used in WDM applications.
- Key performance parameters of amplifiers are gain, gain-flatness, noise level and power output.

Multiplexers (MUX)

- Multiplexing different wavelengths seem a relatively simple job of simply allowing different wavelength signals to fall on an opical fiber within the latter's angle of acceptance.
- However, one has to take care to see that the noise associated with each channel is kept to a minimum.
- Channels must be isolated to ensure that noise at a different wavelength does not interfere with the signal that is being carried.

Multiplexers (MUX) and Demultiplexers

Multiplexers (MUX) and Demultiplexers

- A wavelength multiplexer (MUX) combines incident wavelengths and launches the output to the fiber.
- At the receiving end a demultiplexer (DEMUX) reverses the above and separates the signal into the components.
- Multiplexers are generally based on one of two principles, angular dispersion and optical filtering.
- Prism and reflection gratings are used for separating wavelengths.
- The same elements can combine wavelengths on reversing the direction of the beams.

Multiplexers (MUX) and Demultiplexers

Optical Add-Drop Multiplexer (OADM)

- In its passage from the MUX to DEMUX, the signal passes through one or more Optical Add-Drop Multiplexer (OADM).
- The function of an OADM is to selectively drop one or more wavelengths by rerouting its data content to another fiber.
- The OADM may just allow the remaining traffic to pass or add a different data set at a wavelength equal to that of a dropped data.
- This helps to create a virtual point-to-point circuit.

Optical Add-Drop Multiplexer (OADM)

- An OADM is generally a device such as a Bragg grating which could be used to selectively reflect a wavelength that is to be dropped while allowing the others to be transmitted.
- OADMs are passive components of the network.
- They are manufactured to operate either at fixed wavelengths or at dynamically selectable wavelengths.
- In case of fixed wavelengths, the wavelengths to be dropped or added are pre-selected.

Optical Add-Drop Multiplexer (OADM)

Wavelength Converters

- Wavelength converters are devices which changes the wavelength of an input signal.
- There are several ways in which a wavelength conversion can occur.
- Usually, wavelength conversion takes place from a shorter wavelength to a longer wavelength.
- For instance, certain material can absorb radiation and re-radiate at a lower frequency.
- In WDM network, frequency converters are used for better utilization of available wavelengths.

Dense Wavelength Division Multiplexing (DWDM)

- The two key WDM technologies are coarse wavelength division multiplexing, CWDM and dense wavelength division multiplexing, DWDM.
- In DWDM channels are much closer together.
- CWDM supports up to 18 wavelength channels transmitted through a fiber at the same time.
- To achieve this, the different wavelengths of each channel are 20nm apart.

Dense Wavelength Division Multiplexing (DWDM)

- DWDM, supports up to 80 simultaneous wavelength channels, with each of the channels only 0.8nm apart.
- CWDM technology offers a convenient and cost-efficient solution for shorter distances of up to 70 kilometers.
- DWDM connections can be amplified and can therefore be used for transmitting data much longer distances.

Potential Problems

- Loss, crosstalk and non-linear effects are potential problems.
- A multiplexer should have low insertion loss and should not allow back scattering of light to any of the input ports.
- Insertion loss is the attenuation in the signal in travelling from the input port to the output port.
- Back reflection can be avoided by use of optical isolators, which allow light to propagate only in one direction, similar to a diode in an electronic circuit which allow current in one direction.

Potential Problems

A demultiplexer should give rise to minimum cross talk , i.e., the amount of input power associated with a particular wavelength (say λ1) which reaches a channel for a different wavelength (λ2) should be minimum.

End Of Slides