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A network is a combination of components, such as resistances and voltage 

sources, interconnected to achieve a particular end result. However, networks 

generally need more than the rules of series and parallel circuits for analysis. 

Kirchhoff’s laws can always be applied for any circuit connections. The network 

theorems, though, usually provide shorter methods for solving a circuit. 

 Some theorems enable us to convert a network into a simpler circuit, 

equivalent to the original. Then the equivalent circuit can be solved by the rules 

of series and parallel circuits. Other theorems enable us to convert a given 

circuit into a form that permits easier solutions. 

 Only the applications are given here, although all network theorems can be 

derived from Kirchhoff’s laws. Note that resistance networks with batteries are 

shown as examples, but the theorems can also be applied to ac networks. 

  Network 
Theorems 
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Important Terms 

   active components  
  bilateral components  
  current source  
  linear component  

  Millman’s theorem  
  Norton’s theorem  
  passive components  
  superposition theorem  

  Thevenin’s theorem  
  voltage source    

Chapter Objectives 

  After studying this chapter you should be able to  

■ Apply  the superposition theorem to fi nd 
the voltage across two points in a circuit 
containing more than one voltage 
source. 

■ State  the requirements for applying the 
superposition theorem. 

■ Determine  the Thevenin and Norton 
equivalent circuits with respect to any 
pair of terminals in a complex network. 

■ Apply  Thevenin’s and Norton’s theorems 
in solving for an unknown voltage or 
current. 

■ Convert  a Thevenin equivalent circuit to 
a Norton equivalent circuit and vice 
versa. 

■ Apply  Millman’s theorem to fi nd the 
common voltage across any number of 
parallel branches. 

■ Simplify  the analysis of a bridge circuit 
by using delta to wye conversion 
formulas.  

 Chapter Outline 

   10–1  Superposition Theorem 

   10–2  Thevenin’s Theorem 

   10–3  Thevenizing a Circuit with Two 
Voltage Sources 

   10–4  Thevenizing a Bridge Circuit 

   10–5  Norton’s Theorem 

   10–6  Thevenin-Norton Conversions 

   10–7  Conversion of Voltage and Current 
Sources 

   10–8  Millman’s Theorem 

   10–9  T or Y and � or � Connections  

Online Learning Center 

 Additional study aids for this chapter are available at the Online Learning Center:  www.mhhe.com�grob11e.   
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284 Chapter 10

   10–1 Superposition Theorem 
  The superposition theorem is very useful because it extends the use of Ohm’s law to 

circuits that have more than one source. In brief, we can calculate the effect of one 

source at a time and then superimpose the results of all sources. As a defi nition, the 

superposition theorem states:  In a network with two or more sources, the current 
or voltage for any component is the algebraic sum of the effects produced by each 
source acting separately.  

 To use one source at a time, all other sources are “killed” temporarily. This means 

disabling the source so that it cannot generate voltage or current without changing 

the resistance of the circuit. A voltage source such as a battery is killed by assuming 

a short circuit across its potential difference. The internal resistance remains. 

  Voltage Divider with Two Sources 
 The problem in Fig. 10–1 is to fi nd the voltage at P to chassis ground for the circuit 

in Fig. 10–1 a . The method is to calculate the voltage at P contributed by each source 

separately, as in Fig. 10–1 b  and  c , and then superimpose these voltages. 

    To fi nd the effect of  V  1  fi rst, short-circuit  V  2  as shown in Fig. 10–1 b . Note that the 

bottom of  R  1  then becomes connected to chassis ground because of the short circuit 

across  V  2 . As a result,  R  2  and  R  1  form a series voltage divider for the  V  1  source. 

 Furthermore, the voltage across  R  1  becomes the same as the voltage from P to 

ground. To fi nd this  V  R1
  across  R  1  as the contribution of the  V  1  source, we use the 

voltage divider formula:     

VR1
 �   

 R 1  _______ 
 R 1  �  R 2 

   �  V 1  �   60 k�  ______________  
60 k� � 30 k�

   � 24 V

 �   60 ___ 
90

   � 24 V 

VR1
 � 16 V

 Next fi nd the effect of  V  2  alone, with  V  1  short-circuited, as shown in Fig. 10–1 c . 

Then point A at the top of  R  2  becomes grounded.  R  1  and  R  2  form a series voltage 

divider again, but here the  R  2  voltage is the voltage at P to ground. 

 With one side of  R  2  grounded and the other side to point P,  V  R2
  is the voltage to cal-

culate. Again we have a series divider, but this time for the negative voltage  V  2 . Using 

MultiSim  Figure 10–1 Superposition theorem applied to a voltage divider with two sources  V  1  and  V  2 . ( a ) Actual circuit with �13 V from 
point P to chassis ground. ( b )  V  1  alone producing �16 V at P. ( c )  V  2  alone producing −3 V at P.

(b )
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GOOD TO KNOW
When applying the superposition 

theorem to a dc network, it is 

important to realize that the 

power dissipated by a resistor in 

the network is not equal to the 

sum of the power dissipation 

values produced by each source 

acting separately. The reason is 

that power is not linearly related 

to either voltage or current. Recall 

that P �   V 2 ___ 
R

   and P � I 2R.

the voltage divider formula for  V R2

  as the contribution of  V  2  to the voltage at P,

  V R2

  �   
 R 2  _______ 

 R 1  �  R 2 
   �  V 2  �   30 k�  ______________  

30 k� � 60 k�
   � �9 V

 �   30 ___ 
90

   � �9 V 

 V R2

  � �3 V

 This voltage is negative at P because  V  2  is negative. 

 Finally, the total voltage at P is

          V P  �  V R1

  �  V R2

  � 16 � 3

 V p  � 13 V

 This algebraic sum is positive for the net  V  P  because the positive  V  1  is larger than 

the negative  V  2 . 

 By superposition, therefore, this problem was reduced to two series voltage divid-

ers. The same procedure can be used with more than two sources. Also, each volt-

age divider can have any number of series resistances. Note that in this case we were 

dealing with ideal voltage sources, that is, sources with zero internal resistance. If the 

source did have internal resistance, it would have been added in series with  R  1  and  R  2 .  

  Requirements for Superposition 
 All components must be linear and bilateral to superimpose currents and voltages. 

 Linear  means that the current is proportional to the applied voltage. Then the cur-

rents calculated for different source voltages can be superimposed. 

  Bilateral  means that the current is the same amount for opposite polarities of the 

source voltage. Then the values for opposite directions of current can be combined 

algebraically. Networks with resistors, capacitors, and air-core inductors are gener-

ally linear and bilateral. These are also  passive components,  that is, components that 

do not amplify or rectify.  Active components,  such as transistors, semiconductor 

diodes, and electron tubes, are never bilateral and often are not linear. 

■ 10–1   Self-Review 
  Answers at end of chapter.  

 a.     In Fig. 10–1  b ,  which   R   is shown grounded at one end?   
 b.    In Fig. 10–1  c ,  which   R   is shown grounded at one end?        

  10–2 Thevenin’s Theorem 
  Named after M. L. Thevenin, a French engineer, Thevenin’s theorem is very useful in 

simplifying the process of solving for the unknown values of voltage and current in a 

network. By Thevenin’s theorem, many sources and components, no matter how they 

are interconnected, can be represented by an equivalent series circuit with respect to 

any pair of terminals in the network. In Fig. 10–2, imagine that the block at the left 

contains a network connected to terminals A and B. Thevenin’s theorem states that 

the  entire  network connected to A and B can be replaced by a single voltage source 

 V  TH  in series with a single resistance  R  TH , connected to the same two terminals. 

  Voltage  V  TH  is the open-circuit voltage across terminals A and B. This means 

fi nding the voltage that the network produces across the two terminals with an open 

circuit between A and B. The polarity of  V  TH  is such that it will produce current from 

A to B in the same direction as in the original network. 

          Resistance  R  TH  is the open-circuit resistance across terminals A and B, but with 

all sources killed. This means fi nding the resistance looking back into the network 

from terminals A and B. Although the terminals are open, an ohmmeter across AB 
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286 Chapter 10

would read the value of  R  TH  as the resistance of the remaining paths in the network 

without any sources operating. 

  Thevenizing a Circuit 
 As an example, refer to Fig. 10–3 a , where we want to fi nd the voltage  V  L  across the 

2-�  R  L  and its current  I  L . To use Thevenin’s theorem, mentally disconnect  R  L . The 

two open ends then become terminals A and B. Now we fi nd the Thevenin equiva-

lent of the remainder of the circuit that is still connected to A and B. In general, open 

the part of the circuit to be analyzed and “thevenize” the remainder of the circuit 

connected to the two open terminals. 

      Our only problem now is to fi nd the value of the open-circuit voltage  V  TH  across 

AB and the equivalent resistance  R  TH . The Thevenin equivalent always consists of a 

single voltage source in series with a single resistance, as in Fig. 10–3 d . 

 The effect of opening  R  L  is shown in Fig. 10–3 b . As a result, the 3-�  R  1  and 6-� 

 R  2  form a series voltage divider without  R  L . 

 Furthermore, the voltage across  R  2  now is the same as the open-circuit voltage 

across terminals A and B. Therefore  V  R2
  with  R  L  open is  V  AB . This is the  V  TH  we need 

for the Thevenin equivalent circuit. Using the voltage divider formula, 

 V R2

  �   6 __ 
9
   � 36 V � 24 V

 V R2

  �  V AB  �  V TH  � 24 V

 This voltage is positive at terminal A. 

Figure 10–2 Any network in the block at the left can be reduced to the Thevenin 
equivalent series circuit at the right.

�

�
VTH

�

�

Network

B

A

RTH A

B

MultiSim   Figure 10–3 Application of Thevenin’s theorem. ( a ) Actual circuit with terminals A and B across  R  L . ( b ) Disconnect  R  L  to fi nd that 
 V  AB  is 24 V. ( c ) Short-circuit  V  to fi nd that  R  AB  is 2 �. ( d  ) Thevenin equivalent circuit. ( e ) Reconnect  R  L  at terminals A and B to fi nd that  V  L  is 12 V.

(a )

R2 �
6 �

A

B

V �
36 V

R1 � 3 �

RL �
2 �

(b )

A

B

V �
36 V

R1 � 3 �

R2 �
6 � VAB � 24 V

R1 � 3 �

R2 �
6 �

RAB � 2 �
Short
across
V

A

B

(c )

VTH �
24 V

RTH � 2 �

A

B

(d ) (e )

VL �
12 V

A

B

RTH � 2 �

VTH �
24 V

RL �
2 �

 GOOD TO KNOW 
 Of all the different theorems 

covered in this chapter, Thevenin’s 

theorem is by far the most widely 

used. 
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 To fi nd  R  TH , the 2-�  R  L  is still disconnected. However, now the source  V  is short-

circuited. So the circuit looks like Fig. 10–3 c . The 3-�  R  1  is now in parallel with 

the 6-�  R  2  because both are connected across the same two points. This combined 

resistance is the product over the sum of  R  1  and  R  2 . 

 R TH  �   18 ___ 
9
   � 2 �

 Again, we assume an ideal voltage source whose internal resistance is zero. 

 As shown in Fig. 10–3 d , the Thevenin circuit to the left of terminals A and B then 

consists of the equivalent voltage  V  TH , equal to 24 V, in series with the equivalent 

series resistance  R  TH , equal to 2 �. This Thevenin equivalent applies for any value of 

 R  L  because  R  L  was disconnected. We are actually thevenizing the circuit that feeds 

the open AB terminals. 

 To fi nd  V  L  and  I  L , we can fi nally reconnect  R  L  to terminals A and B of the Thev-

enin equivalent circuit, as shown in Fig. 10–3 e . Then  R  L  is in series with  R  TH  and 

 V  TH . Using the voltage divider formula for the 2-�  R  TH  and 2-�  R  L ,  V  L  � 1�2 � 

24 V � 12 V. To fi nd  I  L  as  V  L � R  L , the value is 12 V�2 �, which equals 6 A. 

 These answers of 6 A for  I  L  and 12 V for  V  L  apply to  R  L  in both the original circuit 

in Fig. 10–3 a  and the equivalent circuit in Fig. 10–3 e . Note that the 6-A  I  L  also fl ows 

through  R  TH . 

 The same answers could be obtained by solving the series-parallel circuit in 

Fig. 10–3 a , using Ohm’s law. However, the advantage of thevenizing the circuit 

is that the effect of different values of  R  L  can be calculated easily. Suppose that  R  L  

is changed to 4 �. In the Thevenin circuit, the new value of  V  L  would be 4�6 � 

24 V � 16 V. The new  I  L  would be 16 V�4 �, which equals 4 A. If we used Ohm’s 

law in the original circuit, a complete, new solution would be required each time  R  L  

was changed.  

  Looking Back from Terminals A and B 
 The way we look at the resistance of a series-parallel circuit depends on where the 

source is connected. In general, we calculate the total resistance from the outside 

terminals of the circuit in toward the source as the reference. 

 When the source is short-circuited for thevenizing a circuit, terminals A and B 

become the reference. Looking back from A and B to calculate  R  TH , the situation 

becomes reversed from the way the circuit was viewed to determine  V  TH . 

  For  R  TH , imagine that a source could be connected across AB, and calculate the 

total resistance working from the outside in toward terminals A and B. Actually, an 

ohmmeter placed across terminals A and B would read this resistance. 

 This idea of reversing the reference is illustrated in Fig. 10–4. The circuit in 

Fig. 10–4 a  has terminals A and B open, ready to be thevenized. This circuit is 

similar to that in Fig. 10–3 but with the 4-�  R  3  inserted between  R  2  and termi-

nal A. The interesting point is that  R  3  does not change the value of  V  AB  produced 

by the source  V , but  R  3  does increase the value of  R  TH . When we look back from 

 GOOD TO KNOW 
 The Thevenin equivalent circuit 

driving terminals A and B does 

not change even though the value 

of  R  L  may change. 

Figure 10–4 Thevenizing the circuit of Fig. 10–3 but with a 4-�  R  3  in series with the A terminal. ( a )  V  AB  is still 24 V. ( b ) Now the  R  AB  is 
2 � 4 � 6 �. ( c ) Thevenin equivalent circuit.

VAB � 24 V

R3 � 4 �

(a )

R1� 3 �

V � 36 V 

A

B

R2 �
6 � 3 �

R3 � 4 �

R1 �

A

B

R2 �
6 � RAB � 6 �

(b )

RTH � 6 �

A

B

VTH �
24 V

(c )
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288 Chapter 10

terminals A and B, the 4 � of  R  3  is in series with 2 � to make  R  TH  6 �, as shown for 

 R  AB  in Fig. 10–4 b  and  R  TH  in Fig. 10–4 c . 

        Let us consider why  V  AB  is the same 24 V with or without  R  3 . Since  R  3  is con-

nected to the open terminal A, the source  V  cannot produce current in  R  3 . Therefore, 

 R  3  has no  IR  drop. A voltmeter would read the same 24 V across  R  2  and from A to 

B. Since  V  AB  equals 24 V, this is the value of  V  TH . 

 Now consider why  R  3  does change the value of  R  TH . Remember that we must 

work from the outside in to calculate the total resistance. Then, A and B are 

like source terminals. As a result, the 3-�  R  1  and 6-�  R  2  are in parallel, for a 

combined resistance of 2 �. Furthermore, this 2 � is in series with the 4-�  R  3  

because  R  3  is in the main line from terminals A and B. Then  R  TH  is 2 � 4 � 6 �. 

As shown in Fig. 10–4 c , the Thevenin equivalent circuit consists of  V  TH  � 24 V 

and  R  TH  � 6 �. 

■ 10–2   Self-Review 
  Answers at end of chapter.  

  a.    For a Thevenin equivalent circuit, terminals A and B are open to fi nd 
both   V  TH   and   R  TH .  (True/False)   

 b.    For a Thevenin equivalent circuit, the source voltage is short-
circuited only to fi nd   R  TH .  (True/False)        

  10–3  Thevenizing a Circuit with Two 
Voltage Sources 

  The circuit in Fig. 10–5 has already been solved by Kirchhoff’s laws, but we can 

use Thevenin’s theorem to fi nd the current  I  3  through the middle resistance  R  3 . As 

shown in Fig. 10–5 a , fi rst mark the terminals A and B across  R  3 . In Fig. 10–5 b ,  R  3  is 

disconnected. To calculate  V  TH , fi nd  V  AB  across the open terminals. 

Figure 10–5 Thevenizing a circuit with two voltage sources  V  1  and  V  2 . ( a ) Original circuit 
with terminals A and B across the middle resistor  R  3 . ( b ) Disconnect  R  3  to fi nd that  V  AB  is 
−33.6 V. ( c ) Short-circuit  V  1  and  V  2  to fi nd that  R  AB  is 2.4 �. ( d  ) Thevenin equivalent with  R  L  
reconnected to terminals A and B.

(a )

21 V
V2 �

6 �
R3 �

R2 � 3 �R1 � 12 �

84 V
V1�

A

B

(b )

�33.6 V

R2 � 3 �R1 � 12 �

VAB�

84 V
V1 �

A

B

V2 �VTH �

21 V

(c )

2.4 �
RAB �

12 �
R1�

A

B

RTH � R2 �
3 �

(d )

6 �
R3 � RL �

RTH � 2.4 �

33.6 V
VTH �

A

B

IL � 4 A 
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       Superposition Method 
 With two sources, we can use superposition to calculate  V  AB . First short-circuit  V  2 . 

Then the 84 V of  V  1  is divided between  R  1  and  R  2 . The voltage across  R  2  is between 

terminals A and B. To calculate this divided voltage across  R  2 ,

   V R2

  �   
R2 ____ 

 R 1�2 
   � V1 �   3 ___ 

15
   � (�84)

 V R2

  � �16.8 V   

 This is the only contribution of  V  1  to  V  AB . The polarity is negative at terminal A. 

 To fi nd the voltage that  V  2  produces between A and B, short-circuit  V  1 . Then 

the voltage across  R  1  is connected from A to B. To calculate this divided voltage 

across  R  1 ,

 V R1

    �   
R1 ____ 

 R 1�2 
   � V2 �   12 ___ 

15
   � (�21)

 V R2

  � �16.8 V   

 Both  V  1  and  V  2  produce �16.8 V across the AB terminals with the same polarity. 

Therefore, they are added. 

 The resultant value of  V  AB  � �33.6 V, shown in Fig. 10–5 b , is the value of  V  TH . 

The negative polarity means that terminal A is negative with respect to B. 

 To calculate  R  TH , short-circuit the sources  V  1  and  V  2 , as shown in Fig. 10–5 c . 

Then the 12-�  R  1  and 3-�  R  2  are in parallel across terminals A and B. Their com-

bined resistance is 36�15, or 2.4 �, which is the value of  R  TH . 

 The fi nal result is the Thevenin equivalent in Fig. 10–5 d  with an  R  TH  of 2.4 � and 

a  V  TH  of 33.6 V, negative toward terminal A. 

 To fi nd the current through  R  3 , it is reconnected as a load resistance across ter-

minals A and B. Then  V  TH  produces current through the total resistance of 2.4 � for 

 R  TH  and 6 � for  R  3 :

  I3 �   
VTH _ 

RTH � R3

   �   33.6 _ 
2.4 � 6

   �   33.6 ____ 
8.4

   � 4 A   

 This answer of 4 A for  I  3  is the same value calculated before, using Kirchhoff’s 

laws, in Fig. 9–5.  

 It should be noted that this circuit can be solved by superposition alone, without 

using Thevenin’s theorem, if  R  3  is not disconnected. However, opening terminals A 

and B for the Thevenin equivalent simplifi es the superposition, as the circuit then 

has only series voltage dividers without any parallel current paths. In general, a cir-

cuit can often be simplifi ed by disconnecting a component to open terminals A and 

B for Thevenin’s theorem. 

■ 10–3   Self-Review 
  Answers at end of chapter.  

    In the Thevenin equivalent circuit in Fig. 10–5  d  ,  
 a.     How much is   R  T ?  
 b.     How much is  V RL

  ?       

  10–4 Thevenizing a Bridge Circuit 
  As another example of Thevenin’s theorem, we can fi nd the current through the 

2-�  R  L  at the center of the bridge circuit in Fig. 10–6 a . When  R  L  is disconnected 

to open terminals A and B, the result is as shown in Fig. 10–6 b . Notice how the 

circuit has become simpler because of the open. Instead of the unbalanced bridge 

 GOOD TO KNOW 
 The polarity of  V  TH  is extremely 

critical because it allows us to 

determine the actual direction of 

 I  3  through  R  3 . 
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290 Chapter 10

in Fig. 10–6 a  which would require Kirchhoff’s laws for a solution, the Thevenin 

equivalent in Fig. 10–6 b  consists of just two voltage dividers. Both the  R  3  –  R  4  divider 

and the  R  1  –  R  2  divider are across the same 30-V source.  

 Since the open terminal A is at the junction of  R  3  and  R  4 , this divider can be used 

to fi nd the potential at point A. Similarly, the potential at terminal B can be found 

from the  R  1  –  R  2  divider. Then  V  AB  is the difference between the potentials at termi-

nals A and B. 

 Note the voltages for the two dividers. In the divider with the 3-�  R  3  and 6-�  R  4 , 

the bottom voltage  V   R4 
   is 6⁄9 � 30 � 20 V. Then  V R3

  at the top is 10 V because both 

must add up to equal the 30-V source. The polarities are marked negative at the top, 

the same as the source voltage  V . 

 Similarly, in the divider with the 6-�  R  1  and 4-�  R  2 , the bottom voltage   V R2

     is 
4⁄10 � 30 � 12 V. Then   V R1

     at the top is 18 V because the two must add up to equal 

the 30-V source. The polarities are also negative at the top, the same as  V . 

 Now we can determine the potentials at terminals A and B with respect to a 

common reference to fi nd  V  AB . Imagine that the positive side of the source  V  is con-

nected to a chassis ground. Then we would use the bottom line in the diagram as 

our reference for voltages. Note that   V R4

     at the bottom of the  R  3  �  R  4  divider is the 

same as the potential of terminal A with respect to ground. This value is �20 V, with 

terminal A negative. 

 Similarly,   V R2

     in the  R  1 � R  2  divider is the potential at B with respect to ground. 

This value is �12 V with terminal B negative. As a result,  V  AB  is the difference be-

tween the �20 V at A and the �12 V at B, both with respect to the common ground 

reference. 

 The potential difference  V  AB  then equals  

 V  AB  � �20 � (�12) � �20 � 12 � �8 V 

 Terminal A is 8 V more negative than B. Therefore,  V  TH  is 8 V, with the negative side 

toward terminal A, as shown in the Thevenin equivalent in Fig. 10–6 d . 

 The potential difference  V  AB  can also be found as the difference between   V R3

     

and   V R1

     in Fig. 10–6 b . In this case,   V R3

     is 10 V and   V R1

     is 18 V, both positive with 

Figure 10–6    Thevenizing a bridge circuit. ( a ) Original circuit with terminals A and B across middle resistor  R  L . ( b ) Disconnect  R  L  to fi nd  V  AB  of 
�8 V. ( c ) With source  V  short-circuited,  R  AB  is 2 � 2.4 � 4.4 �. ( d  ) Thevenin equivalent with  R  L  reconnected to terminals A and B. 

R3 �
3 �

RL � 2 �

R4 �
6 �

R2 �
4 �

C

D

BA

V �
30 V

(a )

R1 �
6 �

(b )

VAB � �8 V
V �
30 V

R2 � 4 �

R1 � 6 �

R4 � 6 �

10 V

20 V

18 V

12 V

�

�

�

�

�

�

�

�

R3 � 3 �

A B

RTB
�

2.4 �
RTA

�
2 �

R4 �
6 �

R3 �
3 �

R2 �
4 �

C D D C

Short circuit across V

R1 �
6 �

RAB � 4.4 �

A B

(c ) (d )

IL � 1.25 A

A

RL �
2 �VTH � 8 V

RTH � 4.4 �

B

sch10858_ch10_282-313.indd   290sch10858_ch10_282-313.indd   290 3/15/10   11:15:18 AM3/15/10   11:15:18 AM



Network Theorems 291

respect to the top line connected to the negative side of the source  V . The potential 

difference between terminals A and B then is 10 � 18, which also equals �8 V. 

Note that  V  AB  must have the same value no matter which path is used to determine 

the voltage. 

 To fi nd  R  TH , the 30-V source is short-circuited while terminals A and B are still 

open. Then the circuit looks like Fig. 10–6 c . Looking back from terminals A and B, 

the 3-�  R  3  and 6-�  R  4  are in parallel, for a combined resistance   R TA

     of 18⁄9 or 2 �. 

The reason is that  R  3  and  R  4  are joined at terminal A, while their opposite ends are 

connected by the short circuit across the source  V . Similarly, the 6-�  R  1  and 4-�  R  2  

are in parallel for a combined resistance   R TB

     of 24⁄10 � 2.4 �. Furthermore, the short 

circuit across the source now provides a path that connects   R TA

     and   R TB

     in series. The 

entire resistance is 2 � 2.4 � 4.4 � for  R  AB  or  R  TH . 

 The Thevenin equivalent in Fig. 10–6 d  represents the bridge circuit feeding the 

open terminals A and B with 8 V for  V  TH  and 4.4 � for  R  TH . Now connect the 2-�  R  L  

to terminals A and B to calculate  I  L . The current is

  IL �   
VTH _ 

RTH � RL

   �   8 _______ 
4.4 � 2

   �   8 ___ 
6.4

  

IL � 1.25 A   

 This 1.25 A is the current through the 2-�  R  L  at the center of the unbalanced bridge 

in Fig. 10–6 a . Furthermore, the amount of  I  L  for any value of  R  L  in Fig. 10–6 a  can 

be calculated from the equivalent circuit in Fig. 10–6 d . 

■ 10–4   Self-Review 
  Answers at end of chapter.  

    In the Thevenin equivalent circuit in Fig. 10–6  d  ,  
 a.     How much is   R  T ?  
 b.    How much is          V RL

 ?      

  10–5 Norton’s Theorem 
  Named after E. L. Norton, a scientist with Bell Telephone Laboratories, Norton’s 

theorem is used to simplify a network in terms of currents instead of voltages. In 

many cases, analyzing the division of currents may be easier than voltage analysis. 

For current analysis, therefore, Norton’s theorem can be used to reduce a network 

to a simple parallel circuit with a current source. The idea of a  current source  is that 

it supplies a total line current to be divided among parallel branches, corresponding 

to a  voltage source  applying a total voltage to be divided among series components. 

This comparison is illustrated in Fig. 10–7.  

  Example of a Current Source 
 A source of electric energy supplying voltage is often shown with a series resistance 

that represents the internal resistance of the source, as in Fig. 10–7 a . This method 

corresponds to showing an actual voltage source, such as a battery for dc circuits. 

However, the source may also be represented as a current source with a parallel resis-

tance, as in Fig. 10–7 b . Just as a voltage source is rated at, say, 10 V, a current source 

may be rated at 2 A. For the purpose of analyzing parallel branches, the concept of a 

current source may be more convenient than the concept of a voltage source. 

 If the current  I  in Fig. 10–7 b  is a 2-A source, it supplies 2 A no matter what is 

connected across the output terminals A and B. Without anything connected across 

A and B, all 2 A fl ows through the shunt  R . When a load resistance  R  L  is connected 

across A and B, then the 2-A  I  divides according to the current division rules for 

parallel branches. 

(a )

�

�

R

V RL

A

B

LoadSource

R

(b )

A

B

LoadSource

RL

I

G

(c )

A

B

LoadSource

GL

I

Figure 10–7    General forms for a 
voltage source or current source connected 
to a load  R  L  across terminals A and B. 
( a ) Voltage source  V  with series  R . 
( b ) Current source  I  with parallel  R . 
( c ) Current source  I  with parallel 
conductance  G . 
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 Remember that parallel currents divide inversely to branch resistances but di-

rectly with conductances. For this reason it may be preferable to consider the cur-

rent source shunted by the conductance  G , as shown in Fig. 10–7 c . We can always 

convert between resistance and conductance because 1� R  in ohms is equal to  G  in 

siemens. 

 The symbol for a current source is a circle with an arrow inside, as shown in 

Fig. 10–7 b  and  c , to show the direction of current. This direction must be the same 

as the current produced by the polarity of the corresponding voltage source. Re-

member that a source produces electron fl ow out from the negative terminal. 

 An important difference between voltage and current sources is that a current 

source is killed by making it open, compared with short-circuiting a voltage source. 

Opening a current source kills its ability to supply current without affecting any par-

allel branches. A voltage source is short-circuited to kill its ability to supply voltage 

without affecting any series components.   

  The Norton Equivalent Circuit 
 As illustrated in Fig. 10–8, Norton’s theorem states that the entire network con-

nected to terminals A and B can be replaced by a single current source  I  N  in paral-

lel with a single resistance  R  N . The value of  I  N  is equal to the short-circuit current 

through the AB terminals. This means fi nding the current that the network would 

produce through A and B with a short circuit across these two terminals.  

 The value of  R  N  is the resistance looking back from open terminals A and B. 

These terminals are not short-circuited for  R  N  but are open, as in calculating  R  TH  for 

Thevenin’s theorem. Actually, the single resistor is the same for both the Norton and 

Thevenin equivalent circuits. In the Norton case, this value of  R  AB  is  R  N  in parallel 

with the current source; in the Thevenin case, it is  R  TH  in series with the voltage 

source.  

  Nortonizing a Circuit 
 As an example, let us recalculate the current  I  L  in Fig. 10–9 a , which was solved 

before by Thevenin’s theorem. The fi rst step in applying Norton’s theorem is to 

imagine a short circuit across terminals A and B, as shown in Fig. 10–9 b . How much 

current is fl owing in the short circuit? Note that a short circuit across AB short-

circuits  R  L  and the parallel  R  2 . Then the only resistance in the circuit is the 3-�  R  1  

in series with the 36-V source, as shown in Fig. 10–9 c . The short-circuit current, 

therefore, is  

  IN �   36 V _____ 
3 �

   � 12 A  

 This 12-A  I  N  is the total current available from the current source in the Norton 

equivalent in Fig. 10–9 e . 

 To fi nd  R  N , remove the short circuit across A and B and consider the terminals 

open without  R  L . Now the source  V  is considered short-circuited. As shown in 

Fig. 10–9 d , the resistance seen looking back from terminals A and B is 6 � in paral-

lel with 3 �, which equals 2 � for the value of  R  N . 

 GOOD TO KNOW 
 A current source symbol that 

uses a solid arrow indicates the 

direction of conventional current 

flow. A dashed or broken arrow  

indicates the direction of electron 

flow. 

�

�

A

B

A

B

IN RNNetwork

Figure 10–8    Any network in the block at the left can be reduced to the Norton equivalent 
parallel circuit at the right. 
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 The resultant Norton equivalent is shown in Fig. 10–9 e . It consists of a 12-A 

current source  I  N  shunted by the 2-�  R  N . The arrow on the current source shows the 

direction of electron fl ow from terminal B to terminal A, as in the original circuit. 

 Finally, to calculate  I  L , replace the 2-�  R  L  between terminals A and B, as shown 

in Fig. 10–9 f . The current source still delivers 12 A, but now that current divides 

between the two branches of  R  N  and  R  L . Since these two resistances are equal, the 

12-A  I  N  divides into 6 A for each branch, and  I  L  is equal to 6 A. This value is the 

same current we calculated in Fig. 10–3, by Thevenin’s theorem. Also,  V  L  can be 

calculated as  I  LRL , or 6 A � 2 �, which equals 12 V.  

  Looking at the Short-Circuit Current 
 In some cases, there may be a question of which current is  I  N  when terminals A and 

B are short-circuited. Imagine that a wire jumper is connected between A and B 

to short-circuit these terminals. Then  I  N  must be the current that fl ows in this wire 

between terminals A and B. 

 Remember that any components directly across these two terminals are also 

short-circuited by the wire jumper. Then these parallel paths have no effect. How-

ever, any components in series with terminal A or terminal B are in series with the 

wire jumper. Therefore, the short-circuit current  I  N  also fl ows through the series 

components. 

 An example of a resistor in series with the short circuit across terminals A and B 

is shown in Fig. 10–10. The idea here is that the short-circuit  I  N  is a branch current, 

not the main-line current. Refer to Fig. 10–10 a . Here the short circuit connects  R  3  

across  R  2 . Also, the short-circuit current  I  N  is now the same as the current  I  3  through 

 R  3 . Note that  I  3  is only a branch current.  

 To calculate  I  3 , the circuit is solved by Ohm’s law. The parallel combination of  R  2  

with  R  3  equals 72⁄18 or 4 �. The  R  T  is 4 � 4 � 8 �. As a result, the  I  T  from the source 

is 48 V� 8 � � 6 A. 

 This  I  T  of 6 A in the main line divides into 4 A for  R  2  and 2 A for  R  3 . The 2-A 

 I  3  for  R  3  fl ows through short-circuited terminals A and B. Therefore, this current of 

2 A is the value of  I  N . 

RL �
2 �

R1 � 3 �

R2 �
6 �

A

B

V �
36 V

(a )

RL �
2 �

R1 � 3 �

R2 �
6 �

A

B

V �
36 V

Short
circuit

(b )

R1 � 3 �
A

B

V �
36 V

IN �
12 A

(c )

R1 � 3 �
A

B

R2 �
6 �

(d )

RAB �
2 �

(e )

A

B

RN �
2 �

IN � 12 A

(f )

A

B

RN �
2 �

6 A 6 A

RL �
2 �

IN � 12 A

MultiSim   Figure 10–9    Same circuit as in Fig. 10–3, but solved by Norton’s theorem. ( a ) Original circuit. ( b ) Short circuit across terminals 
A and B. ( c ) The short-circuit current  I  N  is 36⁄3 � 12 A. ( d  ) Open terminals A and B but short-circuit  V  to fi nd  R  AB  is 2 �, the same as  R  TH . 
( e ) Norton equivalent circuit. ( f  )  R  L  reconnected to terminals A and B to fi nd that  I  L  is 6 A. 
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 To fi nd  R  N  in Fig. 10–10 b , the short circuit is removed from terminals A and B. 

Now the source  V  is short-circuited. Looking back from open terminals A and B, the 

4-�  R  1  is in parallel with the 6-�  R  2 . This combination is 24⁄10 � 2.4 �. The 2.4 � is 

in series with the 12-�  R  3  to make  R  AB  � 2.4 � 12 � 14.4 �. 

 The fi nal Norton equivalent is shown in Fig. 10–10 c . Current  I  N  is 2 A because 

this branch current in the original circuit is the current that fl ows through  R  3  and 

short-circuited terminals A and B. Resistance  R  N  is 14.4 � looking back from open 

terminals A and B with the source  V  short-circuited the same way as for  R  TH . 

■ 10–5   Self-Review 
  Answers at end of chapter.  

 a.     For a Norton equivalent circuit, terminals A and B are short-circuited 
to fi nd   I  N .  (True/False)   

 b.    For a Norton equivalent circuit, terminals A and B are open to fi nd  
 R  N .  (True/False)        

  10–6 Thevenin-Norton Conversions 
  Thevenin’s theorem says that any network can be represented by a voltage source 

and series resistance, and Norton’s theorem says that the same network can be rep-

resented by a current source and shunt resistance. It must be possible, therefore, 

to convert directly from a Thevenin form to a Norton form and vice versa. Such 

conversions are often useful. 

  Norton from Thevenin 
 Consider the Thevenin equivalent circuit in Fig. 10–11 a . What is its Norton equiva-

lent? Just apply Norton’s theorem, the same as for any other circuit. The short-

circuit current through terminals A and B is

  IN �   
VTH _ 
RTH

   �   15 V _____ 
3 �

   � 5 A    

B

(a )

V �
48 V

6 A 4 A 2 A

R1 � 4 � R3 � 12 � A

R2 �
6 �

(b )

R1 � 4 � A

B

R2 �
6 � RAB � 14.4 �

R3 � 12 �

IN � 2 A

(c )

A

B

RN �
14.4 �

Figure 10–10    Nortonizing a circuit where the short-circuit current  I  N  is a branch current. ( a )  I  N  is 2 A through short-circuited terminals 
A and B and  R  3 . ( b )  R  N  �  R  AB  � 14.4 �. ( c ) Norton equivalent circuit. 

(a ) (b )

IN � 5 A
A

B

RTH � 3 �

VTH � 15 V

A

B

RN �
3 �

Figure 10–11    Thevenin equivalent circuit in ( a ) corresponds to the Norton equivalent in ( b ). 

 GOOD TO KNOW 
 An ideal current source is 

assumed to have an internal 

resistance of infinite ohms. 

Therefore, when calculating the 

Thevenin resistance,  R  TH , it is only 

practical to consider a current 

source as an open circuit. 
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 The resistance, looking back from open terminals A and B with the source  V  TH  

short-circuited, is equal to the 3 � of  R  TH . Therefore, the Norton equivalent consists 

of a current source that supplies the short-circuit current of 5 A, shunted by the 

same 3-� resistance that is in series in the Thevenin circuit. The results are shown 

in Fig. 10–11 b .   

  Thevenin from Norton 
 For the opposite conversion, we can start with the Norton circuit of Fig. 10–11 b  and 

get back to the original Thevenin circuit. To do this, apply Thevenin’s theorem, the 

same as for any other circuit. First, we fi nd the Thevenin resistance by looking back 

from open terminals A and B. An important principle here, though, is that, although 

a voltage source is short-circuited to fi nd  R  TH , a current source is an open circuit. In 

general, a current source is killed by opening the path between its terminals. There-

fore, we have just the 3-�  R  N , in parallel with the infi nite resistance of the open 

current source. The combined resistance then is 3 �. 

 In general, the resistance  R  N  always has the same value as  R  TH . The only differ-

ence is that  R  N  is connected in parallel with  I  N , but  R  TH  is in series with  V  TH . 

 Now all that is required is to calculate the open-circuit voltage in Fig. 10–11 b  to 

fi nd the equivalent  V  TH . Note that with terminals A and B open, all current from the 

current source fl ows through the 3-�  R  N . Then the open-circuit voltage across the 

terminals A and B is

  INRN � 5 A � 3 � � 15 V � VTH   

 As a result, we have the original Thevenin circuit, which consists of the 15-V source 

 V  TH  in series with the 3-�  R  TH .  

  Conversion Formulas 
 In summary, the following formulas can be used for these conversions: 

  Thevenin from Norton: 

  RTH � RN

VTH � IN � RN   

  Norton from Thevenin: 

  RN � RTH

IN � VTH�RTH   

 Another example of these conversions is shown in Fig. 10–12.  

Figure 10–12    Example of Thevenin-Norton conversions. ( a ) Original circuit, the same as in Figs. 10–3 a  and 10–9 a . ( b ) Thevenin equivalent. 
( c ) Norton equivalent. 

(b ) (c )(a )

RN �
2 �

RTH � 2 �
A

B

A

B

A

B

V �
36 V

R1 � 3 �

R2 �
6 �

IN � 12 A

VTH �
24 V
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