
Natural Language Processing
SoSe 2016

Words and Language Model

Dr. Mariana Neves May 2nd, 2016

Outline

● Words

● Language Model

2

Outline

● Words

● Language Model

3

Tokenization

● Separation of words in a sentence

„Latest figures from the US government show the trade
deficit with China reached an all-time high of $365.7bn
(£250.1bn) last year. By February this year it had already
reached $57bn.“

„Latest figures from the US government show the trade
deficit with China reached an all time high of $ 365.7 bn
(£ 250.1 bn) last year . By February this year it had
already reached $ 57 bn .“

4 (http://www.bbc.com/news/election-us-2016-36185012)

Tokenization

● Issues related to tokenization:

– Separators: punctuations

● Exceptions: „m.p.h“, „Ph.D“

– Expansions: „we're“ = „we are“

– Multi-words expressions: „New York“, „doghouse“

5

Segmentation = Tokenization

● Word segmentation: separation of the morphemes but also
tokenization for languages without 'space' character

6 (http://www.basistech.com/better-multilingual-search/)

Sentence separation (splitting)

● Also usually based on punctuations (.?!)

– Exceptions: „Mr.“, „4.5“

7

Approaches for Tokenization

● Based on rules or machine learning

– Binary classifers that decides whether a certain
punctuation is part of a word or not

● Based on regular expressions

8

Approaches for Segmentation

● Maximum matching approach

– Based on a dictionary

– Longest sequence of letters that forms a word

● Palmer (2000):

9

thetabledownthere

thetabledownthere

thetabledownthere

thetabledownthere

Outline

● Words

● Language Model

10

Language model

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

11

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...

Language model

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

12

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...





Motivation: Speech recognition

– „Computers can recognize speech.“

– „Computers can wreck a nice peach.”

– „Give peace a chance.“

– „Give peas a chance.“

– Ambiguity in speech:

● „Friday“ vs. „fry day“
● „ice cream“ vs. „I scream“

13 (http://worldsgreatestsmile.com/html/phonological_ambiguity.html)

Motivation: Handwriting recognition

14 (https://play.google.com/store/apps/details?id=com.metamoji.mazecen)

Motivation: Handwriting recognition

● „Take the money and run“, Woody Allen:

– „Abt naturally.“ vs. „Act naturally.“

– „I have a gub.” vs. „I have a gun.“

15 (https://www.youtube.com/watch?v=-UHOgkDbVqc)

Motivation: Machine Translation

● „The cat eats...“

– „Die Katze frisst...“

– „Die Katze isst...“

● Chinese to English:

– „He briefed to reporters on the chief contents of the statements“

– „He briefed reporters on the chief contents of the statements“

– „He briefed to reporters on the main contents of the statements“

– „He briefed reporters on the main contents of the statements“

16

Motivation: Spell Checking

● „I want to adver this project“

– „adverb“ (noun)

– „advert“ (verb)

● „They are leaving in about fifteen minuets to go to her house.“

– „minutes“

● „The design an construction of the system will take more than a
year.“

– „and“

17

Language model

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

● „Computers can recognize speech.“

– P(Computer, can, recognize, speech)

18

Conditional Probability

19

P (A∣B)=
P (A∩B)

P (A)

P (A , B)=P (A)⋅P (B∣A)

P (A , B ,C , D)=P (A)⋅P (B∣A)⋅P (C∣A ,B)⋅P (D∣A ,B ,C)

Conditional Probability

20

P(S)=P (w1)⋅P (w2∣w1)⋅P(w3∣w1 , w2)...P (wn∣w1 ,w2 , , w3 , ... , , wn)

P (S)= ∏ P (w i∣w1 ,w2 , ... ,wi−1)
n

i

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

Corpus

● Probabilities are based on counting things

● A corpus is a computer-readable collection of text or speech

– Corpus of Contemporary American English

– The British National Corpus

– The International Corpus of English

– The Google N-gram Corpus (
https://books.google.com/ngrams)

– But also many small corpora for particular domains/tasks...

21

https://books.google.com/ngrams

Word occurrence

● A language consists of a set of „V“ words (Vocabulary)

● A word can occur several times in a text

– Word Token: each occurrence of words in text

– Word Type: each unique occurrence of words in the text

● „This is a sample text from a book that is read every day.“

– # Word Tokens: 13

– # Word Types: 11

22

Word occurrence

● Google N-Gram corpus

– 1,024,908,267,229 word tokens

– 13,588,391 word types

● Why so many word types?

– Large English dictionaries have around 500k word types

23

Word frequency

24

Zipf's Law

● The frequency of any word is inversely proportional to its rank
in the frequency table

● Given a corpus of natural language utterances, the most
frequent word will occur approximately

– twice as often as the second most frequent word,

– three times as often as the third most frequent word,

– …

● Rank of a word times its frequency is approximately a constant

– Rank · Freq ≈ c

– c ≈ 0.1 for English

25

Zipf's Law

26

Zipf's Law

● Zipf’s Law is not very accurate for very frequent and very
infrequent words

27

Zipf's Law

● But very precise for intermediate ranks

28

Back to Conditional Probability

29

P (S)=P (w1)⋅P (w2∣w1)⋅P (w3∣w1 , w2)... P (wn∣w1 ,w2 , ,w3 , ... , , wn)

P (S)= ∏ P (w i∣w1 ,w2 , ... ,wi−1)
n

i

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

Maximum Likelihood Estimation

● P(speech|Computer can recognize)

● Too many phrases

● Limited text for estimating probabilities

● Simplification assumption

30

P (speech∣Computer can recognize)=
#(Computer can recognize speech)

(Computer can recognize)

Markov assumption

31

P (S)= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i−1

P (S)= ∏ P (w i∣wi−1)
n

i−1

Markov assumption

32

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|can)·
P(speech|recognize)

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

P (speech∣recognize)=
#(recognize speech)

(recognize)

N-gram model

● Unigram:

● Bigram:

● Trigram:

● N-gram:

33

P (S)= ∏ P (wi∣w1 , w2 , ... , w i−1)
n

i−1

P (S)= ∏ P (w i∣wi−1 ,w i−2)
n

i−1

P (S)= ∏ P (w i∣wi−1)
n

i−1

P (S)= ∏ P (w i)
n

i−1

N-gram model

34

Maximum Likelihood Estimation

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● Vocabulary:

– V = {I,saw,the,boy,man,is,working,walked,in,street}

35

Maximum Likelihood Estimation

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s

36

Maximum Likelihood Estimation

● Estimation of maximum likelihood for a new sentence

– <s> I saw the man </s>

37

P(S)=P (I∣< s>)⋅P (saw∣I)⋅P(the∣saw)⋅P (man∣the)

P(S)=
#(< s> I)
(< s>)

⋅
#(I saw)

#(I)
⋅
#(saw the)
#(saw)

⋅
#(theman)

(the)

P (S)=
2
3
⋅
1
2
⋅
1
1
⋅
1
3

Unknown words

● <s> I saw the woman </s>

● Possible Solutions:

– Closed vocabulary: test set can only contain words from this lexicon

– Open vocabulary: test set can contain unknown words

● Out of vocabulary (OOV) words:
– Choose a vocabulary
– Convert unknown (OOV) words to <UNK> word token
– Estimate probabilities for <UNK>

– Replace the first occurrence of every word type in the training data by
<UNK>

38

Evaluation

● Divide the corpus to two parts: training and test

● Build a language model from the training set

– Word frequencies, etc..

● Estimate the probability of the test set

● Calculate the average branching factor of the test set

39

Branching factor

● The number of possible words that can be used in each
position of a text

● Maximum branching factor for each language is „V“

● A good language model should be able to minimize this
number

– give a higher probability to the words that occur in real
texts

40

Perplexity

● Goals: give higher probability to frequent texts

– minimize the perplexity of the frequent texts

41

P (S)=P (w1 ,w2 , ... ,wn)

Perplexity (S)=P (w1 , w2 , ... ,wn)
−
1
n= n√ 1

P (w1 ,w2 , ... ,wn)

Perplexity(S)=
n√ ∏ 1

P (w i∣w1 , w2 , ... ,wi−1)i=1

n

Perplexity

● Wall Street Journal (19,979 word vocabulary)

– Training set: 38 million word

– Test set: 1.5 million words

● Perplexity:

– Unigram: 962

– Bigram: 170

– Trigram: 109

42

Unknown n-grams

● Corpus:

– <s> I saw the boy </s>

– <s> the man is working </s>

– <s> I walked in the street </s>

● <s> I saw the man in the street </s>

43

P(S)=P (I)⋅P (saw∣I)⋅P (the∣saw)⋅P (man∣the)⋅P (i n∣man)⋅P (the∣i n)⋅P (street∣the)

P (S)=
#(I)

#(< s>)
⋅
#(I saw)

#(I)
⋅
#(saw the)
#(saw)

⋅
#(the man)

#(the)
⋅
#(man i n)
#(man)

⋅
#(i n the)
#(i n)

⋅
#(the street)

#(the)

P (S)=
2
3
⋅
1
2
⋅
1
1
⋅
1
3
⋅
0
1
⋅
1
1
⋅
1
3

Smoothing – Laplace (Add-one)

● Small probability to all unseen n-grams

● Add one to all counts

44

P (w i∣w i−1)=
#(w i−1 ,wi)+1

#(w i−1)+V
P (w i∣wi−1)=

#(w i−1 ,w i)

(wi−1)

Smoothing – Back-off

● Use a background probability

45

P (wi∣w i−1) =

#(w i−1 ,w i)

(wi−1)

PBG

if #(wi−1 , w i)>0

otherwise

Smoothing – Interpolation

● Use a background probability

46

P (w i∣w i−1)=λ1⋅
#(w i−1 ,wi)

(w i−1)
+λ2⋅PBG ∑ λ=1

Backgroung probability

● Lower levels of n-gram can be used as background probability

– Trigram » Bigram

– Bigram » Unigram

– Unigram » Zerogram

47

(
1
V

)

Background probability – Back-off

48

P (w i∣wi−1) =

#(wi−1 , wi)

#(wi−1)

α(wi)P (w i)

if #(wi−1 ,w i)>0

otherwise

P(w i) =

#(wi)

N

α(wi)
1
V

if #(wi)>0

otherwise

Background probability – Interpolation

49

P (w i∣wi−1)=λ1⋅
#(w i−1 ,wi)

#(wi−1)
+λ2⋅P (wi)

P(w i)=λ1⋅
#(w i)

N
+λ2⋅

1
V

P(w i∣wi−1)=λ1⋅
#(w i−1 ,wi)

#(wi−1)
+λ2⋅

#(wi)

N
+λ3⋅

1
V

Parameter Tuning

● Held-out dataset (development set)

– 80% (training), 10% (dev-set), 10% (test)

● Minimize the perplexity of the held-out dataset

50

Advanced Smoothing – Add-k

51

P (wi∣w i−1)=
#(wi−1 ,wi)+1

#(w i−1)+V

P (wi∣w i−1)=
#(w i−1 ,wi)+k

#(wi−1)+kV
(add-k, add-δ smoothing)

Advanced Smoothing – Absolute discounting

● Good estimates for high counts

– discount won't affect them much

● Lower counts are not trustworthy anyway

52

P (w i∣wi−1) =

#(wi−1 , wi)−δ

#(wi−1)

α(wi)⋅PBG (wi)

if #(wi−1 ,w i)>0

otherwise

Advanced Smoothing – novel continuation

● Estimation based on the lower-order n-gram

– „I cannot see without my reading …“

– unigram : „Francisco“, „glasses“, ...

● Observations:

– „Francisco“ is more common than „glasses“

– But „Francisco“ always follows „San“

– „Francisco“ is not a novel continuation for a text

53

Advanced Smoothing – novel continuation

● Solution

– Instead of P(w): How likely is „w“ to appear in a text?

– Pcontinuation(w): How likely is „w“ to appear as a novel
continuation?

– Count the number of words types after which „w“ appears

54

Pcontinuation(w)∝|wi−1 :#(wi−1 ,wi)>0|

Class-based n-grams

● Estimation probability for classes:

– Based on name-entity recognition

– CITY_NAME, AIRLINE, DAY_OF_WEEK, MONTH, etc.

● Training data: „to London“, „to Beijing“, „to Denver“, etc.

55

P (w i∣w i−1)≈P (ci∣ci−1)×P (w i∣ci−1)

Summary

● Words

– Tokenization, Segmentation

● Language Model

– Word occurrence (word type and word token)

– Zipf's Law

– Maximum Likelihood Estimation

● Markov assumption: N-Grams
– Evaluation: Perplexity

– Smoothing methods

56

Further reading

● Book Jurafski & Martin

– Chapters 3 (3.9) and 4

57

