
Natural Language Processing
SoSe 2016

Regular Expressions, Automata, Morphology and Transducers

Dr. Mariana Neves April 25th, 2016

Outline

● Regular Expressions

● Finite-State Automata

● Morphology

● Morphological parsing

● Finite-State Transducers

2

Outline

● Regular Expressions

● Finite-State Automata

● Morphology

● Morphological parsing

● Finite-State Transducers

3

Regular expressions

● Standard notation for searching strings in text

– grep, Emacs (Unix)

– Java, Python, Ruby, Perl, etc.

– http://regexr.com/

4 (http://twiki.org/cgi-bin/view/Codev/TWikiPresentation2013x03x07)

Regular expressions

5 (https://xkcd.com/208/)

Motivation – Named-entity recognition

6

(http://researcher.watson.ibm.com/researcher/files/us-yunyaoli/emnlp2010-SystemT-namedEntity.pdf)

Motivation – Information extraction

7

(http://www.aclweb.org/anthology/D08-1003)

Motivation - Chatterbot

● ELIZA (Weizenbaum 1966)

8

(http://www.personalityforge.com/book-expert.php)
(http://www.codeproject.com/Articles/18109/Building-an-AI-Chatbot-using-a-Regular-Expression)
(http://www.majidkhosravi.com/chat-bot/)

Motivation – Spell checking

● Checking spelling and grammar

● Suggesting alternatives for the errors

9

Regular expressions

● Specify classes of strings

● Consider a string as a sequence of alphanumeric characters

● Patterns to be searched for

● Documents of text to search through

10

Searching particular words

11
(http://regexr.com/)

Searching particular words

12
(http://regexr.com/)

Searching numbers

13
(http://regexr.com/)

Searching passages with numbers

14
(http://regexr.com/)

Named-entity recognition

15
(http://regexr.com/)

Outline

● Regular Expressions

● Finite-State Automata

● Morphology

● Morphological parsing

● Finite-State Transducers

16

Finite-State Automata (FSA)

● Regular expression

– is one way to describe FSA

– is one way to characterize a regular language

● Regular language can be characterized by

– Regular expressions

– FSAs

– Regular grammars

17

Finite-State Automata (FSA)

● FSAs are composed of

– Vertices (nodes)

– Arcs (links)

18

q
0

q
1

q
2

q
3

q
4

b a a !

a

string?

Finite-State Automata (FSA)

● FSAs are composed of

– Vertices (nodes)

– Arcs (links)

19

q
0

q
1

q
2

q
3

q
4

b a a !

a

baa!
baaa!

baaaa!
…

/baa+!/

FSA – accepting/rejecting strings

20

q
0

q
1

q
2

q
3

q
4

b a a !

a

a b a ! ba b a ! b

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

state transition table

FSA – accepting/rejecting strings

● Strings accepted

– baa!

– baaa!

● Strings rejected

– abc

– aba!

– ba!

– baaa

21

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

state transition table

Formalization of FSA

● : finite set of N states

● : finite input alphabet of symbols

● : the start state

● F: the set of final states,

● : the transition function (; input symbol)

22

Q=q0 q1q2 ...qN−1

q0

F⊆Q

δ(q ,i) q∈Q i∈Σ

Σ

Example: formalization for the „sheeptalk“

●

●

●

●

● defined by the transition table

23

Q=q0 q1q2q3 q4

q0

δ(q ,i)

Σ={a ,b , !}

F=q4

D-RECOGNIZE algorithm (step 1)

24

q
0

q
1

q
2

q
3

q
4

b a a !

a

a b a ! bb a a a !

index

current-state

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

D-RECOGNIZE algorithm (step 2)

25

q
0

q
1

q
2

q
3

q
4

b a a !

a

a b a ! bb a a a !

index

current-state

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

D-RECOGNIZE algorithm (step 3)

26

q
0

q
1

q
2

q
3

q
4

b a a !

a

a b a ! bb a a a !

index

current-state

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

D-RECOGNIZE algorithm (step 4)

27

q
0

q
1

q
2

q
3

q
4

b a a !

a

a b a ! bb a a a !

index

current-state

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

D-RECOGNIZE algorithm (step 5)

28

q
0

q
1

q
2

q
3

q
4

b a a !

a

a b a ! bb a a a !

index

current-state

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

● q
4
 is a final state and input is over, then the string is accepted!

(Pseudo-code for the algorithm in Jurafski and Martin book.)

Formal language

● A model that can both generate and recognize all and only the
strings given by its definition.

● An automaton can describe an infinite set with a closed form.

● „sheeptalk“ model „m“:

– ∑ = {b,a,!}

– L(m) = formal language characterized by „m“

– L(m) = {baa!,baaa!,baaaa!,....}

29

Formal language ≠ natural language

● But we can use formal languages to model parts of a natural
language

– Phonology, morphology or syntax

30

Modelling amounts of money (1-99 cents)

31

q
0

q
1

q
2

one
two
three
four
five

six
seven
eight
nine
ten

eleven
twelve
thirteen
fourteen
fifteen

sixteen
seventeen
eighteen
nineteen

one
two
three
four
five

six
seven
eight
nine
ten

twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

(Check example for dollars and cents in Jurafski & Martin book.)

Non-deterministic FSAs

32

q
0

q
1

q
2

q
3

q
4

b a a !

a

q
0

q
1

q
2

q
3

q
4

b a
a

!

ε

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Solutions for non-deterministic FSAs

● Backup

– Keep track of points with many choices

● Look-ahead

– Look ahead the input to decide the path

● Parallelism

– Explore many paths in parallel

33

ND-RECOGNIZE algorithm (step 1)

34

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b

q
0

q
1

q
2

q
3

q
4

b a a !

a

ND-RECOGNIZE algorithm (step 2)

35

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b

q
1
,a

q
0

q
1

q
2

q
3

q
4

b a a !

a

ND-RECOGNIZE algorithm (step 3)

36

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b

q
1
,a

q
2
,a

q
0

q
1

q
2

q
3

q
4

b a a !

a

ND-RECOGNIZE algorithm (step 4)

37

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b

q
1
,a

q
2
,a

q
3
,a

q
2
,a

q
0

q
1

q
2

q
3

q
4

b a a !

a

ND-RECOGNIZE algorithm (step 5)

38

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b

q
1
,a

q
2
,a

q
3
,a

q
2
,a

q
0

q
1

q
2

q
3

q
4

b a a !

a

ND-RECOGNIZE algorithm (step 6)

39

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b q

3
,!

q
1
,a q

2
,!

q
2
,a

q
3
,a

q
2
,a

q
0

q
1

q
2

q
3

q
4

b a a !

a

ND-RECOGNIZE algorithm (step 7)

40

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b q

3
,!

q
1
,a q

2
,!

q
2
,a

q
3
,a

q
2
,a

● q
4
 is a final state and input is over, then the string is accepted!

(Pseudo-code for the algorithm in Jurafski and Martin book.)

q
0

q
1

q
2

q
3

q
4

b a a !

a

State-Space Search

● The algorithm creates a space of possible solutions

– Path (solutions) are examined and accepted or rejected

● The order of the exploration plays an important role

– But there is no way of knowing it beforehand

● The ordering is not specified in the ND-RECOGNIZE algorithm

– Stack: depth-first-search, last in first out (LIFO)

– Queue: breadth-first search, first in first out (FIFO)

– For complex/large problems, dynamic programming is used

41

DFSA vs. NFSA

● There is a DFSA for every NFSA

– But it needs many more nodes

– As much as 2N, where „N“ is the number of distinct sets in
the original NFSA

42

Regular language - definition

● : alphabet, set all symbols in the language

● * : infinite set of all possible strings formed from

● Ø : empty set, which is a regular language

● L1 and L2 are languages, then:

– Concatenation:

– Union or disjunctions:

– Kleene closure: L1*

43

Σ

Σ Σ

L1⋅L2

L1∪L2

Outline

● Regular Expressions

● Finite-State Automata

● Morphology

● Morphological parsing

● Finite-State Transducers

44

Morphology

● The study of internal structures of words and how they can be
modified

● Parsing complex words into their components

45
(http://allthingslinguistic.com/post/50939757945/morphological-typology-illustrations-from)

Morphology

● Study of the morphemes

– A morpheme is the minimal meaning-bearing unit in a
language

– Stem: main morpheme

– Affixes: additional meanings

● Prefix (before)
● Suffix (after)
● Circumfix (both)
● Infix (middle)

46

Affixes

47

aus ge räumt
?

?

?

ge spiel t
?

?

?

un glaub lich
?

?

?

Affixes

48

aus ge räumt
prefix

prefix

stem

ge spiel t
circumfix

stem

un glaub lich
prefix

stem

suffix

Combining morphemes

● Inflection

– Resulting word is of the same class of the original word

– Plurals, conjugation of verbs

– cat (cats), play(played)

● Derivation

● Compounding

● Cliticization

49

Combining morphemes

● Inflection

● Derivation

– Resulting word is of a distinct class of the original word

– For instance, verbs to nouns or to adjectives

– compute (computation, computational)

● Compounding

● Cliticization

50

Combining morphemes

● Inflection

● Derivation

● Compounding

– Combination of multiple word stems

– doghouse

● Cliticization

51

Combining morphemes

● Inflection

● Derivation

● Compounding

● Cliticization

– Combination of a word stem with a clitic

– Clitic: a morpheme that acts like a word but is reduced and
attached to another word

– I've, l'opera

52

Outline

● Regular Expressions

● Finite-State Automata

● Morphology

● Morphological parsing

● Finite-State Transducers

53

Morphological parsing

● Breaking down words into components and building a
structured representation

– English:

● cats cat +N +Pl
● caught catch +V +Past

– Spanish:

● vino (came) venir +V +Perf +3P +Sg
● vino (wine) vino +N +Masc +Sg

54

Motivation for morphological parsing

● Information retrieval

– Normalize verb tenses, plurals, grammar cases

● Machine translation

– Translation based on the stem

55

Stemming vs. Lemmatization

● Stemming: stripping off word endings (rule-based)

– foxes fox

– going go

● Lemmatization: mapping the word to its lemma (lexicon-
based)

– sang, sung sing

– going, went, goes go

56

Morphological parsing

● Resources

– Lexicon

● List of all stems and affixes
– Morphotactics

● A model of morpheme ordering in a word
● e.g., plurals are suffixes in English

– Ortographic rules

● Rules for changing in the words when combining
morphemes

● e.g., city cities

57

Finite-State Lexicon

● FSA for English nominal inflection (same word category)

58

q
0

q
1

q
2

reg-noun
(cat,dog,house)

plural -s
(cats,dogs,houses)

irreg-sg-noun
(goose,mouse,fish)

irreg-pl-noun
(geese,mice)

(Check example for verbal inflections in Jurafski & Martin book.)

Finite-State Lexicon

● FSA for derivational morphology (distinct word categories)

59

q
0

q
1

q
2

un- adj-root

q
2

-er -est -ly

ɛ

Correct adjectives:
- cooler
- unhappiest
- bigger

Incorrect adjectives:
- unbigger
- oranger
- smally

Solution: classes of roots (adj-root
1
, adj-root

2
, etc.)

Outline

● Regular Expressions

● Finite-State Automata

● Morphology

● Morphological parsing

● Finite-State Transducers

60

Finite-State Transducers (FST)

● FST is a type of FSA which maps between two sets of symbols.

● It is a two-tape automaton that recognizes or generates pairs
of strings, one from each type.

● FST defines relations between sets of strings.

61

q
0

q
1

a:ba

b:b

b:a

b:εaa:b

Finite-State Transducers for NLP

● FST as recognizer

– Takes a pair of strings and accepts or rejects them

● FST as generator

– Outputs a pair of strings for a language

● FST as translator

– Reads a string and outputs another string

– Morphological parsing: letters (input); morphemes (output)

● FST as relater

– Computes relations between sets

62

Formalization of FST

● : finite set of N states

● : finite input alphabet of symbols

● : finite output alphabet of symbols

● : the start state

● F: the set of final states,

● : the transition function (; input string)
returns a set of new states

● : the output function (; input string)
returns a set of output strings

63

Q=q0 q1q2 ...qN−1

q0

F⊆Q

δ(q ,w) q∈Q w∈Σ

Σ

Δ

Q'∈Q

σ(q ,w) q∈Q w∈Σ
o∈Δ

Regular Languages and Regular Relations

● FSA: Regular languages are sets of strings

● FST: Regular relations are sets of pairs of strings

– Properties

● Inversion: It switches the input and output labels
● Composition:

64

q
0

q
1

a:b

a:b
q

0
q

1

b:c

b:c
q

0
q

1

a:c

a:c
• =

Determinism for FST

● Not all FST can be determinized: They require search algorithms

● Sequential transducers: deterministic subtype of FST

● Subsequencial transducers

– Generate and additional output string at the final states

65

q
0

q
1

a:ba

b:b

a:b

b:ε

Determinism for FST

● Properties of sequential and subsequential transducers

– Efficient

– Linear in their input length

– There are efficient algorithms for their determinization

– But cannot handle ambiguity

66

FST for Morphological Parsing

● Two tapes

– Upper (lexical) tape: input alphabet Σ

● cat +N +Pl
– Lower (surface) tape: output alphabet Δ

● cats

67

FST for Morphological Parsing

● goose/geese: g:g o:e o:e s:s e:e

– Feasible pairs (e.g., o:e) vs. default pairs (g:g)

68

1 2

0
3 4 5 6

7

f f

o
o

x
x

+N
ε

a
a

t
t

+Pl
^s#

+Sg
#

+Sg
#

+Pl
#

+N
ε

+N
ε

c
c

g
g o

o
o
o

s
s

e
e

o
e o

e
s
s

e
e

FST and Ortographical Rules

● Plural of „fox“ is „foxes“ not „foxs“

● Consonant double: beg/begging

● E deletion: make/making

● E insertion: watch/watches

● Y replacement: try/tries

● K insertion: panic/panicked

69

FST and Ortographical Rules

● Lexical: foxes +N +Pl

● Intermediate: fox^s#

● Surface: foxes

70

q
0

^:ε
other

#

q
1

q
2

q
3

q
4

q
5

s

#

ε:e

^:ε
s

other

z,s,x

z,s,x

#,other

^:ε

z,x#,other

Combination of FST Lexicon and Rules

71

Lexical

Intermediate

Surface

fox +N +Pl

fox^s#

foxes

LEXICON-FST

FST
1
...FST

n

(ortographical
rules)

FST Lexicon and Rules

● Disambiguation

– For some cases, it requires external evidences:

● I saw two foxes yesterday. (fox +N +Pl)
● That trickster foxes me every time! (fox +V +3SG)

– But it can handle local ambiguity (intersection &
composition)

– „asses“ vs. „assess“

72

FST Lexicon and Rules

● Intersection & Composition

73

Lexicon-FST

FST
1
 … FST

n

Lexicon-FST

FST
A
 (=FST

1
 … FST

n
)

Lexicon-FST
•

FST
A

intersect

compose

Porter Stemmer (Lexicon-Free FST)

● Popular for information retrieval and text categorization tasks

● It is based on a series of simple cascade rules

– ATIONAL ATE (relational relate)

– ING ε (motoring motor)

– SSES SS (grasses grass)

● But it commits many errors:

– ORGANIZATION ORGAN

– DOING DOE

74
(http://tartarus.org/martin/PorterStemmer/)

Further reading

● Book Jurafski & Martin

– Chapters 2 and 3 (until section 3.8)

● Regular expressions

– http://www.regular-expressions.info/

75

Project update

● Deadline for deciding projects:

– Friday, April 29th, 2016

● Short introduction of the projects (2/3 slides)

– Next lecture (May 2nd, 2016)

– What is it about? Which tools and data you plan to use?

76

