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Regular expressions

● Standard notation for searching strings in text

– grep, Emacs (Unix)

– Java, Python, Ruby, Perl, etc.

– http://regexr.com/

4 (http://twiki.org/cgi-bin/view/Codev/TWikiPresentation2013x03x07)



Regular expressions

5 (https://xkcd.com/208/)



Motivation – Named-entity recognition

6

(http://researcher.watson.ibm.com/researcher/files/us-yunyaoli/emnlp2010-SystemT-namedEntity.pdf)



Motivation – Information extraction
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(http://www.aclweb.org/anthology/D08-1003)



Motivation - Chatterbot

● ELIZA (Weizenbaum 1966)
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(http://www.personalityforge.com/book-expert.php) 
(http://www.codeproject.com/Articles/18109/Building-an-AI-Chatbot-using-a-Regular-Expression) 
(http://www.majidkhosravi.com/chat-bot/)



Motivation – Spell checking

● Checking spelling and grammar

● Suggesting alternatives for the errors

9



Regular expressions

● Specify classes of strings

● Consider a string as a sequence of alphanumeric characters

● Patterns to be searched for

● Documents of text to search through
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Searching particular words

11
(http://regexr.com/)



Searching particular words

12
(http://regexr.com/)



Searching numbers

13
(http://regexr.com/)



Searching passages with numbers

14
(http://regexr.com/)



Named-entity recognition

15
(http://regexr.com/)
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Finite-State Automata (FSA)

● Regular expression 

– is one way to describe FSA

– is one way to characterize a regular language

● Regular language can be characterized by

– Regular expressions

– FSAs

– Regular grammars

17



Finite-State Automata (FSA)

● FSAs are composed of 

– Vertices (nodes)

– Arcs (links)
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Finite-State Automata (FSA)

● FSAs are composed of 

– Vertices (nodes)

– Arcs (links)
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FSA – accepting/rejecting strings
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FSA – accepting/rejecting strings

● Strings accepted

– baa!

– baaa!

● Strings rejected

– abc

– aba!

– ba!

– baaa

21

Input

State b a !

0 1 ø ø

1 ø 2 ø

2 ø 3 ø

3 ø 3 4

4 ø ø ø

state transition table



Formalization of FSA

●                        : finite set of N states 

●    : finite input alphabet of symbols

●     : the start state

● F: the set of final states, 

●          : the transition function (        ; input symbol       )

22

Q=q0 q1q2 ...qN−1

q0

F⊆Q

δ(q ,i) q∈Q i∈Σ

Σ



Example: formalization for the „sheeptalk“

●                        

●    

●     

●

●          defined by the transition table
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Q=q0 q1q2q3 q4

q0

δ(q ,i)

Σ={a ,b , !}

F=q4



D-RECOGNIZE algorithm (step 1)
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D-RECOGNIZE algorithm (step 2)
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D-RECOGNIZE algorithm (step 3)
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D-RECOGNIZE algorithm (step 4)
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D-RECOGNIZE algorithm (step 5)
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(Pseudo-code for the algorithm in Jurafski and Martin book.)



Formal language

● A model that can both generate and recognize all and only the 
strings given by its definition.

● An automaton can describe an infinite set with a closed form.

● „sheeptalk“ model „m“:

– ∑ = {b,a,!}

– L(m) = formal language characterized by „m“

– L(m) = {baa!,baaa!,baaaa!,....}

29



Formal language ≠ natural language

● But we can use formal languages to model parts of a natural 
language

– Phonology, morphology or syntax

30



Modelling amounts of money (1-99 cents)
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Non-deterministic FSAs
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Solutions for non-deterministic FSAs

● Backup

– Keep track of points with many choices

● Look-ahead

– Look ahead the input to decide the path

● Parallelism

– Explore many paths in parallel
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ND-RECOGNIZE algorithm (step 1)
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ND-RECOGNIZE algorithm (step 2)
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ND-RECOGNIZE algorithm (step 3)

36

a b a ! bb a a a !

index

current-state

Input

State b a ! ε

0 1 ø ø ø

1 ø 2 ø ø

2 ø 2,3 ø ø

3 ø ø 4 ø

4 ø ø ø ø

Agenda

q
0
,b

q
1
,a

q
2
,a

q
0

q
1

q
2

q
3

q
4

b a a !

a



ND-RECOGNIZE algorithm (step 4)
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ND-RECOGNIZE algorithm (step 5)
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ND-RECOGNIZE algorithm (step 6)
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ND-RECOGNIZE algorithm (step 7)
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State-Space Search

● The algorithm creates a space of possible solutions

– Path (solutions) are examined and accepted or rejected

● The order of the exploration plays an important role

– But there is no way of knowing it beforehand

● The ordering is not specified in the ND-RECOGNIZE algorithm

– Stack: depth-first-search, last in first out (LIFO)

– Queue: breadth-first search, first in first out (FIFO)

– For complex/large problems, dynamic programming is used
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DFSA vs. NFSA

● There is a DFSA for every NFSA

– But it needs many more nodes

– As much as 2N, where „N“ is the number of distinct sets in 
the original NFSA 

42



Regular language - definition

●    : alphabet, set all symbols in the language

●   * : infinite set of all possible strings formed from 

● Ø : empty set, which is a regular language

● L1 and L2 are languages, then:

– Concatenation: 

– Union or disjunctions: 

– Kleene closure: L1*

43
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Morphology

● The study of internal structures of words and how they can be 
modified

● Parsing complex words into their components

45
(http://allthingslinguistic.com/post/50939757945/morphological-typology-illustrations-from)



Morphology

● Study of the morphemes

– A morpheme is the minimal meaning-bearing unit in a 
language

– Stem: main morpheme

– Affixes: additional meanings

● Prefix (before)
● Suffix (after)
● Circumfix (both)
● Infix (middle)

46



Affixes
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Affixes
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Combining morphemes

● Inflection

– Resulting word is of the same class of the original word

– Plurals, conjugation of verbs

– cat (cats), play(played)

● Derivation

● Compounding

● Cliticization

49



Combining morphemes

● Inflection

● Derivation

– Resulting word is of a distinct class of the original word

– For instance, verbs to nouns or to adjectives

– compute (computation, computational)

● Compounding

● Cliticization

50



Combining morphemes

● Inflection

● Derivation

● Compounding

– Combination of multiple word stems

– doghouse 

● Cliticization
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Combining morphemes

● Inflection

● Derivation

● Compounding

● Cliticization

– Combination of a word stem with a clitic

– Clitic: a morpheme that acts like a word but is reduced and 
attached to another word

– I've, l'opera

52
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Morphological parsing

● Breaking down words into components and building a 
structured representation

– English:

● cats  cat +N +Pl
● caught  catch +V +Past

– Spanish:

● vino (came)  venir +V +Perf +3P +Sg
● vino (wine)  vino +N +Masc +Sg

54



Motivation for morphological parsing

● Information retrieval

– Normalize verb tenses, plurals, grammar cases

● Machine translation

– Translation based on the stem

55



Stemming vs. Lemmatization

● Stemming: stripping off word endings (rule-based)

– foxes  fox

– going  go

● Lemmatization: mapping the word to its lemma (lexicon-
based)

– sang, sung  sing

– going, went, goes  go
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Morphological parsing

● Resources

– Lexicon

● List of all stems and affixes
– Morphotactics

● A model of morpheme ordering in a word
● e.g., plurals are suffixes in English

– Ortographic rules

● Rules for changing in the words when combining 
morphemes

● e.g., city  cities

57



Finite-State Lexicon

● FSA for English nominal inflection (same word category)
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(Check example for verbal inflections in Jurafski & Martin book.)



Finite-State Lexicon

● FSA for derivational morphology (distinct word categories)
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Finite-State Transducers (FST)

● FST is a type of FSA which maps between two sets of symbols.

● It is a two-tape automaton that recognizes or generates pairs 
of strings, one from each type.

● FST defines relations between sets of strings.

61

q
0

q
1

a:ba

b:b

b:a

b:εaa:b



Finite-State Transducers for NLP

● FST as recognizer

– Takes a pair of strings and accepts or rejects them

● FST as generator

– Outputs a pair of strings for a language

● FST as translator

– Reads a string and outputs another string

– Morphological parsing: letters (input); morphemes (output)

● FST as relater

– Computes relations between sets

62



Formalization of FST

●                        : finite set of N states 

●    : finite input alphabet of symbols

●    : finite output alphabet of symbols

●     : the start state

● F: the set of final states, 

●           : the transition function (        ; input string        ) 
returns a set of new states 

●            : the output function (        ; input string         ) 
returns a set of output strings 

63

Q=q0 q1q2 ...qN−1
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Regular Languages and Regular Relations

● FSA: Regular languages are sets of strings

● FST: Regular relations are sets of pairs of strings

– Properties

● Inversion: It switches the input and output labels
● Composition:
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Determinism for FST

● Not all FST can be determinized: They require search algorithms

● Sequential transducers: deterministic subtype of FST

● Subsequencial transducers

– Generate and additional output string at the final states
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Determinism for FST

● Properties of sequential and subsequential transducers

– Efficient

– Linear in their input length

– There are efficient algorithms for their determinization

– But cannot handle ambiguity
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FST for Morphological Parsing

● Two tapes

– Upper (lexical) tape: input alphabet Σ

● cat +N +Pl
– Lower (surface) tape: output alphabet Δ

● cats
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FST for Morphological Parsing

● goose/geese: g:g o:e o:e s:s e:e

– Feasible pairs (e.g., o:e) vs. default pairs (g:g)
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FST and Ortographical Rules

● Plural of „fox“ is „foxes“ not „foxs“

● Consonant double: beg/begging

● E deletion: make/making

● E insertion: watch/watches

● Y replacement: try/tries

● K insertion: panic/panicked
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FST and Ortographical Rules

● Lexical: foxes +N +Pl

● Intermediate: fox^s#

● Surface: foxes
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Combination of FST Lexicon and Rules
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FST Lexicon and Rules

● Disambiguation 

– For some cases, it requires external evidences:

● I saw two foxes yesterday. (fox +N +Pl)
● That trickster foxes me every time! (fox +V +3SG)

– But it can handle local ambiguity (intersection & 
composition)

– „asses“ vs. „assess“
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FST Lexicon and Rules

● Intersection & Composition
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Porter Stemmer (Lexicon-Free FST)

● Popular for information retrieval and text categorization tasks

● It is based on a series of simple cascade rules

– ATIONAL  ATE (relational  relate)

– ING  ε (motoring  motor)

– SSES  SS (grasses  grass)

● But it commits many errors:

– ORGANIZATION  ORGAN

– DOING  DOE

74
(http://tartarus.org/martin/PorterStemmer/)



Further reading

● Book Jurafski & Martin

– Chapters 2 and 3 (until section 3.8)

● Regular expressions

– http://www.regular-expressions.info/

75



Project update

● Deadline for deciding projects:

– Friday, April 29th, 2016

● Short introduction of the projects (2/3 slides)

– Next lecture (May 2nd, 2016)

– What is it about? Which tools and data you plan to use?
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