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DEVELOPMENT OF INTERACTION DIAGRAMS 
Should an axial compressive load be applied to a short concrete member, 
it will be subjected to a uniform strain or shortening, as is shown in Figure 
10.3(a). If a moment with zero axial load is applied to the same member, 
the result will be bending about the member’s neutral axis such that 
strain is proportional to the distance from the neutral axis. This linear 
strain variation is shown in Figure 10.3(b). Should axial load and moment 
be applied at the same time, the resulting strain diagram will be a 
combination of two linear diagrams and will itself be linear, as illustrated 
in Figure 10.3(c). As a result of this linearity, we can assume certain 
numerical values of strain in one part of a column and determine strains 
at other locations by straight-line interpolation. 

As the axial load applied to a column is changed, the moment that the 
column can resist will change. We will see how an interaction curve of 
nominal axial load and moment values can be developed for a particular 
column. 

2 



DEVELOPMENT OF INTERACTION DIAGRAMS 
Assuming the concrete on the compression edge of the column will fail at 
a strain of 0.003, a strain can be assumed on the far edge of the column 
and the values of Pn and Mn can be computed by statics. Then holding the 
compression strain at 0.003 on the far edge, we can assume a series of 
different strains on the other edge and calculate Pn and Mn for each. 
Eventually a sufficient number of values will be obtained to plot an 
interaction curve such as the one shown later. The example illustrates the 
calculation of Pn and Mn for a column for one set of assumed strains. 
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Example 2 

Solution: 
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In the following calculations, Cc is the total compression in the concrete, Cs is the 
total compression in the compression steel, and Ts is the total tension in the tensile 
steel. Each of these values is computed below. The reader should note that Cs is 
reduced by 0.85fcAs to account for concrete displaced by the steel in compression. 
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By statics, Pn and Mn are determined with reference to Figure 10.6, where the 
values of Cc, Cs, and Ts are shown. 
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A column reaches its ultimate capacity when the concrete reaches a 

compressive strain of 0.003. If the steel closest to the extreme tension side 

of the column reaches yield strain, or even more when the concrete 

reaches a strain of 0.003, the column is said to be tension controlled; 

otherwise, it is compression controlled. The transition point between these 

regions is the balance point. The term balanced section was used earlier in 

referring to a section whose compression concrete strain reached 0.003 at 

the same time as the tensile steel reached its yield strain at fy/Es. In a beam, 

this situation theoretically occurs when the steel percentage equaled ρb. A 

column can undergo a balanced failure no matter how much steel it has if it 

has the right combination of moment and axial load. 
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For columns, the definition of balanced loading is the same as it was for beams—

that is, a column that has a strain of 0.003 on its compression side at the same time 

that its tensile steel on the other side has a strain of fy/Es. Although it is easily 

possible to prevent a balanced condition in beams by requiring that tensile steel 

strains be kept well above fy/Es, such is not the case for columns. Thus, for columns, 

it is not possible to prevent sudden compression failures or balanced failures. For 

every column, there is a balanced loading situation where an ultimate load, Pbn, 

placed at an eccentricity, eb, will produce a moment, Mbn, at which time the 

balanced strains will be reached simultaneously. 
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A slightly different approach is used in Example 4, where the average 
compression stress at ultimate load across the column cross section is 
assumed to equal some value—say, 0.5fc to 0.6fc . This value is divided into 
Pn to determine the column area required. Cross-sectional dimensions are 
then selected, and the value of ρg is determined from the interaction 
curves. Again, if the percentage obtained seems unreasonable, the column 
size can be revised and a new steel percentage obtained. 

In Examples 3 to 5, reinforcing bars are selected for three columns. The 
values of Kn = Pn /f’c Ag and Rn = Pn e/f‘c Agh are computed. The position of 
those values is located on the appropriate graph, and ρg is determined and 
multiplied by the gross area of the column in question to determine the 
reinforcing area needed. 
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In this chapter Pn values were obtained only for rectangular tied columns. 
The same theory could be used for round columns, but the mathematics 
would be somewhat complicated because of the circular layout of the 
bars, and the calculations of distances would be rather tedious. Several 
approximate methods have been developed that greatly simplify the 
mathematics. Perhaps the best known of these is the one proposed by 
Charles Whitney, in which equivalent rectangular columns are used to 
replace the circular ones. This method gives results that correspond quite 
closely with test results. 



EQUIVALENT RECTANGULAR COLUMN 
In Whitney’s method, the area of the equivalent column is made equal to 
the area of the actual circular column, and its depth in the direction of 
bending is 0.80 times the outside diameter of the real column. One-half 
the steel is assumed to be placed on one side of the equivalent column 
and one-half on the other. The distance between these two areas of steel 
is assumed to equal two-thirds of the diameter (Ds) of a circle passing 
through the center of the bars in the real column. These values are 
illustrated in Figure 10.9. Once the equivalent column is established, the 
calculations for Pn and Mn are made as for rectangular columns. 
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EQUIVALENT RECTANGULAR COLUMN 

On some occasions, members subject to axial load and bending have 
unsymmetrical arrangements of reinforcing. Should this be the case, you 
must remember that eccentricity is correctly measured from the plastic 
centroid of the section. 
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USE OF INTERACTION DIAGRAMS 
We have seen that by statics the values of Pn and Mn for a given column 

with a certain set of strains can easily be determined. Preparing an 

interaction curve with a hand calculator for just one column, however, is 

quite tedious. Imagine the work involved in a design situation where 

various sizes, concrete strengths, and steel percentages need to be 

considered. Consequently, designers resort almost completely to 

computer programs, computer generated interaction diagrams, or tables 

for their column calculations. As we have seen, such a diagram is drawn 

for a column as the load changes from one of a pure axial nature through 

varying combinations of axial loads and moments and on to a pure 

bending situation. 
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USE OF INTERACTION DIAGRAMS 
Interaction diagrams are obviously useful for studying the strengths of 
columns with varying proportions of loads and moments. Any 
combination of loading that falls inside the curve is satisfactory, whereas 
any combination falling outside the curve represents failure. 

If a column is loaded to failure with an axial load only, the failure will 
occur at point A on the diagram (Figure 10.10). Moving out from point A 
on the curve, the axial load capacity decreases as the proportion of 
bending moment increases. At the very bottom of the curve, point C 
represents the bending strength of the member if it is subjected to 
moment only with no axial load present. In between the extreme points 
A and C, the column fails due to a combination of axial load and bending. 
Point B is called the balanced point and represents the balanced loading 
case, where theoretically a compression failure and tensile yielding occur 
simultaneously. 
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USE OF INTERACTION DIAGRAMS 
Refer to point D on the curve. The horizontal and vertical dashed lines to 
this point indicate a particular combination of axial load and moment at 
which the column will fail. Should a radial line be drawn from point 0 to 
the interaction curve at any point (as to D in this case), it will represent a 
constant eccentricity of load, that is, a constant ratio of moment to axial 
load. 

Shape of the lower part of the curve from B to C, where bending 
predominates is of interest. From A to B on the curve the moment 
capacity of a section increases as the axial load decreases, but just the 
opposite occurs from B to C. 
 

23 

The part of the curve from B to C represents the range of tensile failures. Any 
axial compressive load in that range tends to reduce the stresses in the tensile 
bars, with the result that a larger moment can be resisted. 



USE OF INTERACTION DIAGRAMS 
In Figure 10.11 an interaction curve is drawn for the 14” by 24” column 
with six #9 bars considered in Section 10.3. If eight #9 bars had been 
used in the same dimension column, another curve could be generated 
as shown in the figure; if ten #9 bars were used, still another curve would 
result. The shape of the new diagrams would be the same as for the six 
#9 curve, but the values of Pn and Mn would be larger. 
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CODE MODIFICATIONS OF COLUMN INTERACTION DIAGRAMS 

If interaction curves for Pn values were prepared, they would be of the 
types shown in Figures 10.10 and 10.11. To use such curves to obtain 
design values, they would have to have three modifications made to 
them as specified in the Code. These modifications are as follows: 

(a). The Code 9.3.2 specifies strength reduction or φ factors (0.65 for 
 tied columns and 0.70 for spiral columns) that must be multiplied 
 by Pn values. If a Pn curve for a particular column were 
 multiplied by φ, the result would be a curve something like the 
 ones shown in Figure 10.12. 
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(b). The second modification also refers to φ factors. The Code 
 specifies values of 0.65 and 0.70 for tied and spiral columns, 
 respectively. Should a column have quite a large moment and a 
 very small axial load so that it falls on the lower part of the curve 
 between points B and C (see Figure 10.10), the use of these small 
 φ values may be a little unreasonable. For instance, for a member 
 in pure  bending(point C on the same curve) the specified φ is 
 0.90, but if the same member has a very small axial load added, φ 
 would immediately fall to 0.65 or 0.70. Therefore, the Code 
 (9.3.2.2) states that when members subject to axial load and 
 bending have net tensile strains (t) between the limits for 
 compression-controlled and tensile-controlled sections, they fall 
 in the transition zone for φ. In this zone it is permissible to 
 increase φ linearly from 0.65 or 0.70 to 0.90 as εt increases from 
 the compression-controlled limit to 0.005. In this regard, the 
 Figure R9.3.2 of the Code may also be referred.  
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CODE MODIFICATIONS OF COLUMN INTERACTION DIAGRAMS 

(c). As described in Chapter 9, maximum permissible column loads 
 were specified for columns no matter how small their e values. As 
 a result, the upper part of each design interaction curve is shown 
 as a horizontal line representing the appropriate value of Pu. 

These formulas were developed to be approximately equivalent to loads 
applied with eccentricities of 0.10h for tied columns and 0.05h for spiral 
columns. Each of the three modifications described here is indicated on 
the design curve of Figure 10.13. In Figure 10.13, the solid curved line 
represents Pu and Mu, whereas the dashed curved line is Pn and Mn. The 
difference between the two curves is the φ factor. The two curves would 
have the same shape if the φ factor did not vary. Above the radial line 
labeled “balanced case,” φ = 0.65 (0.75 for spirals). Below the other radial 
line, labeled “strain of 0.005,” φ = 0.9. It varies between the two values in 
between, and the Pu versus Mu curve assumes a different shape. 29 
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DESIGN AND ANALYSIS OF ECCENTRICALLY LOADED COLUMNS  
USING INTERACTION DIAGRAMS 
If individual column interaction diagrams were prepared as described in 
the preceding sections, it would be necessary to have a diagram for each 
different column cross section, for each different set of concrete and steel 
grades, and for each different bar arrangement. The result would be an 
astronomical number of diagrams. The number can be tremendously 
reduced, however, if the diagrams are plotted with ordinates of Kn = Pn/f’c 

Ag (instead of Pn) and with abscissas of Rn = Pne/f’cAgh (instead of Mn). The 
resulting normalized interaction diagrams can be used for cross sections 
with widely varying dimensions. The ACI has prepared normalized 
interaction curves in this manner for the different cross section and bar 
arrangement situations shown in Figure 10.14 and for different grades of 
steel and concrete. 

Two of the ACI diagrams are given in Figures 10.15 and 10.16, while 
Appendix A (Graphs A.2–A.13) presents several other ones for the 
situations given in parts (a), (b), and (d) of Figure 10.14. Notice that these 
ACI diagrams do not include the three modifications described just now.  
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USING INTERACTION DIAGRAMS 

The ACI column interaction diagrams are used in Examples 
10.3 to 10.7 to design or analyze columns for different 
situations. In order to correctly use these diagrams, it is 
necessary to compute the value of γ (gamma), which is equal 
to the distance from the center of the bars on one side of the 
column to the center of the bars on the other side of the 
column divided by h, the depth of the column (both values 
being taken in the direction of bending). Usually the value of γ 
obtained falls in between a pair of curves, and interpolation of 
the curve readings will have to be made. 
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DESIGN AND ANALYSIS OF ECCENTRICALLY LOADED COLUMNS  
USING INTERACTION DIAGRAMS 
Caution 

Be sure that the column picture at the upper right of the interaction 
curve being used agrees with the column being considered. In other 
words, are there bars on two faces of the column or on all four faces? If 
the wrong curves are selected, the answers may be quite incorrect. 

Although several methods are available for selecting column sizes, a trial-
and-error method is about as good as any. With this procedure the 
designer estimates what he or she thinks is a reasonable column size and 
then determines the steel percentage required for that column size from 
the interaction diagram. If it is felt that the ρg determined is 
unreasonably large or small, another column size can be selected and the 
new required  ρg selected from the diagrams, and so on. In this regard, 
the selection of columns for which ρg is greater than 4 or 5% results in 
congestion of the steel, particularly at splices, and consequent difficulties 
in getting the concrete down into the forms. 
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Example 3 

39 



DESIGN AND ANALYSIS OF ECCENTRICALLY LOADED COLUMNS  
USING INTERACTION DIAGRAMS 

40 

Solution: 
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DESIGN AND ANALYSIS OF ECCENTRICALLY LOADED COLUMNS  
USING INTERACTION DIAGRAMS 
Example 4 

Solution: 
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Design a short square column for the following conditions: Pu = 600 k, Mu = 80 ft-k,     
fc = 4000 psi, and fy = 60,000 psi. Place the bars uniformly around all four faces of the 
column. 
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USING INTERACTION DIAGRAMS 
Example 5 

Solution: 
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USING INTERACTION DIAGRAMS 

Example 6 

Solution: 

In Example 6 it is desired to select a 14-in. wide column with 
approximately 2% steel. This is done by trying different column 
depths and then determining the steel percentage required in each 
case. 
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Example 6 
Solution: 
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USING INTERACTION DIAGRAMS 

One more illustration of the use of the ACI interaction diagrams is 
presented with Example 7. In this example, the nominal column load Pn at 
a given eccentricity which a column can support is determined. 

With reference to the ACI interaction curves, the reader should carefully 
note that the value of Rn (which is                  ) for a particular column, 
equals e/h times the value of Kn  (                )for that column. This fact 
needs to be understood when the user desires to determine the nominal 
load that a column can support at a given eccentricity. 
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USING INTERACTION DIAGRAMS 

In Example 7 the nominal load that the short column of Figure 
10.20 can support at an eccentricity of 10 in. with respect to the     
x axis is determined. If we plot on the interaction diagram the 
intersection point of Kn and Rn for a particular column and draw a 
straight line from that point to the lower left corner or origin of the 
figure, we will have a line with a constant e/h. For the column of 
Example 6 e/h = 10/20 = 0.5. Therefore a line is plotted from the 
origin through a set of assumed values for Kn and Rn in the 
proportion of 10/20 to each other. In this case, Kn was set equal to 
0.8 and Rn = 0.5 X 0.8 = 0.4. Next a line was drawn from that 
intersection point to the origin of the diagram as shown in Figure 
10.16. Finally, the intersection of this line with ρg (0.0316 in this 
example) was determined, and the value of Kn or Rn was read. This 
latter value enables us to compute Pn. 

50 



DESIGN AND ANALYSIS OF ECCENTRICALLY LOADED COLUMNS  
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Example 7 

Solution: 
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When the usual column is subjected to axial load and 
moment, it seems reasonable to assume initially that φ = 0.65 
for tied columns and 0.75 for spiral columns. It is to be 
remembered, however, that under certain conditions these  φ 
values may be increased, as discussed. 
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SHEAR IN COLUMNS 
The shearing forces in interior columns are usually quite small and 
normally do not control the design. However, the shearing forces in 
exterior columns can be large, particularly in columns bent in double 
curvature. Section 11.3.1.2 of the ACI Code provides the following 
equations for determining the shearing force that can be carried by the 
concrete for a member subjected simultaneously to axial compression 
and shearing forces. 
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SHEAR IN COLUMNS 
         In these equations, Nu is the factored axial force acting 
simultaneously with the factored shearing force, Vu, that is applied to the 
member. The value of Nu/Ag is the average factored axial stress in the 
column and is expressed in units of psi. Should Vu be greater than φVc/2, it 
will be necessary to calculate required tie spacing using the stirrup 
spacing procedures described in Chapter 8. The results will be closer tie 
spacing than required by the usual column rules. 

        Sections 11.3.3 and 11.5.6.3 of the ACI Code specify the method for 
calculating the contribution of the concrete to the total shear strength of 
circular columns and for calculating the contribution of shear 
reinforcement for cases where circular hoops, ties, or spirals are present. 
According to the Commentary of the Code in their Section 11.3.3, the 
entire cross section in circular columns is effective in resisting shearing 
forces. The shear area, bwd, in ACI Equation 11-4 then would be equal to 
the gross area of the column. However, to provide for compatibility with 
other calculations requiring an effective depth, ACI requires that the shear 
area be computed as an equivalent rectangular area in which: 
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SHEAR IN COLUMNS 

        In these equations, D is the gross diameter of the column. If the 
constant modifying D in the effective depth equation were equal to /4, 
which is equal to 0.7854, the effective rectangular area would be equal to 
the gross area of the circular column. As such, the area of the column is 
overestimated by a little less than 2% when using the equivalent area 
prescribed by ACI. 
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BIAXIAL BENDING 
        Many columns are subjected to biaxial bending, that is, bending 
about both axes. Corner columns in buildings where beams and girders 
frame into the columns from both directions are the most common cases, 
but there are others, such as where columns are cast monolithically as 
part of frames in both directions or where columns are supporting heavy 
spandrel beams. Bridge piers are almost always subject to biaxial bending. 

        Circular columns have polar symmetry and thus the same ultimate 
capacity in all directions. The design process is the same, therefore, 
regardless of the directions of the moments. If there is bending about 
both the x and y axes, the biaxial moment can be computed by combining 
the two moments or their eccentricities as follows: 
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BIAXIAL BENDING 
        For shapes other than circular ones, it is necessary to consider the 

three-dimensional interaction effects. Whenever possible, it is desirable 

to make columns subject to biaxial bending circular in shape. Should it be 

necessary to use square or rectangular columns for such cases, the 

reinforcing should be placed uniformly around the perimeters. 

        You might quite logically think that you could determine Pn for a 

biaxially loaded column by using static equations, as was done in Example 

2. Such a procedure will lead to the correct answer, but the mathematics 

involved is so complicated due to the shape of the compression side of 

the column that the method is not a practical one. Nevertheless, a few 

comments are made about this type of solution, and reference is made to 

Figure 10.21. 
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BIAXIAL BENDING 
        An assumed location is selected for the neutral axis, and the 
appropriate strain triangles are drawn as shown in the figure 10.21. The 
usual equations are written with                         times the shaded area Ac 
and with each bar having a force equal to its cross-sectional area times its 
stress. The solution of the equation yields the load that would establish 
that neutral axis—but the designer usually starts with certain loads and 
eccentricities and does not know the neutral axis location. Furthermore, 
the neutral axis is probably not even perpendicular to the resultant e  =  
 

        For column shapes other than circular ones, it is desirable to consider 
three-dimensional interaction curves such as the one shown in Figure 
10.22. In this figure the curve labeled Mnxo represents the interaction 
curve if bending occurs about the x axis only, while the one labeled Mnyo is 
the one if bending occurs about the y axis only. 
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BIAXIAL BENDING 
        In this figure, for a constant Pn, the hatched plane shown represents 
the contour of Mn for bending about any axis. 

        Today, the analysis of columns subject to biaxial bending is primarily 
done with computers. One of the approximate methods that is useful in 
analysis and that can be handled with pocket calculators includes the use 
of the so-called reciprocal interaction equation, which was developed by 
Professor Boris Bresler of the University of California at Berkeley. This 
equation, which is shown in Section R10.3.6 of the ACI Commentary, 
follows: 
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BIAXIAL BENDING 
        The Bresler equation works rather well as long as Pni is at least as 

large as 0.10Po. Should Pni be less than 0.10Po, it is satisfactory to neglect 

the axial force completely and design the section as a member subject to 

biaxial bending only. This procedure is a little on the conservative side. For 

this lower part of the interaction curve, it will be remembered that a little 

axial load increases the moment capacity of the section. The Bresler 

equation does not apply to axial tension loads. Professor Bresler found 

that the ultimate loads predicted by his equation for the conditions 

described do not vary from test results by more than 10%. 

        Example 10.8 illustrates the use of the reciprocal theorem for the 

analysis of a column subjected to biaxial bending. The procedure for 

calculating Pnx and Pny is the same as the one used for the prior examples 

of this chapter. 
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Example 8 

Solution: 
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Example 8 
Solution: 
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BIAXIAL BENDING 
             If the moments in the weak direction (y axis here) are rather small 
compared to bending in the strong direction (x axis), it is rather common 
to neglect the smaller moment. This practice is probably reasonable as 
long as ey is less than about 20% of ex, since the Bresler expression will 
show little reduction for Pni. For the example just solved, an ey equal to 
50% of ex caused the axial load capacity to be reduced by approximately 
40%. 

              Example 10.9 illustrates the design of a column subject to biaxial 
bending. The Bresler expression, which is of little use in the 
proportioning of such members, is used to check the capacities of the 
sections selected by some other procedure. Exact theoretical designs of 
columns subject to biaxial bending are very complicated and, as a result, 
are seldom handled with pocket calculators. They are proportioned 
either by approximate methods or with computer programs. 
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 During the past few decades, several approximate methods have 
been introduced for the design of columns with biaxial moments. For instance, 
quite a few design charts are available with which satisfactory designs may be 
made. The problems are reduced to very simple calculations in which 
coefficients are taken from the charts and used to magnify the moments 
about a single axis. Designs are then made with the regular uniaxial design 
charts. 

 Another approximate procedure that works fairly well for design 
office calculations is used for Example 10.9. If this simple method is applied to 
square columns, the values of both Mnx and Mny are assumed to act about both 
the x-axis and the y-axis (i.e., Mx = My = Mnx + Mny). The steel is selected about 
one of the axes and is spread around the column, and the Bresler expression is 
used to check the ultimate load capacity of the eccentrically loaded column. 



              Should a rectangular section be used where the y axis is the 
weaker direction, it would seem logical to calculate My = Mnx + Mny and to 
use that moment to select the steel required about the y axis and spread 
the computed steel area over the whole column cross section. Although 
such a procedure will produce safe designs, the resulting columns may be 
rather uneconomical because they will often be much too strong about 
the strong axis. A fairly satisfactory approximation is to calculate My = 
Mnx + Mny and multiply it by b/h, and with that moment design the 
column about the weaker axis. 
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             Example 9 illustrates the design of a short square column subject 
to biaxial bending. The approximate method described in the last two 
paragraphs is used, and the Bresler expression is used for checking the 
results. If this had been a long column, it would have been necessary to 
magnify the design moments for slenderness effects, regardless of the 
design method used. 



Example 9 

Solution: 
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Example 9 
Solution: 
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 A review of the column with the Bresler expression gives a            
Pni  = 804 k > 677 k, which is satisfactory. Should the reader go through the 
Bresler equation here, he or she must remember to calculate the correct ex 
and ey values for use with the interaction diagrams. For instance, 

When a beam is subjected to biaxial bending, the following approximate 
interaction equation may be used for design purposes: 
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 In this expression Mx and My are the design moments, Mux is the 
design moment capacity of the section if bending occurs about the x axis 
only, and Muy is the design moment capacity if bending occurs about the y 
axis only. This same expression may be satisfactorily used for axially loaded 
members if the design axial load is about 15% or less of the axial load 
capacity of the section. For a detailed discussion of this subject, the reader 
is referred to the Handbook of Concrete Engineering. 

 Numerous other methods are available for the design of biaxially 
loaded columns. One method that is particularly useful to the design 
profession is the PCA Load Contour Method, which is also recommended in 
the ACI Design Handbook 
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