STRUCTURAL DESIGN OF FLEXIBLE AIRPORT PAVEMENTS

AIRPORT ENGINEERING MODULE – 09 MAJ NADEEM

Flexible Airport Pavement Design / Maj Nadeem

References

- Planning and Design of Airports by Robert Horonjeff. and Francis X Mckelvey
- Principles of Pavement Design, Yoder and Witczak (1975)
- Airport Pavement Design and Evaluation, FAA Advisory Circular 150/5320-6D

Pavements

- Pavement is a covering of solid material/ materials, laid so as, to make a hard and convenient surface for travel of any kind of transport mode
- Pavement Engineering deals with the structural analysis, design, construction and maintenance of the way used for different modes
- Two basic types are Flexible Pavements and Rigid Pavements

Types of Pavement

Types of Pavement

Flexible Pavement

Rigid Pavement

© 2003 Steve Mue

Types of Pavement

Flexible pavements

- Constructed of bituminous and granular materials
- Called "flexible" since the total pavement structure bends (or flexes) to accommodate traffic loads

Rigid pavements

- Constructed of Portland cement concrete
- Called "rigid" since PCC's high modulus of elasticity does not allow them to flex appreciably
- Composite pavements
 - composed of both AC & PCC

Flexible Pavements

- These are so named because the total pavement structure deflects, or flexes, under loading.
- A flexible pavement structure is typically composed of several layers of materials.
- Each layer receives the loads from the above layer, spreads them out, and then passes on these loads to the next layer below.
- A flexible pavement structure lies over prepared Sub Grade (Road Bed Soil)
- In order to take maximum advantage of this property, material layers are usually arranged in order of descending load bearing capacity with highest load bearing capacity material (and most expensive) on the top and the lowest load bearing capacity material (and least expensive) on the bottom

Flexible Pavements

Typical Flexible Pavement Structure

- Asphalt Concrete Surface Course (AC Course). This is the top layer and the layer that comes in contact with traffic. It may be composed of one or several different Hot Mix Asphalt (HMA) sub layers.
- Base Course. This is the layer directly below the AC Course and generally consist of aggregates either stabilized or unstabilized.
- Sub Base Course. This is the layer under the base course, may either be stabilized or un-stabilized.
- Natural or Treated Subgrade

Flexible Airport Pavement Design

- Corps of Engineering (CBR) method (CBR method): CBR test for subgrade evaluation
- FAA method: field performance data correlated to soil classification, also a CBR method
- Canadian DOT method: plate-bearing tests to evaluate subgrade support/repeated load triaxial tests for full-depth airport pavements
- Asphalt Institute method: theoretically oriented design

California Bearing Ratio

- CBR is a penetration test used for eval of mechanical strength of road subgrades and base courses dev by California DoT
- Test is performed by measuring the pressure required to penetrate a soil sample with a plunger of standard area. The measured pressure is then divided by the pressure required to achieve an equal penetration on a standard crushed rock material
- The harder the surface, the higher the CBR rating
- The CBR test is described in ASTM Standards D1883-05 (for labprepared samples) and D4429 (for soils in place in field), and AASHTO T193
- A CBR of 3 equates to tilled farmland, a CBR of 4.75 equates to turf or moist clay, while moist sand may have a CBR of 10. High quality crushed rock has a CBR over 80. The standard material for this test is crushed California limestone which has a value of 100

FAA METHOD FLEXIBLE PAVEMENT DESIGN

FAA - Flexible Pavement Design

Pavement layers (courses) have been standardized and given item numbers

- Asphalt Concrete Course (AC). P401 Dense Graded Hot Mix AC Course
- Base Course
 - Item P-208—Aggregate Base Course
 - Item P-209—Crushed Aggregate Base Course
 - Item P-211—Lime Rock Base Course
 - Item P-304—Cement Treated Base Course
 - Item P-306—Concrete Subbase Course
 - Item P-401—Plant Mix Bituminous Pavements
 - Item P-403—HMA Base Course
 - P-211, P-304, P-306, P-401, and P-403 are stabilized based courses
- Sub Base Course. Subbases are typically required when flexible pavement is to be supported by soils of CBR value less than 20
 - Item P-154—Subbase Course
 - Item P-210—Caliche Base Course
 - Item P-212—Shell Base Course
 - Item P-213—Sand Clay Base Course
 - Item P-301—Soil Cement Base Course

Designed 20 years structural life

FAA - Flexible Pavement Design

- Design curves are based on CBR method of design
- Inputs on design curves are CBR, annual departures and gross weight (MSTOW)
- If input is sub-grade CBR, it gives total thickness (AC+ Base + Sub Base)
- If input is sub base CBR, gives 'AC -Base' thickness.
- AC thickness is given on each design curve
- Base course thickness is checked against minimum base course required

Aircraft Gear Configuration

Single Wheel

Dual Wheel

• Dual Tandem Wheel

• Double Dual Tandem

Several Typical Aircrafts

Type of Plane	Max Gross Weight (lb × 10³)	Type of Gear	Main Gear Dimension (in.)	Max Load Each Main Assembly (lb × 103)	Tire Pressure (psi)
Boeing 707-320C	336.0	Twin-tandem	56 imes 34.5	157.0	180
Boeing 707-120B	258.0	Twin-tandem	56 imes 34	120.0	170
Boeing 737	111.0	Twin	30.5	25.8	148
Boeing 727-100	170.0	Twin	34.0	76.9	166
Boeing 747	713.0	Double twin-			
		tandem	58 imes 44	166.5	204
Convair Cv 880	185.0	Twin-tandem	45 imes 21.5	87.0	150
Lockheed L1011-I	411.0	Twin-tandem	70 imes 52	195.0	175
McDonnel-					
Douglas DC10-10	413.0	Twin-tandem	54×64	194.0	175
McDonnel-					
Douglas DC 8-43	318.0	Twin-tandem	55 imes 30	148.0	177
McDonnel-					
Douglas DC 9-15	91.5	Twin	24	42.4	127
Concorde	388.0	Twin-tandem	66×26.4	184.3	184
BAC 1-11-500	100.0	Twin	21	47.5	174

Aircraft Considerations

- 95% of gross weight is considered on main (landing) gear, equally distributed on all wheels.
- Singles (S), dual (D) and dual tandem (DT) gear configurations have 2,4 and 8 wheels respectively.
- Some of DT and all Double dual tandem (DDT) are wide body (WB) aircrafts i.e. B-747-100 (DDT), B-767, DC-10, L-1011(DT)
- WB aircrafts will always be considered as having DT landing gear and 300,000 lbs gross weight
- MSTOW is considered for the design purpose
- Separate design curves for S, D, DT and for each of wide body Aircraft i.e. some DT and all DDT
- Tire pressure: 75 to 200 psi (515 to 1,380 kPa)
- Traffic volume → Departures

Design Problem – Flexible Pavement

- Sub Grade Site CBR = 7
- Aircrafts Data

Ai	rcraft	Gear	Average	Gross Weight
		Configuration	Annual	(lbs)
			Departures	
•	F-27-500	S	25,000	45,000
•	727-200	D	2,700	180,000
•	707-320B	DT	1,050	327,000
•	А300-В4	DT	1,700	300,000
•	B747-100	DDT	1000	700,000

Determination of Design Aircraft

- Sub Grade Design CBR ≤ 85% Sub Grade Site CBR
- Minimum Design Sub grade CBR = 3
- Use 'Sub Grade Design CBR' and determine Pavement Thickness for each aircraft in the aircraft mix, using respective design curve
- Aircraft requiring max thickness is design aircraft

F-27-500

Determination of Design Aircraft

- Sub Grade Design CBR = 0.85 x 7 = 5.95 ~ 6
- Use 'Sub Grade Design CBR' and determine pavement thickness for each aircraft in the 'aircraft mix, using respective design curve.

Aircraft	Gear Config	AADs	Gross Wt (lbs)	T(inches)
• F-27-500	S	25,000	45,000	20
• 727-200	D	2,700	180,000	
• 707-320B	DT	1,050	327,000	
• A300-B4	DT	1,700	300,000	
• B747-100	DDT	1000	700,000	

- AADs = Average Annual Departures
- T = Total pavement thickness above sub-grade

727-200

Determination of Design Aircraft

- Sub Grade Design CBR = 0.85 x 7 = 5.95 ~ 6
- Use 'Sub Grade Design CBR' and determine pavement thickness for each aircraft in the 'aircraft mix, using respective design curve.

Aircraft	Gear Config	AADs	Gross Wt (lbs)	T(inches)
• F-27-500	S	25,000	45,000	20
• 727-200	D	2,700	180,000	32
• 707-320B	DT	1,050	327,000	
• A300-B4	DT	1,700	300,000	
• B747-100	DDT	1000	700,000	

- **AADs = Average Annual Departures**
- T = Total pavement thickness above sub-grade

707-320B

Determination of Design Aircraft

- Sub Grade Design CBR = 0.85 x 7 = 5.95 ~ 6
- Use 'Sub Grade Design CBR' and determine pavement thickness for each aircraft in the 'aircraft mix, using respective design curve.

A	ircraft	Gear Config	AADs	Gross Wt (lbs)	T(inches)
•	F-27-500	S	25,000	45,000	20
•	727-200	D	2,700	180,000	32
•	707-320B	DT	1,050	327,000	33
•	A300-B4	DT	1,700	300,000	
•	B747-100	DDT	1000	700,000	

AADs = Average Annual Departures

T = Total pavement thickness above sub-grade

A300-B4

Determination of Design Aircraft

- Sub Grade Design CBR = 0.85 x 7 = 5.95 ~ 6
- Use 'Sub Grade Design CBR' and determine pavement thickness for each aircraft in the 'aircraft mix, using respective design curve.

A	ircraft	Gear Config	AADs	Gross Wt (lbs)	T(inches)
•	F-27-500	S	25,000	45,000	20
•	727-200	D	2,700	180,000	32
•	707-320B	DT	1,050	327,000	33
•	A300-B4	DT	1,700	300,000	35
•	B747-100	DDT	1000	700,000	

AADs = Average Annual Departures

T = Total pavement thickness above sub-grade

<u>B747-100</u> <u>DDT</u>

WB Aircraft therefore, it will be considered as DT with 300 kips gross wt

Determination of Design Aircraft

- Sub Grade Design CBR = 0.85 x 7 = 5.95 ~ 6
- Use 'Sub Grade Design CBR' and determine pavement thickness for each aircraft in the 'aircraft mix, using respective design curve.

	Aircraft	Gear Config	AADs	Gross Wt	Т
Design				(lbs)	(inches)
Aircraft	F-27-500	S	25,000	45,000	20
	727-200	D	2,700	180,000	32
	707-320B	DT	1,050	327,000	33
	A300-B4	DT	1,700	300,000	35
	B747-100	DDT	1000	700,000	31.5

- AADs = Average Annual Departures
- T = Total pavement thickness above sub-grade

- Determine Wheel load for each aircraft in the mix using formula
- Single Wheel Load =

= Gross Wt x 0.95 / number of main gear wheels

- Wheel Load for the design aircraft is referred as 'W₁'
- Wheel Load for all other aircrafts is referred as 'W₂'.

Determination of Wheel Loads 'W₁' and 'W₂'

Design Aircraft = A300-B4 (DT)

Aircraft	Gear Config	Gross Wt (lbs)	Wheel Load (lbs) 'W ₁ ' and 'W ₂ '
F-27-500	S	45,000	$W_2 = 45000 \times 0.95/2 = 21375$
727-200	D	180,000	W ₂ = 180,000 x 0.95/4 =42750
707-320B	DT	327,000	W ₂ = 327,000 x 0.95/8 =38831
А300-В4	DT	300,000	W ₁ = 300,000 x 0.95/ 8 =35625
B747-100	DDT	700,000	W ₂ = 300,000 x 0.95/ 8 =35625

WB Aircraft (B747-100) will be considered as DT with 300 kips gross wt

 Using Table-1 (for conversion factors), convert annual departures of each aircraft in the mix in terms of departures of landing gears of Design Aircraft (R₂).

TABLE 1: CONVERSION FACTORS TO BE USED FOR CONVERTING ONE LANDINGGEAR TYPE TO ANOTHER

To convert from	То	Multiply departures by
Single wheel	Dual wheel	0.8
Single wheel	Dual tandem	0.5
Dual wheel	Dual tandem	0.6
Double dual tandem	Dual tandem	1.0
Dual tandem	Single wheel	2.0
Dual tandem	Dual wheel	1.7
Dual wheel	Single wheel	1.3
Double dual tandem	Dual wheel	1.7

Equivalent Departures in term of Design ac Landing Gear (R₂)

Design Aircraft = A300-B4 (DT)

Aircraft	Gear Config	AADs	Conversion Factor (to DT)	Equivalent DT Dep (R ₂)
F-27-500	S	25,000	0.5	25000 x 0.5
				=12500
727-200	D	2,700	0.6	1620
707-320B	DT	1,050	1	1,050
А300-В4	DT	1,700	1	1,700
B747-100	DDT	1000	1	1000

WB Aircraft (B747-100) will be considered as DT with 300 kips gross wt

$$\operatorname{Log} R_1 = \log R_2 \times \left(\frac{W_2}{W_1}\right)^{1/2}$$

Determination of Equivalent Annual Departures in terms of Design Aircrft (R₁)

- Use Log (R1) = Log (R2) x v(W2 / W1) and determine departures in terms of Design Aircraft (R1) for each aircraft in the mix
 - R1–equivalent annual departures of the design aircraft
 - R2–annual departures expressed in design aircraft landing gear configuration
 - W1-wheel load of the design aircraft
 - W2–wheel load of the aircraft being converted
- Sum up R1 i.e. (Σ R1), roundup or down reasonably. These equivalent departures will be used for design. Commonly referred as annual departures subsequently

Determination of Equivalent Annual Departures in terms of Design Aircraft (R₁)

• Design Aircraft = A300-B4 (DT)

Aircraft	AADs	Equivalent DT Departures (R ₂)	Wheel Load (lbs) 'W ₁ ' and 'W ₂ '	Eqvt. Annual Departures (R ₁)
F-27-500	25,000	12500	W ₂ =21375	1491
727-200	2,700	1620	W ₂ = 42750	3280
707-320B	1,050	1,050	W ₂ = 38831	1426
A300-B4	1,700	1,700	W ₁ = 35625	1700
B747-100	1000	1000	W ₂ = 35625	1000
Σ	8897			

Determination of Pavement Thicknes (T) (AC+ Base + Sub Base) Using Calculated Design Annual Departures and Gross Wt of Design Aircraft

- The design should be completed with 8897 Design Annual departures of a 300,000 lbs (300 kips) aircraft with DT gear configuration.
- Design Sub-grade CBR = 6

Determination of Pavement Thickness (T) (AC+ Base + Sub Base) Using Calculated Design Annual Departures and Gross Wt of Design Aircraft

- The design should be completed with 8897 Design Annual departures of a 300,000 lbs (300 kips) aircraft with DT gear configuration.
- Design Sub-grade CBR = 6
- Total Pavement Thickness = 40"
- HMA Surface = 4" (critical areas)
- HMA Surface = 3" (non-critical areas)
- Edge = 2" (standard)

Typical Cross Section

Variable sections permitted on runway pavements

Typical Cross Section

Typical Cross Section

Variable sections permitted on runway pavements

- Minimum 12" up to 36"
- For runways wider than 150', this dimension will increase.
 - Width of tapers and transitions on rigid pavements must be an even multiple of slabs, minimum one slab width.

Full pavement thickness
 Outer edge thickness (1% traffic)
 Pavement thickness tapers
 to outer edge thickness

Determination of Pavement Thicknes (AC + Base) Using Calculated Design Annual Departures and Gross Wt of Design Aircraft

- The design should be completed with 8897 Design Annual departures of a 300,000 lbs (300 kips) aircraft with DT gear configuration.
- Assume, Design Sub-base CBR = 20

Determination of Pavement Thicknes (AC + Base) Using Calculated Design Annual Departures and Gross Wt of Design Aircraft

- The design should be completed with 8897 Design Annual departures of a 300,000 lbs (300 kips) aircraft with DT gear configuration.
- Assume, Design Sub-base CBR = 20
- Pav Thickness above Sub-base (i.e. AC + Base) = 17"
- Total Pavement Thickness = 40"
- HMA Surface (AC) = 4" (critical areas)
- Sub-base = 40-17= 23" and base = 17-4 = 13"

Determination of Thickness of All Individual Layers

Surface Type	Critical Area (T)	Non-critical Area (0.9 T)	Edge (0.7 T)
Surface: HMA (AC)	4	4	4
Base	13	12	10
Sub-base	23	21	16
Total	40	37	30

Design Checks

- If Σ R₁ (Annual Departures) > 25,000 then use Table-2 to increase
 T, 1" increase will be accounted for in AC and rest will be proportionally distributed in Base and Sub base.
- Check for minimum base course thickness from Table 3; increase if required without increasing total pavement thickness "T".
- Mathematical rounding is must. Interpolation allowed

TABLE 2: PAVEMENT THICKNESS FOR HIGH DEPARTURE LEVEL		
Annual Departure Level	Percent of 25,000 Departure	
	Thickness	
50,000	104	
100,000	108	
150,000	110	
200,000	112	

TABLE 3: MINIMUM BASE COURSE THICKNESS

Design ai	ircraft	Design Load Range (Lbs)	Minimum Base Course Thickness (inches)
Single	wheel	30,000 - 50,000	4
		50,000 - 75,000	6
Dual v	vheel	50,000 - 100,000	6
		100,000 - 200,000	8
Dual Tandem	100,000 – 250,000	6	
		250,000 – 400,000	8
• 757, 7	67	200,000 - 400,000	6
• DC-10	, L1011	400,000 - 600,000	8
• B-747	400,000 - 600,000	6	
		600,000 - 850,000	8
• C-130		75,000 – 125,000	4
		125,000 – 175,000	6

Factors for Increase in Thickness

RECOMMENDED EQUVELENCY FACTOR RANGES FOR STABILIZED		
BASE (FAA STANDARD GRANULAR BASE IS P-209)		
P-306 E concrete Sub base Course	1.2 – 1.6	
P-304 Cement Treated Base Course	1.2 – 1.6	
P-401 Plant Mix Bituminous pavement	1.2 – 1.6	

RECOMMENDED EQUVELENCY FACTOR RANGES FOR	STABILIZED SUB		
BASE (FAA STANDARD GRANULAR SUB BASE IS P-154)			
P-301 Soil cement Base Course	1.0 –1.5		
P-304 Cement Treated Base Course	1.6 – 2.3		
P-401 Plant Mix Bituminous pavement	1.7 –2.3		

Design Checks

- Σ R₁ (Annual Departures) 8897 < 25,000: OK
- No need to increase T.
- Base Thickness = 13" > minimum base course thickness (8" for DT up to 400 kips): OK
- No need to increase base course thickness.

THANKS

