Module 3
 MOHR'S CIRCLE:

Mohr's circle is a more convenient way to determine plane stress transformation.
Before understanding Mohr's Circle, let us first review the standard equation of a circle. In a given $X Y$ co-ordinate system, if there is a circle with the center coordinates h and k and a radius r then the equation of circle is given in the standard form as:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

In this equation only \boldsymbol{x} and \boldsymbol{y} are the variables while \mathbf{h}, \mathbf{k} and \mathbf{r} are constants.
Now coming back to the General equation, this equation can be rearranged and transformed into equation of a circle. The derivation is as

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sigma_{x^{\prime}}-\frac{\sigma_{x}+\sigma_{y}}{2}=\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
\tau_{x^{\prime} y^{\prime}}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
\end{array}\right. \\
& \left\{\begin{array}{l}
\left(\sigma_{x^{\prime}}-\frac{\sigma_{x}+\sigma_{y}}{2}\right)^{2}=\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2} \cos ^{2} 2 \theta+\left(\sigma_{x}-\sigma_{y}\right) \tau_{y y} \sin 2 \theta \cos 2 \theta+\tau_{x y}^{2} \sin ^{2} 2 \theta \\
\left(\tau_{x^{\prime} y^{\prime}}\right)^{2}=\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2} \sin ^{2} 2 \theta-\left(\sigma_{x}-\sigma_{y}\right) \tau_{x y} \sin 2 \theta \cos 2 \theta+\tau_{x y}^{2} \cos ^{2} 2 \theta
\end{array}\right. \\
& \left(\sigma_{x^{\prime}}-\frac{\sigma_{x}+\sigma_{y}}{2}\right)^{2}+\left(\tau_{x^{\prime} y^{\prime}}\right)^{2}=\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}\left(\sin ^{2} 2 \theta+\cos ^{2} 2 \theta\right)+\tau_{x y}^{2}\left(\sin ^{2} 2 \theta+\cos ^{2} 2 \theta\right) \\
& \left(\sigma_{x^{\prime}}-\frac{\sigma_{x}+\sigma_{y}}{2}\right)^{2}+\left(\tau_{x^{\prime} y^{\prime}}\right)^{2}=\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}
\end{aligned}
$$

So the final equation is similar to the equation of a circle.
Standard equation of a circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$$
(\underbrace{\sigma_{x}-\sigma_{x}+\sigma_{y}}_{\text {variables }})^{2}+\left(\sqrt{\left(\sigma_{x}-\sigma_{y}\right.} \begin{array}{c}
2 \\
2
\end{array}\right)^{2}+\tau_{x y}^{2})^{2}
$$

This equation has center at

$$
\left(\frac{\sigma x-\sigma y}{2}, 0\right)=(\sigma a v g, 0)
$$

And radius at

$$
R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

(a)

Each point on Mohr's circle represents the two stress components $\sigma_{x^{\prime}}$ and $\tau_{x^{\prime} y^{\prime}}$ acting on the side of the element defined by the x^{\prime} axis, when the axis is in a specific direction θ. For example, when x^{\prime} is coincident with the x axis as shown in Fig. 9-16a, then $\theta=0^{\circ}$ and $\sigma_{x^{\prime}}=\sigma_{x}$, $\tau_{x^{\prime} y^{\prime}}=\tau_{x y}$. We will refer to this as the "reference point" A and plot its coordinates $A\left(\sigma_{x}, \tau_{x y}\right)$, Fig. 9-16c.
Now consider rotating the x^{\prime} axis 90° counterclockwise, Fig. 9-16b. Then $\sigma_{x^{\prime}}=\sigma_{y}, \tau_{x^{\prime} y^{\prime}}=-\tau_{x y}$. These values are the coordinates of point $G\left(\sigma_{y},-\tau_{x y}\right)$ on the circle, Fig. 9-16c. Hence, the radial line $C G$ is 180° counterclockwise from the "reference line" CA. In other words, a rotation θ of the x^{\prime} axis on the element will correspond to a rotation 2θ on the circle in the same direction.*

Once constructed, Mohr's circle can be used to determine the principal stresses, the maximum in-plane shear stress and associated average normal stress, or the stress on any arbitrary plane.

(b)

Fig. 9-16

The following steps are required to draw and use Mohr's circle.
Construction of the Circle.

- Establish a coordinate system such that the horizontal axis represents the normal stress σ, with positive to the right, and the vertical axis represents the shear stress τ, with positive downwards, Fig. 9-17a.*
- Using the positive sign convention for $\sigma_{x}, \sigma_{y}, \tau_{x y}$, as shown in Fig. 9-17b, plot the center of the circle C, which is located on the σ axis at a distance $\sigma_{\text {avg }}=\left(\sigma_{x}+\sigma_{y}\right) / 2$ from the origin, Fig. 9-17a.
- Plot the "reference point" A having coordinates $A\left(\sigma_{x}, \tau_{x y}\right)$. This point represents the normal and shear stress components on the element's right-hand vertical face, and since the x^{\prime} axis coincides with the x axis, this represents $\theta=0^{\circ}$, Fig. 9-17a.
- Connect point A with the center C of the circle and determine $C A$ by trigonometry. This distance represents the radius R of the circle, Fig. 9-17a.
- Once R has been determined, sketch the circle.

Principal Stress.

- The principal stresses σ_{1} and $\sigma_{2}\left(\sigma_{1} \geq \sigma_{2}\right)$ are the coordinates of points B and D where the circle intersects the σ axis, i.e., where $\tau=0$, Fig. 9-17a.
- These stresses act on planes defined by angles $\theta_{p_{1}}$ and $\theta_{p_{2}}$, Fig. 9-17c. They are represented on the circle by angles $2 \theta_{p_{1}}$ (shown) and $2 \theta_{p_{2}}$ (not shown) and are measured from the radial reference line $C A$ to lines $C B$ and $C D$, respectively.
- Using trigonometry, only one of these angles needs to be calculated from the circle, since $\theta_{p_{1}}$ and $\theta_{p_{2}}$ are 90° apart. Remember that the direction of rotation $2 \theta_{p}$ on the circle (here it happens to be counterclockwise) represents the same direction of rotation θ_{p} from the reference axis $(+x)$ to the principal plane $\left(+x^{\prime}\right)$, Fig. $9-17 c$.*
Maximum In-Plane Shear Stress.
- The average normal stress and maximum in-plane shear stress components are determined from the circle as the coordinates of either point E or F, Fig. 9-17a.
- In this case the angles $\theta_{s_{1}}$ and $\theta_{s_{2}}$ give the orientation of the planes that contain these components, Fig. 9-17d. The angle $2 \theta_{s_{1}}$ is shown in Fig. 9-17a and can be determined using trigonometry. Here the rotation happens to be clockwise, from $C A$ to $C E$, and so $\theta_{s_{1}}$ must be clockwise on the element, Fig. 9-17d.*

Stresses on Arbitrary Plane.

- The normal and shear stress components $\sigma_{x^{\prime}}$ and $\tau_{x^{\prime} y}$ acting on a specified plane or x^{\prime} axis, defined by the angle θ, Fig. 9-17e, can be obtained from the circle using trigonometry to determine the coordinates of point P, Fig. 9-17a.
- To locate P, the known angle θ (in this case counterclockwise), Fig. 9-17e, must be measured on the circle in the same direction 2θ (counterclockwise), from the radial reference line CA to the radial line $C P$, Fig. 9-17a.*
*If the τ axis were constructed positive upwards, then the angle 2θ on the circle would be measured in the opposite direction to the orientation θ of the x^{\prime} axis.

Fig. 9-17

Example: Determine the stresses for the rotated orientation, the principle stresses and the maximum in-plane shear stresses.

We need to determine the new state of stress associated with new orientation as shown. Also we need to determine the principle normal stresses and maximum in-plane shear stresses. But this time we are going to solve this problem using Mohr's circle. We need to first calculate the Avg normal shear stress.

$$
\sigma_{\mathrm{avg}}=\frac{\sigma_{x}+\sigma_{y}}{2}=15 \mathrm{MPa}
$$

We also need to find the radius of Mohr's Circle.

$$
R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=74.3 \mathrm{MPa}
$$

So in a coordinate system draw a circle with center at (15,0). The $\mathrm{R}=74.3$. Also plot the original values of stresses

$$
\begin{aligned}
\sigma_{x} & =-40 \mathrm{MPa} \\
\tau_{x y} & =-50 \mathrm{MPa}
\end{aligned}
$$

For the new orientation $\theta=-15$

The coordinates can be found by simple trigonometry

$$
\sigma_{x^{\prime}}=-(22.6-15)=-7.6(\mathrm{MPa}) \quad \tau_{x^{\prime} y^{\prime}}=-70.8(\mathrm{MPa})
$$

Principal stresses:

These result can be visualized. The state of stress at new orientation is (theta $=-15$)

The orientation of principal stresses and maximum in plane shear stresses is as.

