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 The general state of stress at a point is characterized by six independent normal and shear 

stress components.  

 This state of stress, however, is not often encountered in engineering practice. Instead, 

engineers frequently make approximations or simplifications of the loadings on a body in 

order that the stress produced in a structural member or mechanical element can be analyzed 

in a single plane .When this is the case, the material is said to be subjected to 

plane stress.  

 

 The general state of plane stress at a point is therefore represented by 

a combination of two normal-stress component Ϭx and Ϭy, and one shear stress component 

Ґxy, which act on four faces of the element. For convenience, in this text we will view this 

state of stress in the x–y plane as shown in the figure below. If this state of stress is defined 

on an element having a different orientation then it will be subjected to three different stress 

components defined as Ϭx´, Ϭy´ and Ґx´y´.   

 The state of plane stress at the point is uniquely represented by two normal stress 

components and one shear stress component acting on an element that 

has a specific orientation at the point. 

 This is like knowing two force components, say, Fx and Fy,  directed along the x, y axes, 

that produce a resultant force Fr, and then trying to find the force components Fx´ and Fy´ 

directed along the axes x´ and y´, so they produce the same resultant. The transformation 

for force must only account for the force component’s magnitude and direction. 

 

 



Procedure for analysis: 

If the state of stress at a point is known for a given orientation of an element of material, Fig. 1-a, 

then the state   of stress in an element having some other orientation, θ Fig. 1-b, can be determined 

using the following procedure 

1. To determine the normal and shear stress components Ϭx´ and Ґx´y´ acting on the +x´ face 

of the element, Fig. 1-b, section the element in Fig. 1-a as shown in Fig. 1-c. If the sectioned 

area is ΔA then the adjacent areas of the segment will be ΔAsinθ and ΔAcosθ.   

2. Draw the free-body diagram of the segment, which requires showing the forces that act on 

the segment, Fig. 1-d.This is done by multiplying the stress components on each face by the 

area upon which they act.  

3.  Apply the force equations of equilibrium in the x´ and y´ directions. The area ΔA will 

cancel from the equations and so the two unknown stress components Ϭx´ and Ґx´y´ can be 

determined. 

4.  If Ϭy´ acting on the face y+ of the element in Fig. 1-b, is to be determined, then it is 

necessary to consider a segment of the element as shown in Fig. 1-e and follow the same 

procedure just described. Here, however, the shear stress Ґx´y does not have to be 

determined if it was previously calculated, since it is complementary, that is, it must have 

the same magnitude on each of the four faces of the element, Fig. 1-b.  

 

                     Figure 1-a                                                 Figure 1-b 

  

 

                                                                            Figure 1-c, 1-d and 1-e 



General equations for plane stress transformation:  

The method of transforming the normal and shear stress components from the x, y to the coordinate 

axes x´ and y´, as discussed in the previous section, can be developed in a general manner and 

expressed as a set of stress-transformation equations 

Sign convention: The orientation on which the normal and shear stresses are to be determined is 

defined by the angle θ, which is measured from x to x´ axis. The angle θ will be positive if it is in 

counter-clock wise direction and vice versa.  

 

Normal and shear stress components:  

Using the established sign convention, the element in Fig. 2-a is sectioned along the inclined plane 

and the segment shown in Fig. 2-b is isolated. Assuming the sectioned area ΔA, then the horizontal 

and vertical faces of the segment have an area of ΔAsinθ and ΔAcosθ respectively 

  

                               Figure 2-a and figure 2-b 

The resulting free-body diagram of the segment is shown in Fig. 2-c.Applying the equations of 

equilibrium to determine the unknown normal and shear stress components Ϭx´ and Ґx´y´ we have 

  



 

 

 

In order to apply the above stress transformation equations (Eq1, 2 and 3) , the known values of Ϭx, 

Ϭy and Ґxy and θ in accordance with the established sign conventions. If Ϭx´ and Ґx´y´ calculated 

are positive quantities, then these stresses act in the positive direction of x´ and y´ axes.     

See Example 9.2.  

 

Principle Stresses and maximum in plane shear stresses:  

From stress transformation equations, it can be seen that the magnitudes of If Ϭx´ and Ґx´y depend 

on the angle of inclination of the planes θ on which these stresses act. In engineering practice it is 

often important to determine the orientation of the element that causes the normal stress to be a 

maximum and a minimum and the orientation that causes the shear stress to be a 

maximum.  

Maximum in-plane shear stresses: The stresses transformation equation can be differentiated w.r.t θ 

to obtain the orientation of θ= θp for maximum and minimum normal stresses  

  

The solution has two roots θp1 and θp2 and they are 90º apart . 

To determine the maximum/minimum normal stresses the value of θp1 and θp2 must be substituted 

in the stress transformation equations to obtain the following equations.  

  



The above equations gives the maximum or minimum in-plane normal stress acting at a point, 

where Ϭ1> Ϭ2.This particular set of values are called the in-plane principal stresses, and the 

corresponding planes on which they act are called the principal planes of stress, Fig. 1-3. 

Furthermore, if the trigonometric relations for θp1 or θp2 are substituted into Eq. 2, it can be seen 

that Ґxy=0. In other words, no shear stress acts on the principal planes. 

 

                            Figure 1-3 

 

Maximum in-plane shear stresses: The orientation of an element that is subjected to maximum 

shear stress on its sides is given by 

 

The roots of θs and θp are 45º apart. Therefore, an element subjected to maximum shear stress will 

be 45° from the position of an element that is subjected to the principal stress. 

Similarly, the maximum in plane shear stresses at an orientation θs is given by  

   

The value of Ґxy max as calculated from this equation is referred to as the maximum in-plane shear 

stress because it acts on the element in the x–y plane. 

  

Important points: 

• The principal stresses represent the maximum and minimum normal stress at the point. 

• When the state of stress is represented by the principal stresses, no shear stress will act on the 

element. 

• The state of stress at the point can also be represented in terms of the maximum in-plane shear 

stress. In this case an average normal stress will also act on the element. 



• The element representing the maximum in-plane shear stress with the associated average normal 

stresses is oriented 45° from the element representing the principal stresses. 

• A brittle member applied to pure axial loading (normal stress) will fail due to principal stresses.  

• A ductile member subjected to pure shear loading will fail due to Absolute maximum shear 

stresses.  

 

 

See Example 9.3, 9.4, 9.5 and 9.6.   

 

 

 

 

 

 


