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1. Introduction

As the demand for marine resource exploitation is increasing, there is in-

creased awareness of applying underwater sensor technologies for oceanic mon-

itoring. Underwater Acoustic Sensor Networks (UASNs) have been widely sug-

gested as promising solutions to enable a variety of marine applications, e.g., pol-

lution monitoring, offshore exploration, navigation assistance, and mine recog-

nition [1]. UASNs face several issues and challenges like limited bandwidth,

high propagation delay, 3D topology, media access control, routing, resource

utilization, and energy constraints [2]. Typical UASN is composed of several

sensor nodes anchored to the ocean bottom and interconnected wirelessly with

one or more underwater gateways. The underwater gateways are the specific

nodes equipped with both vertical and horizontal transceivers. The vertical

transceiver is used to send commands & configuration data to the sensor nodes,

and further to obtain the gathered data from it. Whereas, horizontal transceiver

is employed to relay the monitored data to the sea surface station [3]. The data

is usually relayed within this sensor network from the bottom to the sea surface

station through multi-hop paths.

One of the vital factors of any communication networks with battery-operated

devices is the life-time. Higher the life-time, the better the system. In compari-

son with the traditional Terrestrial Wireless Sensor Networks(TWSNs), UASN

pose severe challenges in-terms of manpower and budget in manually extend-

ing the life-time of the networks. Unlike TWSNs, nodes in UASNs drain their

energy due to various reasons. Some of the reasons for the reduced life-time of

networks are, environment, high energy consumption by the sensors hardware

and poorly designed protocols. Hence, UASN nodes require more energy as

compared to TWSNs because acoustic signals cover a long distance, and imple-
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ments more complex signal techniques. Further, multi-path routing in UASNs

affects the node energy where a node is involved in forwarding data of another

node. Additionally, the other major issue that affects node energy is the node

mobility. In UASN, nodes are not static like in TWSNs, instead, nodes move

due to different activities and circumstances of the underwater environment,

usually 2-3 m/sec with water currents [2]. Except surface nodes (sink), most

of the deployed nodes in UASNs are energy-constrained and non-rechargeable.

However, solar charging power source or regularly replacing drained battery is

not an feasible in an underwater environment [1].

Simulation of UASNs is a common aspect in researches as it facilitates the

cost-effective and less time consuming approach of the analysis of working and

performance of a UASN before it is implemented and deployed. There are

several simulation platforms available for simulating UASNs, but not all are

open-source. Some of the open-source simulation tools actively available and

freely downloadable are: UnetStack1, Aqua-Sim2, DESERT3 and SUNSET4.

In comparison with Aqua-Sim, DESERT, and SUNSET, UnetStack supports

a seamless transition from simulation to real field level deployment without

requiring changes in code and design. Hence the compiled binary simulation

code can be ported directly to any UnetStack-compatible modem for use in

field-level or lab-level testing without requiring any additional cross-compilation

[4]. In terms of efficiency, UnetStack supports both discrete-event and real-time

operation modes. Thus UnetStack becomes an ideal choice for researchers to

conduct UASN simulations and then to transit for real field level deployment.

MATLAB and NS-2 based simulations of UASNs are also quite popular in

literature. In case of MATLAB based simulations, most of these are application

specific. Though the MATLAB can be used for conducting an in depth simula-

tion, there is no facility to define custom topologies, power models. Also there

1https://unetstack.net/
2https://github.com/rmartin5/aqua-sim-ng
3http://desert-underwater.dei.unipd.it/
4http://reti.dsi.uniroma1.it/
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is no provision to define methods to monitor factors like packet transmissions,

losses and collisions that might interest the research community and might even

affect the performance of underwater network. Further, in MATLAB simu-

lations, support for any routing protocols is unavailable. Another important

issue to be considered is the mobility of nodes, and the ability to simulate node

mobility is also unavailable in this simulator [5].

NS-2 is an open source discrete event simulator. NS2 is based on C++ and

Object-Tcl(OTcl) based scripting. The latest version available is NS-2.36. NS2

does not provide any built-in packages supporting UASN simulation except in

NS-2.30. Also, very few tutorials and code samples are available on NS-2.30

as it is an earlier version. Further simulation scripts written in versions above

NS-2.30 is difficult to run. Therefore simulating UASN in NS-2.35 and above

requires to model all underwater channel characteristics and propagation model

[6].

Similar to NS-2, NS-3 is also an open source, discrete event network simu-

lator. It was built using C++ and Python with scripting facility and supports

visualization [7]. The NS-3 UAN framework facilitates the modeling of under-

water network scenarios [6]. The UAN model has four main components: The

channel, PHY, MAC, and Autonomous Underwater Vehicle (AUV) models. The

framework intends to simulate behaviour of AUVs. The communications stack,

associated with the AUV, can be modified depending on simulation needs. Typ-

ically, the default underwater stack comprises a half duplex acoustic modem, an

Aloha MAC protocol, and a generic physical layer.

However, UnetStack does not provide direct functionality for monitoring the

energy of nodes during the simulations. This paper presents the design and im-

plementation of the residual energy model framework in UnetStack. Addition-

ally, through the experimental simulations, the number of frames transmitted

& received, and the depletion of node energy over time is presented. Further,

the implemented energy model framework in UnetStack able the researchers in

the design of UASN’s energy-aware routing protocols and load balancing.

The rest of the paper is organized as follows: Section 2 presents related work;
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Section 3 describes the residual energy model for UASN; Section 4 gives details

on implementation of energy model in UnetStack simulator; Section 5 presents

the results and analysis. Finally, conclusions and future scope are drawn in

Section 6.

2. Related work

This section of the paper presents the significance of energy model imple-

mentation in UnetStack from the perspective of different research aspects of

underwater communication. Further, need for the energy model implementa-

tion in UnetStack platform. Mandar Chitre et al. [8], developer of UnetStack

presented the detailed introduction and overview of UnetStack architecture. Ad-

ditionally, details on different services available and the set of pre-defined agents

offering the services are also presented by the authors in their contribution.

2.1. Significance of energy model in underwater research

As discussed in Section 1 monitoring node energy in UASN is important in

various aspects of underwater research like energy consumption analysis, design

of energy-based routing protocols, data collection strategies, mitigating energy

holes, and load balancing. This subsection describes significance of energy mon-

itoring in the above mentioned research problems.

Guangjie Han et al. [1] proposed an Asymmetric link-based reverse routing

protocol (AREP) to ensure bi-directional data communication between source

and destination nodes. The authors explored the impact of the directional

beam width of underwater nodes on communication links. Further the authors

have conducted three case studies of communication links. These case studies

indicate, for directional antennas of fixed beam width, the change in a relative

position of two geographically adjacent nodes is prone to generate asymmetric

links. Performance of AREP is compared against Link-state based Adaptive

Feedback Routing (LAFR). Simulation results show that, in terms of energy

consumption AREP consumes less energy than LAFR. Also AREP provides
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low transmission delay and high packet delivery in an underwater environment.

In simulating AREP, the paper presents mathematical equations to calculate

the energy consumed in transmitting and receiving a m-bit packet.

Mari Carmen Domingo and Rui Prior [9] presented a mathematical analysis

of total energy consumption in underwater acoustic networks in shallow and

deep water scenarios. The authors calculated the total energy consumption via

direct links or via relaying. Relaying or a routing protocol based clustering for

both shallow water and deep water scenarios were studied. Finally the authors

conclude routing protocols based on the clustering scheme save more energy,

and they show a better performance in shallow water.

Guanglin Xing et al. [10] deployed a UASN on named data networking

(NDN) architecture and explored the energy consumption of the NDN-based

UASN under shallow water and deep water conditions based on the relay net-

work topology. Simulations were conducted in NS-3 and MATLAB to analyze

the results of energy consumption models of NDN-based relay UASNs in shal-

low water and deep water. Results obtained through MATLAB simulations may

not actually model real UASN. MATLAB does not provide any method to de-

fine custom topologies or methods to monitor factors like packet transmissions,

collisions and losses.

Jing Yan et al. [11], in their paper on the underwater cyber-physical system

(UCPS) proposed a new two stage solution for energy-efficient data collection for

UCPS over autonomous underwater vehicle (AUV) assisted underwater acoustic

sensor network. In the first stage, sensor nodes are deployed in a rigid graph-

based topology and relay physical data to a short range data collector through

multihop acoustic communication. Then in the second stage, data collectors are

visited periodically by an AUV to retrieve data through high-speed visible light

communication. Simulations are conducted in MATLAB 2016b and shown that

the topology optimization scheme can prolong the network lifetime. Though the

MATLAB can be used to conduct in-depth simulations, there is no support for

any routing protocol.Moreover, with AUV’s the mobility is also very important,

but the ability to simulate node mobility is not supported in MATLAB
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Anwar Khan et al. [12] presented a localization-free interference and energy

holes minimization (LF-IEHM) routing protocol for underwater wireless sensor

networks (UWSNs). The authors proposed an algorithm to overcome interfer-

ence during data packet forwarding by defining a unique packet holding time for

every sensor node. A localization-free energy holes mitigation is done using a

variable transmission range of sensor nodes. Here a node can increase its trans-

mission range to include one or more live forwarder nodes, in a case when no

node is available within its transmission range. Results are presented for sim-

ulations performed in MATLAB and performance metrics considered include

total energy consumption, dead nodes, live nodes.

In many research works, the evaluations are done either by performing nu-

merical analysis or by conducting simulations using tools like MATLAB or NS-3.

Though the results of these prove the performance of proposed methods, the

same cannot be used for real-time implementations. However, in the UnetStack

simulator, it allows protocols developed to be ported directly to software-defined

modems. Hence the results obtained through UnetStack can be used to prove

not only in simulations but also in a real-time deployment. Thus the energy

model in UnetStack implemented in this paper demonstrates its necessity.

2.2. Need for energy model implementation in UnetStack

As discussed in Section 1 though there are numerous simulation and exper-

imentation tools available for simulating UASNs. The UnetStack, Aqua-Sim,

SUNSET and DESERT are few such tools which are actively available and freely

downloadable. The Aqua-Sim [13] built on top of the most popular NS-2 sim-

ulator is a packet level simulation platform. Similar to NS-2, Aqua-Sim also

uses the object oriented design style and provides abundant underwater proto-

cols for researchers. However, currently, in Aqua-Sim there is no support for a

seamless transition from simulation to field level deployment as it focuses only

on simulation and emulation. DESERT [14] and SUNSET [15] are the simula-

tion, emulation and experimental tools, built on top of NS-2 and NS2-Miracle.

DESERT provides seamless transition flexibility among simulation, emulation,
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and field-level testing. SUNSET, as similar to DESERT, provides facility for

seamless transition support among simulation, emulation, and field-level testing.

In terms of efficiency, both DESERT and SUNSET are extended from NS-

2. Hence they are also constrained with discrete-event characteristics. For

example, both platforms have a main single-threaded process, and the events

are scheduled to execute sequentially by a strict event scheduler that is sensitive

to time-restricted events. On the other hand, UnetStack supports both discrete-

event and real-time operation modes. So the compiled binary simulation code

can be ported directly to any UnetStack-compliant modem (e.g., Subnero) for

use in field-level or lab-level testing without requiring any additional cross-

compilation [4].

Further, in the case of a seamless transition from simulation to emulation

or real field level deployment, both SUNSET and DESERT are built on top of

Ns-2 and Ns2-Miracle, which are primarily discrete-event simulators. Hence,

significant changes may be required in code and design, while transiting from

discrete-event-based simulation to distributed real-time emulation on these plat-

forms, which may cause additional problems. For instance, when simulating a

certain application, if it uses centralized global network information, then while

conducting emulation of the same application, it requires special caution to be

taken when transferring the code from the purpose of simulation to emulation.

For example, it is challenging to identify event-timing related problems in the

simulation. So, while exporting the code written for the simulation to the em-

ulation, many consistency-related issues may happen in this context. Also, in

the DESERT, the packet conversion method is not that convenient, which may

lead to higher packet conversion overhead [4].

UnetStack uses agent-based architecture and supports real-time simulation.

Hence, the same compiled binary code used in the simulation can be ported

directly to UnetStack-compatible underwater modems without requiring any

cross-compilation for emulation or field-level testing. Thus the UnetStack be-

comes an ideal choice for researchers for conducting their experiments, and

hence the implementation of the energy model, which is currently unavailable
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in UnetStack, is essential.

3. Residual energy model for UWSN

The main purpose of the proposed work is to provide a residual energy

model framework to further investigate energy dependent algorithms in Unet-

Stack. The residual energy deals with the left out energy at the node after

the deduction of consumed energy during transmission, reception, etc. In this

proposed work, a residual energy module presented by the authors Guangjie

Hana et al. [1] is implemented in UnetStack. A detailed implementation of the

existing energy model framework presented in the following Section 4 can be

further extended/modified as per the specific needs of the researchers or indus-

try. In this proposed work, the initial energy of a node is deducted for every

transmission and reception of a packet. As presented by the authors Guangjie

Hana et al. [1] Equations. (1) and (4) indicates the energy consumed during

transmission and reception of m-bit packet.

3.1. Energy consumption during the transmission of m-bit packet

The following Equation (1) indicate the energy consumption during the

transmission of m-bit packet.

Etx(m, l) = m ∗ Eelec +m ∗ Tb ∗ C ∗H ∗ l ∗ eϑ(f)∗l (1)

Where,

• Eelec - the energy consumed by the transmitter electronics to process one

bit of data,

• l - the transmission distance,

• Tb - bit duration,

• H - water depth,
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• C - an empirical constant calculated using Equation. (2)

C = 2π ∗ 0.67 ∗ 10−9.5 (2)

• ϑ(f ) - a frequency dependent medium absorption coefficient (in db/km)

calculated using Equation. (3)

ϑ(f) = 0.036 ∗ f3/2 (3)

Where, f is frequency of sound wave (in kHz) underwater.

3.2. Energy consumption during the reception of m-bit packet

The following Equation (4) indicate the energy consumption during the re-

ception of m-bit packet.

Erx(m, l) = m ∗ Eelec (4)

4. Implementation of energy model in UnetStack

This section of the paper presents the implementation of residual energy

model framework (ref Section 3) in UnetStack. Initially an overview of Unet-

Stack followed by physical agent with the details on simulated modem used in

UWSN simulation is presented. Finally, a detailed implementation of residual

energy model framework is presented.

4.1. Overview of UnetStack

UnetStack developed under the Unet project at Acoustic Research lab of

National University of Singapore in 2004. UnetStack is an agent-based stack,

and it forms the backbone of the underwater network simulator that can be

easily used for deployment and testing of underwater networks.

In UnetStack, the default stack, provides a collection of software agents

representing different layers of the network stack. These agents offer well-defined
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Figure 1: UnetStack architecture [4]

services as of layers in the network stack. This agent-based approach results

in having a flexible network stack, with cross-layer based solutions, allowing

software-defined underwater networks to be rapidly designed, simulated, tested,

and deployed. Further, since the stack is expandable, one can add new agents

and services or replace existing agents to meet the developmental requirement.

The architecture of UnetStack as shown in Fig. 1 uses service oriented ar-

chitecture approach, where the stack defines a collection of software agents that

provide well defined services. These agents work with each other to deliver a

complete solution for underwater networking. Agents play the role equivalent

to the layers in traditional network stack. To achieve this agent based approach,

UnetStack uses the open source fjage (Framework for Java and Groovy Agents)

lightweight agent framework 5. The fjage framework provides core implemen-

tations which forms the basis for UnetStack. Further UnetStack uses fjage to

define agents and their services in its stack. Thus agents are basic building

blocks of UnetStack, they exchange messages, provide services and implement

5https://github.com/org-arl/fjage
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protocols. One can also develop their own agents, for which the UnetStack

provides the UnetAgent base class implementing most of the core necessary

behaviors of a well behaved agent.

An agent in UnetStack is a self-contained software component that provides a

well-defined functionality and have more flexible interactions with other agents.

Agents interact with each other through messages. Message types used in Un-

etStack can be classified as requests, responses and notifications. Responses

always have an associated request, where as notifications are unsolicited. Mes-

sages need not always be sent for a particular agent, but can also be broadcasted

on a topic. Any agent subscribing to that topic, receives message broadcasted

on that topic. Unsolicited notifications usually are sent on topics associated

with an agent, since an agent does not know in advance that which other agent

is interested in that notification. A well integrated set of requests, responses,

and notifications providing a coherent functionality is known as a service. If

an agent provides a service, it advertises the service by registering it with the

“directory”. An agent requiring a specific service can look up providers in the

directory, without having prior information about the agent that provides the

service. Services may define capabilities that represent optional functionality

that a service provide may choose to implement. Agents advertise such capa-

bilities for other agents to query [8].

The major services defined by UnetStack are Physical service, Datagram ser-

vice, MAC service, Routing and Route maintenance service, Transport service,

Remote Access service, Ranging service, Link service and Node Information

service [8].

4.1.1. UnetStack Simulator

UnetStack simulator (aka “UnetSim”) is a component of UnetStack. Unet-

Sim is an efficient and well-known simulator available dedicated to underwater

network simulations. UnetSim enables to simulate an underwater network of

many nodes on a single computer. It can simulate an underwater network in

real-time or as a discrete event simulation. UnetSim is easy to install, learn and
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use, and once an agent is developed and tested in simulator, it is ready to be

deployed and tested in underwater with any UnetStack-compatible modems.

In UnetSim a simulation scenario is describe in a Groovy domain specific

language (DSL) script. The script describes location, motion and sets up net-

work stack to be used for node. Simulations can be interactive using shell, or

behaviors can be set up to generate network traffic for an automated simula-

tion. Further, if required the script can be made to collect network performance

statistics and display them [8].

4.2. Physical agent of UnetStack

In developing energy model, the right place to keep track of residual energy

is at the physical layer. In UnetStack it is the physical agent, often abbrevi-

ated as phy, provides the typical physical layer functionalities of an underwa-

ter node. In UnetStack the physical agents are modem drivers and simulated

modems [8]. For conducting simulations an implementation of simulated generic

modem named as HalfDuplexModem is available. The HalfDuplexModem sim-

ulates the behavior of an underwater modem considering parameters specific

to underwater channel, and handles all data transmissions and receptions on a

half-duplex channel. All UnetStack simulations uses the HalfDuplexModem as

default physical agent. The HalfDuplexModem supports three different services

namely, datagram, physical and baseband service. Each service has set of mes-

sages handled by the physical agent, for example, the DatagramReq message

under the Datagram service requests the agent to send some data.

The implementation of the HalfDuplexModem available in org.arl.unet.sim

package is represented in two Algo. 1 and Algo. 2. The Algo. 1 depicts working

of HalfDuplexModem when a request is made to send data using DatagramReq

message of datagram service. Messages under physical and baseband services

are also handled in similar way.

Many agents support DatagramReq, with HalfDuplexModem a DatagramReq

asks the physical agent to send some data at the physical layer, As mentioned

earlier a request message is associated with a performative response message.
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Algorithm 1 UnetStack: HalfDuplexModem for sending a datagram

1: function processRequest(msg)
2: if msg instanceof DatagramReq then
3: if ¬upadateInfo() ∨ location 6= null then
4: req← TxFrameReq(msg)
5: handleTxFrameReq(msg, req)
6: if req.getReliability() then
7: data← req.getData()
8: type← req.getType()
9: pro← req.getProtocol()

10: if type ≤ 0 ∨ type ≥ FrameLength ∨ pro < 0 ∨ pro > 15 then
11: tx← createTx(Req)
12: if tx == null then
13: tracer.enqueued(tx, null)
14: if OngoingTx ∧OngoingRx == null then
15: startTx(tx)
16: platformSend(tx)
17: channel.addTx(tx)
18: add new WakeBehavior(tx.txDelay)
19: tracer.sent(OngoingTx, null)
20: sendTxFrameNtf(HalfDuplexModem, this.OngoingTx)
21: endTx()
22: tx← (TX)this.queue.poll()
23: if tx 6= null then
24: startTx(tx)
25: else
26: return msg, Performative.AGREE
27: end if
28: else
29: add tx to transmission queue
30: end if
31: else
32: return msg, Performative.FAILURE
33: end if
34: else
35: return msg, Performative.REFUSE
36: end if
37: else
38: return msg, Performative.REFUSE
39: end if
40: else
41: return msg, Performative.FAILURE
42: end if
43: else
44: process TxFrameReq or clearReq or TxBasebandReq
45: end if
46: end function
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In case of DatagramReq message the possible responses are AGREE, REFUSE and

FAILURE. When a DatagramReq message is received by the HalfDuplexModem, it

delegates the message instance to ‘processRequest()’ method to handle it. The

method processes the request and returns one of the responses. If request is hon-

oured successfully, returns an AGREE, in other cases returns FAILURE or a REFUSE.

The ‘processRequest()’ in its definition invokes the ‘handleTxFrameReq()’ to

handle transmission of this datagram, which in turn invokes ‘createTx()’ method

to create a new transmission instance, the properties and necessary methods

associated for a transmission are defined in a inner class named Tx which ex-

tends the fjage’s Message class and implements Transmission interface. The

‘createTx()’ computes and sets the properties and returns the transmission in-

stance, or a null value, then the ‘enqueued()’ method of Tracer class is invoked

and an enqueue event is logged in the trace file, thereafter if there is no ongo-

ing transmission or reception, the transmission is beginned calling ‘startTx()’

where the transmission is added to channel and invkokes ‘sent()’ of Tracer

and logs a dequeue event to the trace file and then calls ‘sendTxFrameNtf()’

to send transmit frame notification after that ‘endTx()’ is invoked to end the

current transmission and poll the queue for next transmission, if exists again

calls ‘startTx()’.

The Algo. 2 depicts the process of HalfDuplexModem when receiving a data-

gram (packet) sent using DatagramReq message. As the message arrives the

‘processMessage()’ method is invoked, the reception of datagram is handled as

instance of RX class, which is the inner class and extends the TX class defin-

ing the properties and necessary methods for a reception. the ‘processMes-

sage()’ creates a new instance of RX, representing a new reception and per-

forms calculations as per the channel model. The default channel model used

is ProtocolChannelModel. The modem also uses methods of channel model to

decide whether it can neglect, detect and decode the reception. If a reception is

detected and decoded successfully, invokes the ‘received()’ of Tracer and logs

a receive event and then invokes ‘sendRxFrameNtf()’ to send received frame

notification. If decoding is unsuccessful invokes the ‘dropped()’ of Tracer to
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Algorithm 2 UnetStack: HalfDuplexModem for receiving a datagram

1: function processMessage(msg)
2: if msg instanceof TX then
3: if ¬upadateInfo() ∨ location 6= null then
4: return
5: else
6: RX old← (RX).this.rxPending.get(tx.uuid)
7: if old 6= null then
8: old.bad← TRUE
9: return

10: else
11: RX rx← new RX(tx,this.address, null)
12: rx.rxLocation← this.location
13: rx.range← 0.0
14: if canNeglect() == TRUE then
15: return
16: else
17: rxPending.put(rx.uuid,rx)
18: add new WakerBehavior(dtms+rx.txDelay)
19: HalfDuplexModem.this.startRx(rx)
20: this.channel.addArrival(rx)
21: if RxEnable == TRUE then
22: return
23: else
24: if getBusy() then
25: if ¬Txongoing ∧ detectRx then
26: sendCollisionNtf(rx)
27: tracer.dropped(address, rx, “COLLISION”)
28: else
29: return
30: end if
31: else
32: if detectRx() then
33: set OngoingRX with current rx
34: add new WakerBehavior(dtms + rx.txDelay)
35: HalfDuplexModem.this.endRx(rx)
36: xxx← this.channel.decodeRx(rx)
37: if xxx == 0.0F ∧ ¬rx.bad ∧ ... then
38: sendRxFrameNtf(rx)
39: tracer.received(address, rx, null)
40: else
41: sendBadFrameNtf(rx)
42: tracer.dropped(address, rx, “BAD FRAME”)
43: end if
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Algorithm 2 continued

44: else
45: tracer.dropped(address, rx, “NOTDETECTED”)
46: end if
47: end if
48: end if
49: end if
50: end if
51: end if
52: else
53: return
54: end if
55: end function

log drop event with message indicating the reason.

4.3. Residual energy model in UnetStack

In implementing the energy model the HalfDuplexModem class is extended

further implementing the class named EnergyModelModem, which adds energy

monitoring capability. The hierarchy of classes extended is shown in Fig. 2 and

Algo. 3 presents the implementations made in extended EnergyModelModem

class.

The extended EnergyModelModem class should be able to handle incoming

datagram requests for which it should advertise Physical and Datagram services,

by registering with them. Further the extended modem should monitor each

transmissions and receptions to calculate the energy consumption for a node.

To achieve this the extended modem agent should monitor two physical agent

notification messages, which are the transmit frame notification(TxFrameNtf)

and received frame notification(RxFrameNtf) the base (HalfDuplexModem) class

send these notification messages upon handling a nodes data transmission and

reception respectively. To send these messages the HalfDuplexModem class in-

vokes the send() defined in fjage’s Agent and passes the instance of message

as parameter, since the HalfDuplexModem is extension of UnetAgent class and

in turn UnetAgent is extension of fjage’s Agent class, the ‘send()’ is invoked

from Agent class, which is at topmost in the hierarchy. Thus in the extended
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Figure 2: UnetStack: Energy model class diagram

EnergyModelModem which comes at last level in this hierarchy, this ‘send()’ is

overriden and defined to check whether the message instance received as param-

eter is an instance of TxFrameNtf or RxFrameNtf message, the Energy consumed

for data transmission is calculated when parameter is instance of TxFrameNtf

message, and reception if it is of RxFrameNtf message, as our energy model

design for transmission energy calculation requires computing size of data and

distance between sender and receiver nodes, we need to obtain data being sent

from the node and location of node,these are fetched by handling the datagram
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Algorithm 3 UnetStack: Energy model in the extended class

1: function setup
2: register(Services.PHYSICAL)
3: register(Services.DATAGRAM)
4: end function
5: function startup
6: nodeInfo← agentForService(Services.NODE INFO)
7: addr← nodeInfo.address
8: depth← nodeInfo.location[2]
9: map.put(addr, nodeInfo.location)

10: end function
11: function processRequest(msg)
12: if msg instanceof DatagramReq then
13: req← new TxFrameReq((DatagramReq)msg)
14: data← msg.getData()
15: return new Message(msg, Performative.AGREE)
16: end if
17: return null
18: end function
19: function send(msg)
20: if msg instanceof TxFrameNtf then
21: loc1← map.get(addr)
22: loc2← map.get(req.getTo())
23: x← loc1[0] - loc2[0]
24: y← loc1[1] - loc2[1]
25: z← |loc1[2]- loc2[2]|
26: distance←

√
x2 + y2 + z2

27: bits← 32
28: sbits← bits ∗ sdata.size()
29: dist← distance/1000.0
30: Tx← sbits∗50e−9+sbits∗(0.001)∗dist∗(depth∗−0.001)∗C∗Ed∗dist

31: initenergy← initenergy − Tx
32: end if
33: if msg instanceof RxFrameNtf then
34: rdata← msg.getData()
35: bits← 32
36: rbits← bits ∗ rdata.size()
37: Rx← rbits ∗ 50e−9

38: initenergy← initenergy −Rx
39: end if
40: end function

request message which is generated when node request for data transmission.

Finally, in simulation, the EnergyModelModem, customized for residual en-
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Table 1: Parameters for energy model

Parameter Value
Channel center frequency (f ) 10 kHz
Empirical constant (C) 1.3312e-9
Thorp’s constant (ϑ(f)) 0.036 * f 1.5

Bit duration (Tb) 0.001 sec

ergy monitoring is added by configuring the modem settings, thereby it is added

as physical agent to the container for use by nodes running in simulation. The

parameters for used in implemented energy model with reference to Equation

(1) and (4) in Section 3 is shown in Table 1. Two other parameters Water depth

(H) and Transmission distance (l) which are simulation dependent are shown in

Table 2

Table 2:
Simulation parameters

Parameter Value
Number of nodes 7
Communication range 1000 m
Simulation time 1 min., 1hr.
Initial energy 10 J
Water depth (H) (Node 1 through 7) 0, 800, 1500, 2200, 2800, 600,

2000
Transmission distance (l) Euclidean distance between

nodes, as shown in Fig. 3

5. Results and analysis

This section of the paper presents the simulation topology, parameters and

the different scenarios adopted to validate/demonstrate the implemented resid-

ual energy model in UnetStack. Further, the topology is simulated for the dura-

tion of 1 min. (Case-I) and 1 hr. (Case-II). Additionally, Case-I and Case-II are

simulated for with and without acknowledgment (ACK). The successful imple-

mentation of the residual energy model in UnetStack is demonstrated through

the parameters such as, total number of packets sent/forwarded and received

for all active nodes with their relative energy depletion. Case-I provides the
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in-depth simulation of the implemented module, whereas, Case-II assures the

robustness of the implemented module with the exhaustive simulation.

The simulation with hop-to-hop ACK ensure the reliable delivery of packets.

In UnetStack simulations, The uwlink agent of type ReliableLink available in

the default stack, provides link layer service with segmentation/reassembly and

link level reliability. When uwlink is used in sending data, the hop-to-hop ACK

can be enabled for reliable delivery. This can be done using the reliability

field set to true. In case when router agent used for sending data, the uwlink

is the default link agent. Where the hop-to-hop ACK feature is available by

default, or it can be explicitly controlled while adding the routes, using the

reliability field set either to true or false. The router agent provides routing

service based on routing table.

5.1. Simulation topology and parameters

Figure 3: Simulation topology

This subsection presents the simulation topology with its parameters and

the values related to the implemented residual energy model in UnetStack. Fig.

3 presents the simulation topology consisting of 7 nodes. As shown in the

Fig. 3, circles represents the node, with the dotted line connecting the nodes

as neighbours to each other. Further, solid line with the arrow indicate the

flow of data and the value alongside the line indicate the Euclidean distance (l)

between the connecting nodes. The simulation parameters and the parameters

configured for energy model H and l with reference to Equation (1) and (4) in

Section 3 is shown in Table 2.
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5.2. Case I:

This subsection presents the simulation of the topology as shown in Fig. 3

for the duration of 1 min., with and without ACK. Further, Node-5 and Node-1

are configured as a source and sink respectively.

5.2.1. Total packets sent/forwarded
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Figure 4: Total packets sent/forwarded with ACK

The multi-line graph in Fig. 4 depicts the total number of packets sent/forwarded

by all the nodes with hop-to-hop ACK set in the simulation. As the Node-1

is sink, it sends only ACK packets. Packets sent by Node-4 include, packets

to forward to Node-3, and ACK’s sent back to Node-5. Similarly packets sent

from Node-3 and -2 include packets forwarded to Node-2 and -1 respectively

and ACK’s sent back. Lastly Node-5 being the leaf node, has its own packets

sent.

As shown in Fig. 4, every marker on a graph indicate either packet forwarded

or ACK sent event except Node-5 which involved only in packet sent and Node-

1 ACK sent. Further, as shown in Fig. 4, 5 packets are sent by Node-5 and

accordingly, 10 sent event (5 packets + 5 ACKs) is recorded at Node-4 and

-3. Whereas, at Node-2 9 sent event (5 packets + 4 ACKs) is recorded and
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accordingly 4 ACKs sent event is recorded at Node-1. Additionally, delay in

packet forward and ACK sent event can also be observed in Fig. 4.
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Figure 5: Total packets sent/forwarded without ACK

Fig. 5 depicts the total number of packets sent by all the nodes without

ACK set in the simulation. It can be noticed that, there is no graph for Node-

1, as it is the sink node and here it does not send ACK’s too. Packets sent

by Node-4 include packets to forward to Node-3. Similarly packets sent from

Node-3 and -2 include packets forwarded to Node-2 and -1 respectively. Lastly

Node-5 being the leaf node, has its own packets sent.

As shown in Fig. 5 without ACK, number of packets sent by Node-5

matches with the number of packet forwarded by the intermediate Node-4 and

-3. Whereas, at Node-2, packet forwarded count is one less than the previous

node because of end of simulation.

The numerical values shown in Fig. 4 and 5 justify the proper functioning

of the implemented energy model in UnetStack for packet sent/forward event.

5.2.2. Total packets received

The multi-line graph in Fig. 6 depicts the total number of packets received

by all the nodes with hop-to-hop ACK. As the Node-1 is sink, it receives only

data packets forwarded from Node-2. Node-5 which is the leaf node, receives
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Figure 6: Total packets received with ACK

only ACKs sent from Node-4. Remaining nodes receive packets forwarded from

previous hop and ACK’s sent from next hop.

As shown in Fig. 6, every marker on a graph indicate either packet or ACK

received event except Node-5 which involved only in ACK received and Node-1

packet received. Further, as shown in Fig. 6, 5 packets are sent by Node-5 and

accordingly, 10 received event (5 packets + 5 ACKs) is recorded at Node-4 and

-3. Whereas, at Node-2, 8 received event (4 packets + 4 ACKs) is recorded

and accordingly 4 packets received event is recorded at Node-1. Additionally,

packets sent and received events can be mapped in Fig. 4 and 6 respectively.

Fig. 7 depicts the total number of packets received by all the nodes without

acknowledgement. It should be noticed that, there is no graph for Node-5, as

it is the source node, and does not receive any ACK’s. The Node-1 being sink,

receives only data packets forwarded from Node-2. Remaining nodes receive

packets forwarded from previous node.

As shown in Fig. 7 without ACK, number of packets received by Node-1

matches with the number of packet forwarded by the intermediate Node-2 (Fig.

5. Similarly with Node-3 and -4.

The numerical values shown in Fig. 6 and 7 justify the proper functioning
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Figure 7: Total packets received without ACK

of the implemented energy model in UnetStack for packet received event.

5.2.3. Depletion of node energy

This subsection demonstrate the successful implementation of primary ob-

jective of the proposed work.
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Figure 8: Energy depletion for all active nodes with ACK

The multi-line graphs shown in Fig. 8 and 9 depicts the energy depletion of
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all active nodes, for all transmissions and receptions made by the nodes. The

graph does not show energy depletion for Node-6 and -7 as these nodes does not

forward or receive packets (Fig. 4, 5, 6 and 7) but can sense the transmission

(Fig. 3) for which the energy remains same. The markers on the graph indicate

a send or receive event occurred at the node.

Fig. 8 shows the graph for depletion of node energy with hop-to-hop ACK.

It can be seen in the graph that, Node-1 which is the sink, has lowest energy

depleted. As Node-1 is not involved in forwarding packets to next hop, it only

receives packets from Node-2 and sends ACK’s back to Node-2 for the packets

it received. Next the Node-5 being source, has lesser energy depletion, as it

only sends packets to Node-4 which is its next hop, and receives ACK’s from

Node-4. Further the Node-2, -3 and -4 which are the intermediate nodes has

higher energy depletion as these nodes receive packets from previous hop, send

ACK’s back to the previous hop, as well as, forward packets to next hop and

receive ACK’s from next hop.

As shown in Fig. 8, the number of markers on individual graph of a node

is the sum of number of marker on the respective node graph in Fig. 4 and 6.

Also, the depletion of energy for packet transmission = packet forward > ACK

transmission > packet reception > ACK reception can be observed in Fig. 8.
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Figure 9: Energy depletion for all active nodes without ACK
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The graph in Fig. 9 shows depletion of node energy without ACK. It can

be seen, similar to graph in Fig. 8, the Node-1 has lowest energy depletion, as

it is involved only in receiving packets. Node-5 energy is depleted, for sending

its own packets. Other nodes have their energy lost for receiving packets from

previous hop and for forwarding packets to their next hop.

Similar to Fig. 8, the sum of count of markers can be verified between Fig.

9, and Fig. 5 & 7.

The numerical values shown in Fig. 8 and 9 justify the proper functioning of

the implemented energy model in UnetStack for energy depletion during packet

transmission, reception, forwarding, and ACK transmission and reception.
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Figure 10: Total packets sent/forwarded with ACK

5.3. Case-II: Extended simulation and analysis

This subsection presents the extensive simulation of the topology as shown

in Fig. 3 for the duration of 1 hr., with and without ACK. Further, Node-5 and

Node-1 are configured as a source and sink respectively. In comparison with

Case-I, the initial energy of the nodes are configured to 0.5J in Case-II.
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5.3.1. Total packets sent/forwarded

The multi-line graph in Fig. 10 depicts the total number of packets sent

by all the nodes with hop-to-hop ACK. As Node-1 is sink, it sends only ACK’s

for the packets it received from Node-2. Packets sent from Node-4, -3 and -2

include packets forwarded to their next hop, and ACK’s sent to their previous

hop.

As shown in Fig. 10, Node-1 has lowest number of packets sent, as Node-

1 has sent only ACK’s, and it depends on number of packets it receives from

Node-2. Node-5 has higher number of packets sent than Node-1, and lesser

than other nodes. As Node-5 has to send only packets of its own, or re-transmit

some packets when ACK is not received from Node-4. For the intermediate

nodes (Node-2, -3 and -4) though they have same task of forwarding packets to

their next hop and sending ACK to their previous hop. The number of packets

sent is not same, as it depends on number of packets they forward or re-transmit,

and number of ACK they send, which again depends on number of packets they

receive. In this case, in Fig 10 Node-4 has highest number of packets sent.
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Figure 11: Total packets sent/forwarded without ACK

Fig. 11 depicts the total number of packets sent by all the nodes without

ACK. Here except Node-1, the Node-5 which is source, is involved in sending
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packets and the intermediate nodes (Node-4, -3 and -2) are involved in forward-

ing packets. As all the packets sent from Node-5 are forwarded across each

intermediate nodes, the amount of energy depletion is same for all these nodes.

As shown in Fig. 11, The Node-1, which is sink node does not send any

packets. The number of packets forwarded by intermediate nodes (Node-4,-3

and -2) is same as packets sent from Node-5. Hence in Fig 11 the graph is

overlapped for these nodes.

5.3.2. Total packets received
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Figure 12: Total packets received with ACK

The multi-line graph in Fig. 12 depicts the total number of packets re-

ceived by all the nodes with hop-to-hop ACK. As the Node-1 is sink, it receives

only data packets forwarded from Node-2. Node-5 which is the source, receives

only ACKs sent from Node-4. Remaining nodes receive packets forwarded from

previous hop and ACK’s sent from next hop.

As shown in Fig. 12 Node-1 and Node-5 has similar number of packets and

ACK’s received. For the intermediate nodes (Node-4, -3 and -2) the number

of packets received depends on number of packets forwarded to them, packets

processed at the node,and also re-transmitted packets. In this case, in Fig 12

Node-4 has highest number of packets received, then comes Node-3 and -2.
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Figure 13: Total packets received without ACK

Fig. 13 depicts the total number of packets received by all the nodes without

hop-to-hop ACK. Here except Node-5, The sink (Node-1) and the intermediate

nodes (Node-4, -3 and -2) are involved in receiving packets. As all the pack-

ets sent from Node-5 are forwarded and received at these nodes, the energy

depletion at Node-1 and the intermediate nodes is same.

As shown in Fig. 13 the Node-5 which is source, has no packets received.

The intermediate nodes (Node-4,-3 and -2) and Node-1 receive equal number

of packets forwarded from their respective previous hop. Hence in Fig. 13 an

overlapping can be seen for the number of packets received at these nodes.

5.3.3. Depletion of node energy

The multi-line graphs in Fig. 14 and 15 depicts depletion of energy overtime

for all active nodes. Similar to the graph shown in Fig. 8, here, the Fig.

14 shows the graph for depletion of node energy with hop-to-hop ACK. The

Node-1 which is sink, has lowest energy depleted. As Node-1 is not involved in

forwarding packets to next hop, it only receives packets forwarded by Node-2,

and sends ACK’s back to Node-2. Node-4 and -3 has higher depletion as these

nodes have most number of send and receive events. Further, Node-5 which

is source, has depletion higher than Node-2 for sending and re-transmitting
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Figure 14: Energy depletion for all active nodes with ACK

packets and receiving ACK’s.

The graphs in Fig. 10 and 12 can be used in verifying the energy deple-

tion shown in Fig. 14 for energy depletion during packets sent, forwarded,

re-transmitted, ACK’s sent and packets, ACK’s received.
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Figure 15: Energy depletion for all active nodes without ACK

Fig. 15 shows graph for depletion of node energy without ACK. Here, as

Node-1 is sink, it only receives packets forwarded by Node-2. Thus has the lowest
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energy depletion. The intermediate nodes (Node-4, -3 and -2) are overlapped as

the amount of energy depletion across these nodes are same. As these nodes are

involved in both sending and receiving packets, and also all the packets were

forwarded without packet drop due to collision. Node-5 which is the source,

involved only in sending packets to Node-4, which is its next hop. Since energy

consumed for a transmission is always more than for a reception, it has higher

depletion than Node-1 and lesser than other intermediate nodes.

The graphs in Fig. 11 and 13 can be used in verifying the energy deple-

tion shown in Fig. 15 for energy depletion during packets sent, forwarded and

received.

The values obtained for energy depletion in Fig. 14 and Fig. 15 justify

the proper functioning of the implemented energy model in UnetStack for an

exhaustive simulation.

6. Conclusions and future work

UnetStack being one of the most popularly used underwater network simu-

lation tool and the non-availability of residual energy model motivated to de-

sign and implement the same. The implemented module extended the existing

HalfDuplexModem implementation of UnetStack for customized residual energy

calculation. Through the basic and exhaustive simulations the correctness of

the implemented residual energy model is demonstrated for number of packets

sent and received, and energy depletion at all nodes. The calculation of energy

still can be made much accurate, considering other parameters in underwater

network which is future scope of this work.
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