

Programs: BC (CS), BS(SE), BS(TELC)

Subject: Digital Logic Design

Major Assignment Final-Term

Course Code: CSC-201

EDP Code: 102007016

Summer Semester 2020

Q.1 Draw and explain the logic diagram for each of the following:

- a) A circuit for adding or subtracting two 4-bit numbers
- b) 4-bit active low decoder
- c) Decimal to BCD encoder
- d) Frequency divider (Use 3 J-K flip-flops and assume 16 kHz frequency of the initial wave-form.)

Q.2 For the 4-input multiplexer, data inputs are given as:

$$D_0 = 0$$
, $D_1 = 1$, $D_2 = 0$, $D_3 = 1$

Find the output Y if the select inputs are given as:

- a) $S_0 = 1$, $S_1 = 0$
- b) $S_0 = 0$, $S_1 = 1$
- c) $S_0 = 1$, $S_1 = 1$
- d) $S_0 = 0$, $S_1 = 0$
- Q.3 Timing diagram in Figure 01 shows inputs to a 9-bit parity checker. Draw the Σ Even and Σ Odd output for the even parity checking.
- Q.4 The waveforms in Figure 02 are applied to the J, K, CLK, \overline{PRE} , and \overline{CLR} inputs as indicated. Determine the Q output, if the flip-flop is initially RESET.
- Q.5 Use the waveforms in Figure 03 to draw the timing diagram for the parallel outputs $(Q_1,\ Q_2,\ Q_3,\ Q_4)$ for the shift register. Assume that register is initially cleared.
- Q.6 Draw the logic diagram and timing diagram for the 4-stage synchronous binary counter. Verify that the waveforms of the Q outputs represent the proper binary number after each clock pulse.

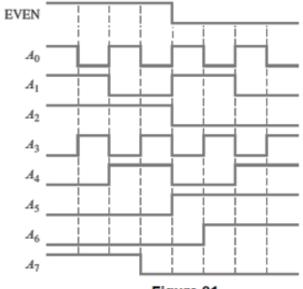
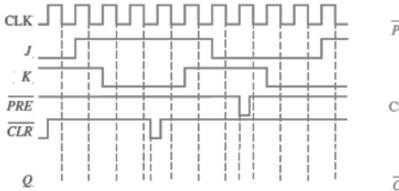



Figure 01

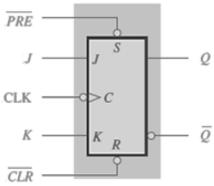


Figure 02

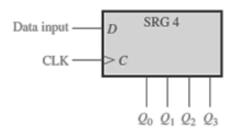


Figure 03