
1

2.3 64-Bit x86-64 Processors
2.3.1 64-Bit Operation Modes
2.3.2 Basic 64-Bit Execution Environment

2.4 Components of a Typical x86 Computer
2.4.1 Motherboard
2.4.2 Memory

2.5 Input-Output System
2.5.1 Levels of I/O Access

Lecture No.4

Lecture Outlines

2.3 64-Bit x86-64 Processors
In this section, we focus on the basic architectural details of all 64-bit processors that use the
x86-64 instruction set. This group the Intel 64 and AMD64 processor families. The instruction
set is a 64-bit extension of the x86 instruction set we’ve already looked at. Here are some of the
essential features:

1. It is backward-compatible with the x86 instruction set.
2. Addresses are 64 bits long, allowing for a virtual address space of size 264 bytes. In current

chip implementations, only the lowest 48 bits are used.
3. It can use 64-bit general-purpose registers, allowing instructions to have 64-bit integer

operands.
4. It uses eight more general-purpose registers than the x86.
5. It uses a 48-bit physical address space, which supports up to 256 terabytes of RAM.

On the other hand, when running in native 64-bit mode, these processors do not support
16-bit real mode or virtual-8086 mode. (There is a legacy mode that still supports 16-bit pro-
gramming, but it is not available in 64-bit versions of Microsoft Windows.)

Note: Although x86-64 refers to an instruction set, we will from this point on treat it as a processor
type. For the purpose of learning assembly language, it is not necessary to consider hardware
implementation differences between processors that support x86-64.

The first Intel processor to use x86-64 was the Xeon, followed by a host of other processors,
including Core i5 and Core i7 processors. Examples of AMD’s processors that use x86-64 are
Opteron and Athlon 64.

You might also have heard of another 64-bit architecture from Intel known as IA-64, later
renamed to Itanium. The IA-64 instruction set is completely different from x86 and x86-64. Ita-
nium processors are often used for high-performance database and network servers.

Microprocessor & Assembly Language

2

2.3.1 64-Bit Operation Modes
The Intel 64 architecture introduces a new mode named IA-32e. Technically it contains two sub-
modes, named compatibility mode and 64-bit mode. But it’s easier to refer to these as modes
rather than submodes, so we will do that from now on.

Compatibility Mode
When running in compatibility mode, existing 16-bit and 32-bit applications can usually run
without being recompiled. However, 16-bit Windows (Win16) and DOS applications will not
run in 64-bit Microsoft Windows. Unlike earlier versions of Windows, 64-bit Windows does not
have a virtual DOS machine subsystem to take advantage of the processor’s ability to switch into
virtual-8086 mode.

64-Bit Mode
In 64-bit mode, the processor runs applications that use the 64-bit linear address space. This is
the native mode for 64-bit Microsoft Windows. This mode enables 64-bit instruction operands.

2.3.2 Basic 64-Bit Execution Environment
In 64-bit mode, addresses can theoretically be as large as 64-bits, although processors currently
only support 48 bits for addresses. In terms of registers, the following are the most important
differences from 32-bit processors:

• Sixteen 64-bit general purpose registers (in 32-bit mode, you have only eight general-purpose
registers)

• Eight 80-bit floating-point registers
• A 64-bit status flags register named RFLAGS (only the lower 32 bits are used)
• A 64-bit instruction pointer named RIP

As you may recall, the 32-bit flags and instruction pointers are named EFLAGS and EIP. In
addition, there are some specialized registers for multimedia processing we mentioned when
talking about the x86 processor:

• Eight 64-bit MMX registers
• Sixteen 128-bit XMM registers (in 32-bit mode, you have only 8 of these)

General-Purpose Registers
The general-purpose registers, introduced when we described 32-bit processors, are the basic
operands for instructions that do arithmetic, move data, and loop through data. The general-
purpose registers can access 8-bit, 16-bit, 32-bit, or 64-bit operands (with a special prefix).

In 64-bit mode, the default operand size is 32 bits and there are eight general-purpose regis-
ters. By adding the REX (register extension) prefix to each instruction, however, the operands
can be 64 bits long and a total of 16 general-purpose registers become available. You have all the

same registers as in 32-bit mode, plus eight numbered registers, R8 through R15. Table 2-1
shows which registers are available when the REX prefix is enabled.

3

Table 2-1 Operand Sizes in 64-Bit Mode When REX Is Enabled.

Here are a few more details to remember:

• In 64-bit mode, a single instruction cannot access both a high-byte register, such as AH, BH,
CH, and DH, and at the same time, the low byte of one of the new byte registers (such as
DIL).

• The 32-bit EFLAGS register is replaced by a 64-bit RFLAGS register in 64-bit mode. The
two registers share the same lower 32 bits, and the upper 32 bits of RFLAGS are not used.

• The status flags are the same in 32-bit mode and 64-bit mode.

2.4 Components of a Typical x86 Computer
Let us look at how the x86 integrates with other components by examining a typical mother-
board configuration and the set of chips that surround the CPU. Then we will discuss memory,
I/O ports, and common device interfaces. Finally, we will show how assembly language pro-
grams can perform I/O at different levels of access by tapping into system hardware, firmware,
and by calling functions in the operating system.

2.4.1 Motherboard
The heart of a microcomputer is its motherboard, a flat circuit board onto which are placed the
computer’s CPU, supporting processors (chipset), main memory, input-output connectors,
power supply connectors, and expansion slots. The various components are connected to each
other by a bus, a set of wires etched directly on the motherboard. Dozens of motherboards are
available on the PC market, varying in expansion capabilities, integrated components, and
speed. The following components have traditionally been found on PC motherboards:

• A CPU socket. Sockets are different shapes and sizes, depending on the type of processor
they support

• Memory slots (SIMM or DIMM), holding small plug-in memory boards
• BIOS (basic input–output system) computer chips, holding system software
• CMOS RAM, with a small circular battery to keep it powered
• Connectors for mass-storage devices such as hard drives and CD-ROMs
• USB connectors for external devices
• Keyboard and mouse ports

Operand Size Available Registers

8 bits AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L, R9L, R10L, R11L, R12L, R13L, R14L, R15L

16 bits AX, BX, CX, DX, DI, SI, BP, SP, R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W

32 bits EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D, R9D, R10D, R11D, R12D, R13D,
R14D, R15D

64 bits RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, R15

4

• PCI bus connectors for sound cards, graphics cards, data acquisition boards, and other input–
output devices

The following components are optional:

• Integrated sound processor
• Parallel and serial device connectors
• Integrated network adapter
• AGP bus connector for a high-speed video card

Following are some important support processors in a typical system:

• The Floating-Point Unit (FPU) handles floating-point and extended integer calculations.
• The 8284/82C284 Clock Generator, known simply as the clock, oscillates at a constant speed.

The clock generator synchronizes the CPU and the rest of the computer.
• The 8259A Programmable Interrupt Controller (PIC) handles external interrupts from hard-

ware devices, such as the keyboard, system clock, and disk drives. These devices interrupt the
CPU and make it process their requests immediately.

• The 8253 Programmable Interval Timer/Counter interrupts the system 18.2 times per second,
updates the system date and clock, and controls the speaker. It is also responsible for con-
stantly refreshing memory because RAM memory chips can remember their data for only a
few milliseconds.

• The 8255 Programmable Parallel Port transfers data to and from the computer using the
IEEE Parallel Port interface. This port is commonly used for printers, but it can be used with
other input–output devices as well.

PCI and PCI Express Bus Architectures
The PCI (Peripheral Component Interconnect) bus provides a connecting bridge between the CPU
and other system devices such as hard drives, memory, video controllers, sound cards, and network
controllers. More recently, the PCI Express bus provides two-way serial connections between
devices, memory, and the processor. It carries data in packets, similar to networks, in separate
“lanes.” It is widely supported by graphics controllers, and can transfer data at very high speeds.

Motherboard Chipset
A motherboard chipset is a collection of processor chips designed to work together on a specific
type of motherboard. Various chipsets have features that increase processing power, multimedia
capabilities, or reduce power consumption. The Intel P965 Express Chipset can be used as an
example. It is used in desktop PCs, with either an Intel Core 2 Duo or a Pentium D processor.
Here are some of its features:

• Intel Fast Memory Access uses an updated Memory Controller Hub (MCH). It can access
dual-channel DDR2 memory, at an 800 MHz clock speed.

• An I/O Controller Hub (Intel ICH8/R/DH) uses Intel Matrix Storage Technology (MST) to
support multiple Serial ATA devices (disk drives).

• Support for multiple USB ports, multiple PCI express slots, networking, and Intel Quiet Sys-
tem technology.

• A high definition audio chip provides digital sound capabilities.

5

A diagram may be seen in Figure 2-6. Motherboard manufacturers will build products around
specific chipsets. For example, the P5B-E P965 motherboard by Asus Corporation uses the P965
chipset.

Figure 2–6 Intel 965 express chipset block diagram.

2.4.2 Memory
Several basic types of memory are used in Intel-based systems: read-only memory (ROM), eras-
able programmable read-only memory (EPROM), dynamic random-access memory (DRAM),
static RAM (SRAM), video RAM (VRAM), and complimentary metal oxide semiconductor
(CMOS) RAM:

• ROM is permanently burned into a chip and cannot be erased.
• EPROM can be erased slowly with ultraviolet light and reprogrammed.
• DRAM, commonly known as main memory, is where programs and data are kept when a

program is running. It is inexpensive, but must be refreshed every millisecond to avoid losing
its contents. Some systems use ECC (error checking and correcting) memory.

• SRAM is used primarily for expensive, high-speed cache memory. It does not have to be
refreshed. CPU cache memory is comprised of SRAM.

• VRAM holds video data. It is dual ported, allowing one port to continuously refresh the dis-
play while another port writes data to the display.

• CMOS RAM on the system motherboard stores system setup information. It is refreshed by
a battery, so its contents are retained when the computer’s power is off.

Source: The Intel P965 Express Chipset (product brief),
© 2006 by Intel Corporation, used by permission.

6

2.5 Input–Output System

2.5.1 Levels of I/O Access
Application programs routinely read input from keyboard and disk files and write output to the
screen and to files. I/O need not be accomplished by directly accessing hardware—instead, you
can call functions provided by the operating system. I/O is available at different access levels,
similar to the virtual machine concept shown in Chapter 1. There are three primary levels:

• High-level language functions: A high-level programming language such as C++ or Java
contains functions to perform input–output. These functions are portable because they work
on a variety of different computer systems and are not dependent on any one operating
system.

• Operating system: Programmers can call operating system functions from a library known
as the API (application programming interface). The operating system provides high-level opera-
tions such as writing strings to files, reading strings from the keyboard, and allocating blocks of
memory.

• BIOS: The basic input–output system is a collection of low-level subroutines that communi-
cate directly with hardware devices. The BIOS is installed by the computer’s manufacturer and
is tailored to fit the computer’s hardware. Operating systems typically communicate with
the BIOS.

Device Drivers Device drivers are programs that permit the operating system to communicate
directly with hardware devices and the system BIOS. For example, a device driver might receive
a request from the OS to read some data; the device driver satisfies the request by executing code
in the device firmware that reads data in a way that is unique to the device. Device drivers are
usually installed in one of two ways: (1) before a specific hardware device is attached to a com-
puter, or (2) after a device has been attached and identified. In the latter case, the OS recognizes
the device name and signature; it then locates and installs the device driver software onto the
computer.

We can put the I/O hierarchy into perspective by showing what happens when an application
program displays a string of characters on the screen (Fig. 2-7). The following steps are
involved:

1. A statement in the application program calls an HLL library function that writes the string to
standard output.

2. The library function (Level 3) calls an operating system function, passing a string pointer.

Tip: Because computer games are so memory and I/O intensive, they push computer performance to the
max. Programmers who excel at game programming often know a lot about video and sound hardware,
and optimize their code for hardware features.

7

3. The operating system function (Level 2) uses a loop to call a BIOS subroutine, passing it the
ASCII code and color of each character. The operating system calls another BIOS subroutine
to advance the cursor to the next position on the screen.

4. The BIOS subroutine (Level 1) receives a character, maps it to a particular system font, and
sends the character to a hardware port attached to the video controller card.

5. The video controller card (Level 0) generates timed hardware signals to the video display that
control the raster scanning and displaying of pixels.

Figure 2–7 Access levels for input–output operations.

Programming at Multiple Levels Assembly language programs have power and flexibility in
the area of input-output programming. They can choose from the following access levels
(Figure 2-8):

• Level 3: Call library functions to perform generic text I/O and file-based I/O. We supply such
a library with this book, for instance.

• Level 2: Call operating system functions to perform generic text I/O and file-based I/O. If the OS
uses a graphical user interface, it has functions to display graphics in a device-independent way.

• Level 1: Call BIOS functions to control device-specific features such as color, graphics,
sound, keyboard input, and low-level disk I/O.

• Level 0: Send and receive data from hardware ports, having absolute control over specific
devices. This approach cannot be used with a wide variety of hardware devices, so we say
that it is not portable. Different devices often use different hardware ports, so the program
code must be customized for each specific type of device.

What are the tradeoffs? Control versus portability is the primary one. Level 2 (OS) works on

Application program

OS function

BIOS function

Hardware Level 0

Level 1

Level 2

Level 3

8

Figure 2–8 Assembly language access levels.

Level 1 (BIOS) works on all systems having a standard BIOS, but will not produce the same
result on all systems. For example, two computers might have video displays with different res-
olution capabilities. A programmer at Level 1 would have to write code to detect the user’s hard-
ware setup and adjust the output format to match. Level 1 runs faster than Level 2 because it is
only one level above the hardware.

Level 0 (hardware) works with generic devices such as serial ports and with specific I/O
devices produced by known manufacturers. Programs using this level must extend their coding
logic to handle variations in I/O devices. Real-mode game programs are prime examples
because they usually take control of the computer. Programs at this level execute as quickly as
the hardware will permit.

Suppose, for example, you wanted to play a WAV file using an audio controller device. At the
OS level, you would not have to know what type of device was installed, and you would not be
concerned with nonstandard features the card might have. At the BIOS level, you would query
the sound card (using its installed device driver software) and find out whether it belonged to a
certain class of sound cards having known features. At the hardware level, you would fine tune
the program for certain models of audio cards, taking advantage of each card’s special features.

General-purpose operating systems rarely permit application programs to directly access system
hardware, because to do so would make it nearly impossible for multiple programs to run simulta-
neously. Instead, hardware is accessed only by device drivers, in a carefully controlled manner. On the
other hand, smaller operating systems for specialized devices often do connect directly to hardware.
They do this in order to reduce the amount of memory taken up by operating system code, and they
almost always run just a single program at one time. The last Microsoft operating system to allow pro-
grams to directly access hardware was MS-DOS, and it was only able to run one program at a time.

ASM program

Level 0

Level 1

Level 2OS function

BIOS function

Hardware

Library Level 3

any computer running the same operating system. If an I/O device lacks certain capabilities, the
OS will do its best to approximate the intended result. Level 2 is not particularly fast because
each I/O call must go through several layers before it executes.

