DC Resistance versus Bulk Resistance

The dc resistance of a diode is different from the buik resistance. The dc resistance of a diode equals the bulk resistance plus the effect of the barrier potential. In other words, the de resistance of a diode is its total resistance, whereas the bulk resistance is the resistance of only the p and n regions. For this reason, the dc resistance of a diode is always greater than bulk resistance.

3-10 Load Lines

This section is about the load line, a tool used to find the exact value of diodecurrent and voltage. Load lines are useful with transistors, so a detailed explanation will be given later in the transistor discussions.

Equation for the Load Line

How can we find the exact diode current and voltage in Fig. 3-17a? The current through the resistor is:

$$
\begin{equation*}
I_{D}=\frac{V_{S}-V_{D}}{R_{s}} \tag{3-8}
\end{equation*}
$$

Because of the series circuit, this current is the same through the diode.

An Example

If the source voltage is $2 . V$ and the resistance is 100Ω as shown in Fig. 3-17b, then Eq. (3-8) becomes:

$$
\begin{equation*}
I_{D}=\frac{2-V_{D}}{100} \tag{3-9}
\end{equation*}
$$

Equation (3-9) is a linear relationship between current and voltage. If we plot this equation, we will get a straight line. For instance, let $\overline{V_{D}}$ equal zerg, Then:

$$
I_{D}=\frac{2 \mathrm{~V}-0 \mathrm{~V}}{100 \Omega}=20 \mathrm{~mA}
$$

Plotting this point ($I_{D}=20 \mathrm{~mA}, V_{D}=0$) gives the point on the vertical axis of Fig. 3-18. This point is called saturation because it represents maximum cuirent with 2 V across 100Ω. .

Here's how to get another point. Let V_{D} equal 2 V . Then Eq. (3-9) gives:

$$
I_{D}=\frac{2 \mathrm{~V}-2 \mathrm{~V}}{100 \Omega}=0
$$

When we plot this point ($I_{D}=0, V_{D}=2 \mathrm{~V}$), we get the point shown on the horizontal axis (Fig. 3-18). This point is called cutoff because it represents minimum current.

By selecting other voltages, we can calculate and plot additional points. Because Eq. (3-9) is linear, all points will lie on the straight line shown in Fig. 3-18. The straight line is called the load line.

The Q Point

Figure 3-18 shows the load line and a diode curve. The point of intersection, known as the Q point, represents a simultaneous solution between the diode curve and the load line. In other words, the Q point is the only point on the graph that works for both the diode and the circuit. By reading the coordinates of the Q point, we get a current of 12.5 mA and a diode voltage of 0.75 V .

Figure 3-18 Q point is the intersection of the diode curve and the load line.

Incidentally, the Q point has no relationship to the figure of merit of a coil. In the present discussion, Q is an abbreviation for quiescent, which means "at rest." The quiescent or Q point of semiconductor circuits is discussed in later chapters.

3-11 Surface-Mount Diodes

Surface-mount (SM) diodes can be found anywhere there is a need for diode applications. SM diodes are small, efficient, and relatively easy to test, remove, and replace on the circuit board. Although there are a number of SM package styles, two basic styles dominate the industry: SM (surface mount) and SOT (small outline transistor).

The SM package has two L-bend leads and a colored band on one end of the body to indicate the cathode lead. Figure 3-19 shows a typical set of dimensions. The length and width of the SM package are related to the current rating of

Figure 3-19 The two-terminal SM-style package, used for SM diodes

