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Econ 422 – Lecture Notes 
Part V 

 
(These notes are slightly modified versions of lecture notes provided by 

Stock and Watson, 2007. They are for instructional purposes only  
and are not to be distributed outside of the classroom.)  
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Nonlinear Regression Functions 
 

 
• Everything so far has been linear in the X’s 
• But the linear approximation is not always a good one 
• The multiple regression framework can be extended to 

handle regression functions that are nonlinear in one or 
more X. 

 
Outline 

1. Nonlinear regression functions – general comments 
2. Nonlinear functions of one variable 
3. Nonlinear functions of two variables: interactions 
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The TestScore – STR relation looks linear (maybe)… 
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But the TestScore – Income relation looks nonlinear... 
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Nonlinear Regression Population Regression Functions – 
General Ideas 

 
If a relation between Y and X is nonlinear: 
 
• The effect on Y of a change in X depends on the value of X 

– that is, the marginal effect of X is not constant 
• A linear regression is mis-specified – the functional form 

is wrong 
• The estimator of the effect on Y of X is biased – it needn’t 

even be right on average. 
• The solution to this is to estimate a regression function 

that is nonlinear in X 
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The general nonlinear population regression function 
 

Yi = f(X1i, X2i,…, Xki) + ui, i = 1,…, n 
 
Assumptions 
1. E(ui| X1i,X2i,…,Xki) = 0  (same); implies that f is the 

conditional expectation of Y given the X’s. 
2. (X1i,…,Xki,Yi) are i.i.d. (same). 
3. Big outliers are rare (same idea; the precise mathematical 

condition depends on the specific f). 
4. No perfect multicollinearity (same idea; the precise 

statement depends on the specific f). 
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Nonlinear Functions of a Single Independent Variable 
 

 
We’ll look at two complementary approaches: 
 
1.  Polynomials in X 

The population regression function is approximated by a 
quadratic, cubic, or higher-degree polynomial 
 

2.  Logarithmic transformations 
• Y and/or X is transformed by taking its logarithm 
• this gives a “percentages” interpretation that makes 

sense in many applications 
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1.  Polynomials in X 
Approximate the population regression function by a 
polynomial: 
 

Yi = β0 + β1Xi + β2
2
iX  +…+ βr

r
iX  + ui 

 
• This is just the linear multiple regression model – except 

that the regressors are powers of X! 
• Estimation, hypothesis testing, etc. proceeds as in the 

multiple regression model using OLS 
• The coefficients are difficult to interpret, but the 

regression function itself is interpretable 
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Example:  the TestScore – Income relation 
 
Incomei = average district income in the ith district 

 (thousands of dollars per capita) 
 
Quadratic specification: 
 

TestScorei = β0 + β1Incomei + β2(Incomei)2 + ui 
 
Cubic specification: 
 

TestScorei = β0 + β1Incomei + β2(Incomei)2  
+ β3(Incomei)3 + ui 
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Estimation of the quadratic specification in STATA 
 

generate avginc2 = avginc*avginc;       Create a new regressor  
reg testscr avginc avginc2, r; 
 
Regression with robust standard errors                 Number of obs =     420 
                                                       F(  2,   417) =  428.52 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.5562 
                                                       Root MSE      =  12.724 
 
------------------------------------------------------------------------------ 
             |               Robust 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avginc |   3.850995   .2680941    14.36   0.000      3.32401    4.377979 
     avginc2 |  -.0423085   .0047803    -8.85   0.000     -.051705   -.0329119 
       _cons |   607.3017   2.901754   209.29   0.000     601.5978    613.0056 
------------------------------------------------------------------------------ 

 
Test the null hypothesis of linearity against the alternative 
that the regression function is a quadratic…. 
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Interpreting the estimated regression function: 
(a)  Plot the predicted values 

TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)2 
(2.9)  (0.27)              (0.0048) 
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Interpreting the estimated regression function, ctd: 
(b)  Compute “effects” for different values of X 
 
TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)2 

 (2.9)  (0.27)              (0.0048) 
 
Predicted change in TestScore for a change in income from 
$5,000 per capita to $6,000 per capita: 
 
ΔTestScore  = 607.3 + 3.85×6 – 0.0423×62 
     – (607.3 + 3.85×5 – 0.0423×52) 
    = 3.4 
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TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)2 
 

Predicted “effects” for different values of X: 
 

Change in Income ($1000 per capita) ΔTestScore  
from 5 to 6 3.4 

from 25 to 26 1.7 
from 45 to 46 0.0 

 
The “effect” of a change in income is greater at low than high 
income levels (perhaps, a declining marginal benefit of an 
increase in school budgets?) 
Caution!  What is the effect of a change from 65 to 66?   

Don’t extrapolate outside the range of the data! 
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Estimation of a cubic specification in STATA 
 

gen avginc3 = avginc*avginc2;    Create the cubic regressor 
reg testscr avginc avginc2 avginc3, r; 
 
Regression with robust standard errors                 Number of obs =     420 
                                                       F(  3,   416) =  270.18 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.5584 
                                                       Root MSE      =  12.707 
 
------------------------------------------------------------------------------ 
             |               Robust 
 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avginc |   5.018677   .7073505     7.10   0.000     3.628251    6.409104 
     avginc2 |  -.0958052   .0289537    -3.31   0.001    -.1527191   -.0388913 
     avginc3 |   .0006855   .0003471     1.98   0.049     3.27e-06    .0013677 
       _cons |    600.079   5.102062   117.61   0.000     590.0499     610.108 
------------------------------------------------------------------------------ 
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Testing the null hypothesis of linearity, against the alternative 
that the population regression is quadratic and/or cubic, that 
is, it is a polynomial of degree up to 3: 
 

H0:  pop’n coefficients on Income2 and Income3 = 0 
H1: at least one of these coefficients is nonzero. 

 
test avginc2 avginc3;  Execute the test command after running the regression 
 
 ( 1)  avginc2 = 0.0 
 ( 2)  avginc3 = 0.0 
 

F(  2,   416) =   37.69 
Prob > F =    0.0000 

 

The hypothesis that the population regression is linear is 
rejected at the 1% significance level against the alternative 
that it is a polynomial of degree up to 3. 
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Summary: polynomial regression functions 
 

Yi = β0 + β1Xi + β2 2
iX  +…+ βr

r
iX  + ui 

• Estimation: by OLS after defining new regressors 
• Coefficients have complicated interpretations 
• To interpret the estimated regression function: 

o plot predicted values as a function of x 
o compute predicted ΔY/ΔX at different values of x 

• Hypotheses concerning degree r can be tested by t- and F-
tests on the appropriate (blocks of) variable(s). 

• Choice of degree r 
o plot the data; t- and F-tests, check sensitivity of 

estimated effects; judgment. 
o Or use model selection criteria (later) 
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2.  Logarithmic functions of Y and/or X 
• ln(X) = the natural logarithm of X 
• Logarithmic transforms permit modeling relations in 

“percentage” terms (like elasticities), rather than 
linearly. 

 

Here’s why:  ln(x+Δx) – ln(x) = ln 1 x
x
Δ⎛ ⎞+⎜ ⎟

⎝ ⎠
 ≈ x

x
Δ  

(calculus: ln( ) 1d x
dx x

= ) 

Numerically: 
      ln(1.01) = .00995 ≈.01;  

ln(1.10) = .0953 ≈.10 (sort of) 
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The three log regression specifications: 
 

Case Population regression function 
I.    linear-log Yi = β0 + β1ln(Xi) + ui 
II.   log-linear ln(Yi) = β0 + β1Xi + ui 
III.  log-log ln(Yi) = β0 + β1ln(Xi) + ui 

 
• The interpretation of the slope coefficient differs in each 

case. 
• The interpretation is found by applying the general 

“before and after” rule: “figure out the change in Y for a 
given change in X.” 
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I. Linear-log population regression function 
 

Y = β0 + β1ln(X)       (b) 
 
Now change X:  Y + ΔY = β0 + β1ln(X + ΔX)     (a) 
 
Subtract (a) – (b):    ΔY = β1[ln(X + ΔX) – ln(X)] 
 

now    ln(X + ΔX) – ln(X) ≈ X
X
Δ , 

so       ΔY ≈ β1
X

X
Δ  

or      β1 ≈ 
/
Y

X X
Δ

Δ
  (small ΔX) 
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Linear-log case, continued 
 

Yi = β0 + β1ln(Xi) + ui 
 
for small ΔX, 

β1 ≈ 
/
Y

X X
Δ

Δ
 

 

Now 100× X
X
Δ  = percentage change in X, so a 1% increase in 

X (multiplying X by 1.01) is associated with a .01β1 change 
in Y. 

(1% increase in X ⇒ .01 increase in ln(X)  
  ⇒ .01β1 increase in Y) 
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Example:  TestScore vs. ln(Income) 
• First defining the new regressor, ln(Income) 
• The model is now linear in ln(Income), so the linear-log 

model can be estimated by OLS: 
 

TestScore  = 557.8 + 36.42×ln(Incomei) 
 (3.8)    (1.40)  

 
so a 1% increase in Income is associated with an increase 
in TestScore of 0.36 points on the test. 

• Standard errors, confidence intervals, R2 – all the usual 
tools of regression apply here. 

• How does this compare to the cubic model? 
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The linear-log and cubic regression functions 
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II. Log-linear population regression function 
 

ln(Y) = β0 + β1X    (b) 
 
Now change X:   ln(Y + ΔY) = β0 + β1(X + ΔX)   (a) 
 
Subtract (a) – (b):     ln(Y + ΔY) – ln(Y) = β1ΔX 
 

so     Y
Y
Δ  ≈ β1ΔX  

or      β1 ≈ /Y Y
X

Δ
Δ

 (small ΔX) 
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Log-linear case, continued 
ln(Yi) = β0 + β1Xi + ui 

 

for small ΔX,  β1 ≈ /Y Y
X

Δ
Δ

 

• Now 100× Y
Y
Δ  = percentage change in Y, so a change in X 

by one unit (ΔX = 1) is associated with a 100β1% change 
in Y. 

• 1 unit increase in X ⇒ β1 unit increase in ln(Y)  
  ⇒ 100β1% increase in Y 
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III. Log-log population regression function 
 

ln(Yi) = β0 + β1ln(Xi) + ui   (b) 
 
Now change X:  ln(Y + ΔY) = β0 + β1ln(X + ΔX)  (a) 

  
Subtract:  ln(Y + ΔY) – ln(Y) = β1[ln(X + ΔX) – ln(X)] 
 

so     Y
Y
Δ  ≈ β1

X
X
Δ   

or      β1 ≈ /
/

Y Y
X X
Δ
Δ

 (small ΔX) 
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Log-log case, continued 
 

ln(Yi) = β0 + β1ln(Xi) + ui 
 
for small ΔX, 

β1 ≈ /
/

Y Y
X X
Δ
Δ

 

Now 100× Y
Y
Δ  = percentage change in Y, and 100× X

X
Δ  = 

percentage change in X, so a 1% change in X is associated 
with a β1% change in Y. 
• In the log-log specification, β1 has the interpretation of 

an elasticity. 
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Example: ln( TestScore) vs. ln( Income) 
• First defining a new dependent variable, ln(TestScore), and 

the new regressor, ln(Income) 
• The model is now a linear regression of ln(TestScore) 

against ln(Income), which can be estimated by OLS: 
 

ln( )TestScore  = 6.336 + 0.0554×ln(Incomei) 
   (0.006)  (0.0021)  

 
An 1% increase in Income is associated with an increase 
of .0554% in TestScore (Income up by a factor of 1.01, 
TestScore up by a factor of 1.000554) 
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Example: ln( TestScore) vs. ln( Income), ctd. 
 
ln( )TestScore  = 6.336 + 0.0554×ln(Incomei) 

   (0.006)  (0.0021)  
 
• For example, suppose income increases from $10,000 to 

$11,000, or by 10%.  Then TestScore increases by 
approximately .0554×10% = .554%.  If TestScore = 650, 
this corresponds to an increase of .00554×650 = 3.6 
points. 

• How does this compare to the log-linear model? 
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The log-linear and log-log specifications: 

 
• Note vertical axis 
• Neither seems to fit as well as the cubic or linear-log
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Summary:  Logarithmic transformations 
 
• Three cases, differing in whether Y and/or X is 

transformed by taking logarithms. 
• The regression is linear in the new variable(s) ln(Y) and/or 

ln(X), and the coefficients can be estimated by OLS. 
• Hypothesis tests and confidence intervals are now 

implemented and interpreted “as usual.” 
• The interpretation of β1 differs from case to case. 
• Choice of specification should be guided by judgment 

(which interpretation makes the most sense in your 
application?), tests, and plotting predicted values 
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Interactions Between Independent Variables 
 
• Perhaps a class size reduction is more effective in some 

circumstances than in others… 
• Perhaps smaller classes help more if there are many English 

learners, who need individual attention 

• That is, TestScore
STR

Δ
Δ

  might depend on PctEL 

• More generally, 
1

Y
X
Δ
Δ

 might depend on X2 

• How to model such “interactions” between X1 and X2? 
• We first consider binary X’s, then continuous X’s 
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(a) Interactions between two binary variables 
 

Yi = β0 + β1D1i + β2D2i + ui 
 
• D1i, D2i are binary 
• β1 is the effect of changing D1=0 to D1=1.  In this 

specification, this effect doesn’t depend on the value of D2. 
• To allow the effect of changing D1 to depend on D2, include 

the “interaction term” D1i×D2i as a regressor: 
 

Yi = β0 + β1D1i + β2D2i + β3(D1i×D2i) + ui 
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Interpreting the coefficients  
Yi = β0 + β1D1i + β2D2i + β3(D1i×D2i) +  ui 

 
General rule:  compare the various cases 

E(Yi|D1i=0, D2i=d2) = β0 + β2d2      (b) 
E(Yi|D1i=1, D2i=d2) = β0 + β1 + β2d2 + β3d2  (a) 

 
subtract (a) – (b): 

E(Yi|D1i=1, D2i=d2) – E(Yi|D1i=0, D2i=d2) = β1 + β3d2 
 
• The effect of D1 depends on d2 (what we wanted)  
• β3 = increment to the effect of D1, when D2 = 1 
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Example: TestScore, STR, English learners 
Let 

HiSTR = 
1 if 20
0 if 20

STR
STR

≥⎧
⎨ <⎩

   and   HiEL = 
1 if l0
0 if 10

PctEL
PctEL

≥⎧
⎨ <⎩

 

 
TestScore  = 664.1 – 18.2HiEL – 1.9HiSTR – 3.5(HiSTR×HiEL) 

    (1.4) (2.3)    (1.9)       (3.1) 
 
• “Effect” of HiSTR when HiEL = 0 is –1.9 
• “Effect” of HiSTR when HiEL = 1 is –1.9 – 3.5 = –5.4 
• Class size reduction is estimated to have a bigger effect 

when the percent of English learners is large 
• This interaction isn’t statistically significant: t = 3.5/3.1 
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(b) Interactions between continuous and binary variables 
 
Yi = β0 + β1Di + β2Xi + ui 

 
• Di is binary, X is continuous 
• As specified above, the effect on Y of X (holding constant 

D) = β2, which does not depend on D  
• To allow the effect of X to depend on D, include the 

“interaction term” Di×Xi as a regressor: 
 
Yi = β0 + β1Di + β2Xi + β3(Di×Xi) + ui 
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Binary-continuous interactions: the two regression lines 
 
Yi = β0 + β1Di + β2Xi + β3(Di×Xi) + ui 

 
Observations with Di= 0 (the “D = 0” group): 

 
Yi = β0 + β2Xi + ui  The D=0 regression line 

 
Observations with Di= 1 (the “D = 1” group): 

 
Yi = β0 + β1 + β2Xi + β3Xi + ui 
    = (β0+β1) + (β2+β3)Xi + ui   The D=1 regression line 
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Binary-continuous interactions, ctd. 
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Interpreting the coefficients 
Yi = β0 + β1Di + β2Xi + β3(Di×Xi) +  ui 

 
General rule:  compare the various cases 

Y = β0 + β1D + β2X + β3(D×X)      (b) 
Now change X: 

Y + ΔY = β0 + β1D + β2(X+ΔX) + β3[D×(X+ΔX)] (a) 
subtract (a) – (b): 

ΔY = β2ΔX + β3DΔX  or Y
X

Δ
Δ

 = β2 + β3D 

• The effect of X depends on D (what we wanted)  
• β3 = increment to the effect of X, when D = 1 
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Example: TestScore, STR, HiEL (=1 if PctEL ≥10) 
 
TestScore  = 682.2 – 0.97STR + 5.6HiEL – 1.28(STR×HiEL) 

      (11.9) (0.59)  (19.5)   (0.97) 
 
• When HiEL = 0: 

TestScore  = 682.2 – 0.97STR 
• When HiEL = 1, 

TestScore  = 682.2 – 0.97STR + 5.6 – 1.28STR 
   = 687.8 – 2.25STR 

• Two regression lines: one for each HiSTR group. 
• Class size reduction is estimated to have a larger effect 

when the percent of English learners is large. 
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Example, ctd: Testing hypotheses 
TestScore  = 682.2 – 0.97STR + 5.6HiEL – 1.28(STR×HiEL) 

      (11.9)  (0.59)  (19.5)   (0.97) 
• The two regression lines have the same slope, i.e., the 

coefficient on STR×HiEL is zero: t = –1.28/0.97 = –1.32 
• The two regression lines have the same intercept, i.e., the 

coefficient on HiEL is zero: t = –5.6/19.5 = 0.29  
• The two regression lines are the same, i.e., population 

coefficient on HiEL = 0 and population coefficient on 
STR×HiEL = 0: F = 89.94 (p-value < .001) !! 

• We reject the joint hypothesis but neither individual 
hypothesis (how can this be?) 
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 (c) Interactions between two continuous variables 
 
Yi = β0 + β1X1i + β2X2i + ui 

 
• X1, X2 are continuous 
• As specified, the effect of X1 doesn’t depend on X2 
• As specified, the effect of X2 doesn’t depend on X1 
• To allow the effect of X1 to depend on X2, include the 

“interaction term” X1i×X2i as a regressor: 
 

Yi = β0 + β1X1i + β2X2i + β3(X1i×X2i) + ui 
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Interpreting the coefficients:  
Yi = β0 + β1X1i + β2X2i + β3(X1i×X2i) + ui 

 
General rule:  compare the various cases 

Y = β0 + β1X1 + β2X2 + β3(X1×X2)       (b) 
Now change X1: 
  Y+ ΔY = β0 + β1(X1+ΔX1) + β2X2 + β3[(X1+ΔX1)×X2]   (a) 
subtract (a) – (b): 

ΔY = β1ΔX1 + β3X2ΔX1  or 
1

Y
X
Δ
Δ

 = β1 + β3X2 

• The effect of X1 depends on X2 (what we wanted)  
• β3 = increment to the effect of X1 from a unit change in X2 
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Example: TestScore, STR, PctEL 
 
TestScore  = 686.3 – 1.12STR – 0.67PctEL + .0012(STR×PctEL), 

      (11.8) (0.59)    (0.37)   (0.019) 
 
The estimated effect of class size reduction is nonlinear 
because the size of the effect itself depends on PctEL: 

TestScore
STR

Δ
Δ

 = –1.12 + .0012PctEL 

PctEL TestScore
STR

Δ
Δ

 

0 –1.12 
20% –1.12+.0012×20 = –1.10 

 



 8-45

Example, ctd: hypothesis tests 
TestScore  = 686.3 – 1.12STR – 0.67PctEL + .0012(STR×PctEL), 

      (11.8) (0.59)    (0.37)   (0.019) 
 
• Does population coefficient on STR×PctEL = 0? 

t = .0012/.019 = .06. We can’t reject null at 5% level 
• Does population coefficient on STR = 0? 

t = –1.12/0.59 = –1.90. We can’t reject null at 5% level 
• Do the coefficients on both STR and STR×PctEL = 0? 

F = 3.89 (p-value = .021). We reject null at 5% level(!!) 
(Why? high but imperfect multicollinearity) 
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Application:  Nonlinear Effects on Test Scores 
of the Student-Teacher Ratio 

 
 
Nonlinear specifications let us examine more nuanced 
questions about the Test score – STR relation, such as: 
 
1. Are there nonlinear effects of class size reduction on test 

scores?  (Does a reduction from 35 to 30 have same effect 
as a reduction from 20 to 15?) 

2. Are there nonlinear interactions between PctEL and STR? 
(Are small classes more effective when there are many 
English learners?) 
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Strategy for Question #1 (different effects for different STR?) 
 
• Estimate linear and nonlinear functions of STR, holding 

constant relevant demographic variables 
o PctEL 
o Income (remember the nonlinear TestScore-Income 

relation!) 
o LunchPCT (fraction on free/subsidized lunch) 

• See whether adding the nonlinear terms makes an 
“economically important” quantitative difference (“economic” 
or “real-world” importance is different than statistically 
significant) 

• Test for whether the nonlinear terms are significant 
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Strategy for Question #2 (interactions between PctEL and STR?) 
 

• Estimate linear and nonlinear functions of STR, interacted 
with PctEL. 

• If the specification is nonlinear (with STR, STR2, STR3), then 
you need to add interactions with all the terms so that the 
entire functional form can be different, depending on the 
level of PctEL.   

• We will use a binary-continuous interaction specification by 
adding HiEL×STR, HiEL×STR2, and HiEL×STR3. 
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What is a good “base” specification? 
The TestScore – Income relation: 

 
The logarithmic specification is better behaved near the 
extremes of the sample, especially for large values of income. 
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Tests of joint hypotheses: 
 

 
 
What can you conclude about question #1?  
About question #2?
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Interpreting the regression functions via plots: 
 
First, compare the linear and nonlinear specifications: 
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Next, compare the regressions with interactions: 
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Summary:  Nonlinear Regression Functions 
• Using functions of the independent variables such as ln(X) 

or X1×X2, allows recasting a large family of nonlinear 
regression functions as multiple regression. 

• Estimation and inference proceed in the same way as in the 
linear multiple regression model. 

• Interpretation of the coefficients is model-specific, but the 
general rule is to compute effects by comparing different 
cases (different value of the original X’s) 

• Many nonlinear specifications are possible, so you must use 
judgment: 

o What nonlinear effect you want to analyze?  
o What makes sense in your application? 


