Chapter 7

Linear equation and inequalities

Linear Equation: The equation of the from $ax + b = 0, a \neq 0$ is called linear equation. Example 1: i). 2x + 3 = 0Example 1: ii). $\frac{5}{2}y - 4 = 0$ Example 1: iii). 5x - 15 = 2x + 3Example 1: iv). $\frac{1}{3}x - \frac{2}{3} = 4$ Example 2: 2x + 3 = 1 - 6(x - 1)Sol: Given 2x + 3 = 1 - 6(x - 1)2x + 3 = 1 - 6(x - 1)2x + 3 = 1 - 6x + 62x + 6x = 1 + 6 - 38x = 4 $x = \frac{4}{8} = \frac{1}{2}$ Verification, putting $x = \frac{1}{2}$ in given equation $2\left(\frac{1}{2}\right) + 3 = 1 - 6\left(\frac{1}{2} - 1\right)$ 1 + 3 = 1 - 3 + 64 = 4 True $S.S = \left\{\frac{1}{2}\right\}$ Example 3: $3x + \frac{x}{5} - 5 = \frac{1}{5} + 5x$ M-Phil Applied Sol: Given $3x + \frac{x}{5} - 5 = \frac{1}{5} + 5x$

$$3x + \frac{x}{5} - 5 = \frac{1}{5} + 5x$$

$$3x + \frac{x}{5} - 5x = \frac{1}{5} + 5$$

$$\frac{15x + x - 25x}{5} = \frac{1 + 25}{5}$$

$$16x - 25x = 26$$

$$-9x = 26$$

$$x = \frac{26}{-9} \qquad \therefore S.S = \left\{\frac{26}{-9}\right\}$$

Example 4: Age of mother is 13 times age of daughter. It will be only five times after four year. Find their present ages. Sol: Let age of daughter = xAge of mother = 13x From the set of fact 13x + 4 = 5(x + 4)13x + 4 = 5x + 2013x - 5x = 20 - 48x = 16x = 2

Therefore age of daughter = 2 year Age of mother = 13(2) = 26 year Example 5: A number consists of two digits. The sum of digits is 8. If the digits are interchanged the new number is 36 less then original number. Find the number. Solution: Suppose the digit at unit place = x Digit at ten place = y So the original number = 10 y + xAfter interchanging the place of digits New number = 10x + yAccording to the given conditions Sum of two digits is 8 i.e., x + y = 8 \Rightarrow y = 8 - x(1) New number + 36 = original number 10x + y + 36 = 10y + x10x - x + y - 10y = -369x - 9y = -36x - y = -4Putting the value of y = 8 - xx - (8 - x) = -4x - 8 + x = -42x = -4 + 82x = 4 $x = \frac{4}{2} = 2$ math So y = 8 - 2 = 6 Original number = 10 y + x= 10(6) + 2= 60 + 2 = 62 Exercise 7.1 Q1. Find the solution sets of the following equations and verify the answer 5x + 8 = 23i). Sol: Given 5*x* + 8 = 23 5x = 23 - 85x = 15 $x = \frac{15}{5} = 3$ Verification put x = 3 in given linear equation 5(3) + 8 = 2315 + 8 = 2323 = 23Verified so, $S.S = \{3\}$ $\frac{3}{5}x - \frac{2}{2} = 2$ ii). Sol: Given $\frac{3}{5}x - \frac{2}{3} = 2$ Multiply each term by 15

Solution: Suppose the number = x Add 3 = x + 3 Double the sum = 2 (x + 3) According to question 2(x+3) = 40 2x + 6 = 40 2x = 40 - 6 2x = 34 $x = \frac{34}{2}$ x = 17So the number = 17 Q3. The sum of two numbers is -4 an

Q3. The sum of two numbers is -4 and their difference is 6. What are the numbers. Sol: Let the first number = xAnd the second number = y From the first set of fact x + y = -4(1) From the second fact of fact x - y = 6(2) Adding eq (1) and (2) we get x + y = -4x - y = 62x = 2Or x = 1 put in (1) 1 + y = -4y = -4 - 1y = -5Therefore first number x =1 Second number y = - 5 Q4. The sum of three consecutive odd integers is 81. Find the numbers. Solution: consider three consecutive odd no.s First odd number = x Second odd number = $x + 2^{M-Phil}$ Applied Third odd number = x + 4According to the given condition x + x + 2 + x + 4 = 813x + 6 = 813x = 81 - 63x = 75x = 25So the first number = 25 Second number = 25 + 2 = 27 Third number = 25 + 4 = 29Q5. A man is 41 year old and his son is 9 year old. In how many years will the father be three times

In how many years will the father be three times as old as the son? Sol: Father's Age = 41 year Son's Age = 9 year From the set of fact 3(9 + x) = 41 + x27 + 3x = 41 + x3x - x = 41 - 272x = 14x = 7 After 7 year father's age will be 3 time age of son. Q6. The tens digit of a certain two-digit number exceeds the unit digit by 4 and is 1 less than twice the ones digit. Find the number. Sol: Digit at unit place = x Digit at ten place = y Then two-digit number = 10y + xFrom the first set of fact y = x + 4(1) From the second set of fact y = 2x - 1(2) By comparing eq (1) and (2) we get 2x - 1 = x + 42x - x = 4 + 1x = 5 put in (1) y = 5 + 4**y** = 9 Therefore two-digit number = 10(9) + 5= 95 Q7. sum of two digits is 10. If the place of digits are changed then the new number is decreased by 18. Find the numbers Solution: Suppose the digit at unit place = x Digit at ten place = y So the original number = 10 y + xAfter interchanging the place of digits New number = 10x + yAccording to the given conditions Sum of two digits is 10 i.e., $x + y = 10 \Rightarrow y = 10 - x$(1) New number + 18 = original number 10x + y + 18 = 10y + x10x + x + y - 10y = -189x - 9y = -18x - y = -2Putting the value of y = 10 - xx - (10 - x) = -2x - 10 + x = -2x + x = -2 + 102x = 88 $\mathbf{x} =$ 2 x = 4 So y = 10 - 4 = 6 Original number = 10 y + x= 10 (6) + 4 = 60 + 4 = 64

Q8. If the breadth of the room is one fourth of its length and the perimeter of the room is 20m. Find length and breadth of the room. Solution: Suppose the length of the room = x Breadth of the room = $\frac{x}{4}$

106

According to the condition Perimeter = 20 m 2(L+B) = 20m $2\left(x+\frac{x}{4}\right)=20m$ $\frac{4}{4} \cdot \frac{x}{1} + \frac{x}{4} = \frac{20m}{2}$ $\frac{5x}{4} = 10m$ $x = 10m \times \frac{4}{5}$ x = 8mSo the length of the room = 8 m Than breadth of the room= $\frac{8m}{4} = 2m$ Radical Equation; The equation of the form $\sqrt{ax + b} = c$ is called radical equation; Note that Variables must have rational exponent Or variable must be radicand. Example 6: Solve $\sqrt{2x+5}=9$ Sol: Given $\sqrt{2x} + 5 = 9$ $\sqrt{2x} = 9 - 5$ $\sqrt{2x} = 4$ Squaring both sides $\left(\sqrt{2x}\right)^2 = \left(4\right)^2$ $x = \frac{16}{2} = 8$ Verification put x = 8 in given radical eq $\sqrt{2(8)} + 5 = 9$ $\sqrt{16} + 5 = 9$ 4 + 5 = 99 = 9 verification *S*.*S* = {8} Example 7: Solve $\sqrt{3x-2} = \sqrt{5x+4}$ Sol: Given $\sqrt{3x-2} = \sqrt{5x+4}$ Squaring both sides $\left(\sqrt{3x-2}\right)^2 = \left(\sqrt{5x+4}\right)^2$ 3x - 2 = 5x + 43x - 5x = 4 + 2-2x = 6 $x = \frac{6}{2} = -3$ Verification Put x = -3 in radical equation $\sqrt{3\left(-3\right)-2}=\sqrt{5\left(-3\right)+4}$ $\sqrt{-9-2} = \sqrt{-15+4}$

 $\sqrt{-11} = \sqrt{-11}$ verified $S.S = \{-3\}$ Example 8: Find the solution set of the equation $\sqrt{3x+2}+6=2$ Sol: Given $\sqrt{3x+2}+6=2$ $\sqrt{3x+2} = 2-6$ $\sqrt{3x+2} = -4$ Squaring both sides $\left(\sqrt{3x+2}\right)^2 = \left(-4\right)^2$ 3x + 2 = 163x = 16 - 2 $x = \frac{14}{2}$ Verification put $x = \frac{14}{3}$ in given radical eq $\left(\frac{14}{3}\right) + 2 + 6 = 2$ $\sqrt{14+2}+6=2$ $\sqrt{16} + 6 = 2$ 4 + 6 = 2 $10 \neq 2$ false Therefore S.S = { Exercise 7.2 Solve the following radical equation; Q1: $2\sqrt{a} - 3 = 7$ Sol: Given $2\sqrt{a} - 3 = 7$ $2\sqrt{a} = 7 + 3$ $2\sqrt{a} = 10$ $\sqrt{a} = \frac{10}{2} = 5$ Taking square on both sides $\left(\sqrt{a}\right)^2 = \left(5\right)^2$ a = 25 Verification put a = 25 in the given radical eq $2\sqrt{25} - 3 = 7$ 2(5) - 3 = 710 - 3 = 77 = 7 True *S.S* = {25} $8 + 3\sqrt{b} = 20$ 02: Sol: Given $8 + 3\sqrt{b} = 20$ $3\sqrt{b} = 20 - 8$ $3\sqrt{b} = 12$

 $\sqrt{b} = 4$

Taking square on both sides Taking square on both sides $\left(\sqrt{t}\right)^2 = (6)^2$ $\left(\sqrt{b}\right)^{2} = \left(4\right)^{2}$ t = 36b = 16Verification put t = 36 in the given radical eq Verification put b = 16 in the given radical eq $20 - 3\sqrt{36} = \sqrt{36} - 4$ $8 + 3\sqrt{16} = 20$ 20 - 3(6) = 6 - 48 + 3(4) = 2020 - 18 = 28 + 12 = 202=2 True 20 = 20 True $S.S = \{36\}$ *S*.*S* = {16} $2\sqrt{5x} - 3 = 7$ 06: $7 - \sqrt{2b} = 3$ Q3: Sol: Given $2\sqrt{5x} - 3 = 7$ Sol: Given $7 - \sqrt{2b} = 3$ $2\sqrt{5x} = 7 + 3$ $7 - 3 = \sqrt{2b}$ $2\sqrt{5x} = 10$ $\sqrt{2b} = 4$ $\sqrt{5x} = \frac{10}{2} = 5$ Taking square on both sides $\left(\sqrt{2b}\right)^2 = \left(4\right)^2$ Taking square on both sides $\left(\sqrt{5x}\right)^2 = \left(5\right)^2$ 2b = 16 $b = \frac{16}{2} = 8$ 5x = 25 $x = \frac{25}{5} = 5$ Verification put b = 8 in the given radical eq $7 - \sqrt{2(8)} = 3$ Verification put x = 5 in the given radical eq $7 - \sqrt{16} = 3$ 7 - 4 = 3 $2\sqrt{5x} - 3 = 7$ $2\left(\sqrt{5(5)}\right) - 3 = 7$ 3 = 3 Ture $2\sqrt{25} - 3 = 7$ *S.S* = {8} 2(5) - 3 = 710 - 3 = 7 $8\sqrt{r}-5=\sqrt{r}+9$ Q4: Sol: Given $8\sqrt{r} - 5 = \sqrt{r} + 9$ 7 = 7 True $8\sqrt{r} - \sqrt{r} = +9 + 5$ $S.S = \{5\}$ $7\sqrt{r} = 14$ $\sqrt{2x-7} + 8 = 11$ 07: $\sqrt{r} = \frac{14}{7} = 2$ Sol: Given $\sqrt{2x-7} + 8 = 11$ $\sqrt{2x-7} = 11-8$ Taking square on both sides $\left(\sqrt{r}\right)^2 = \left(2\right)^2$ $\sqrt{2x-7}=3$ Taking square on both sides r = 4 $\left(\sqrt{2x-7}\right)^2 = \left(3\right)^2$ Verification put r = 4 in the given radical eq $8\sqrt{4} - 5 = \sqrt{4} + 9$ 2x - 7 = 98(2)-5=2+92x = 9 + 716 - 5 = 11 $x = \frac{16}{2} = 8$ 11 = 11 True *S*.*S* = {4} Verification put x = 8 in the given radical eq $20-3\sqrt{t}=\sqrt{t}-4$ Q5. $\sqrt{2x-7+8} = 11$ Sol: Given $20 - 3\sqrt{t} = \sqrt{t} - 4$ $\sqrt{2(8)-7}+8=11$ $20+4 = \sqrt{t} + 3\sqrt{t}$ $\sqrt{16-7} + 8 = 11$ $24 = 4\sqrt{t}$ $4\sqrt{t} = 24$ $\sqrt{9+8} = 11$ $\sqrt{t} = \frac{24}{4} = 6$ 3 + 8 = 11

Chapter 7

Exercise 7.3

Chapter 7 11 = 11 True Exercise 7.3 *S*.*S* = {8} Solve for x |x+3| = 5 $22 = 17 + \sqrt{40 - 3y}$ Q1. Q8: Sol: Given Sol: Given $22 = 17 + \sqrt{40 - 3y}$ Then there are two possibilities $22 - 17 = \sqrt{40 - 3y}$ Either or x + 3 = -5x + 3 = 5 $5=\sqrt{40-3y}$ x = -5 - 3*x* = 5 – 3 Taking square on both sides *x* = -8 *x* = 2 $(5)^2 = (\sqrt{40-3y})^2$ $S.S = \{-8, 2\}$ 25 = 40 - 3y-5x+1|=6Q2. 3y = 40 - 25Sol: Given $\left|-5x+1\right|=6$ $y=\frac{15}{3}=5$ Then there are two possibilities Either or Verification put y = 5 in the given radical eq -5x+1 = -6-5x+1=6 $22 = 17 + \sqrt{40 - 3(5)}$ -5x = -6 - 1-5x = 6 - 1-5x = -7 $22 = 17 + \sqrt{40 - 15}$ -5x = 5 $x = \frac{7}{5}$ $22 = 17 + \sqrt{25}$ x = -122 = 17 + 522 = 22 True S.S = $S.S = \{5\}$ $\left|\frac{3}{4}x-8\right|=1$ Absolute Value: 03. The absolute of a real number x, is defined as if $x \ge 0$ $|\mathbf{x}| = \begin{cases} \mathbf{x} \\ -\mathbf{x} \end{cases}$ $\frac{3}{4}x - 8 = 1$ Sol: Given if *x* < 0 Then there are two possibilities Example 9: solve |x - 1| = 7Either Sol: Given |x-1| = 7, 3 $\frac{3}{4}x - 8 = 1$ $\frac{1}{4}x - 8 = -1$ Then there are two possibilities $\frac{3}{4}x = -1 + 8$ Either $\frac{3}{4}x = 1 + 8$ or *x* – 1 = –7 x - 1 = 7*x* = -7 + 1 x = 7 + 1 $x = 7 \times \frac{4}{2}$ $x = 9 \times \frac{4}{2}$ *x* = -6 *x* = 8 *S.S* = {-6,8} $x = \frac{28}{3}$ x = 12Example 8: Find the solution set of $S.S = \left\{\frac{28}{3}, 12\right\}$ |3x-5|+7=11Sol: Given |3x - 5| + 7 = 11|x - 4| = 3Q4. |3x-5|=11-7Or Sol: Given |x - 4| = 3|3x-5|=4Then there are two possibilities Either or There are two possibilities x - 4 = -3x - 4 = 3Either or 3x - 5 = 43x - 5 = -4x = -3 + 4x = 3 + 43x = -4 + 53x = 4 + 5x = 7x = 13x = 9 $S.S = \{1, 7\}$ 3x = 1 $x=\frac{1}{3}$ $x = \frac{9}{3} = 3$ |3x+4| = -2Q5. Sol: Given |3x + 4| = -2 There is no such a $S.S = \left\{\frac{1}{3}, 3\right\}$ number whose absolute value is negative

Therefore $S.S = \{$ |2x - 9| = 0Q6. Sol: Given |2x-9| = 02x - 9 = 02x = 9 $x = \frac{9}{2}$ $S.S = \left\{\frac{9}{2}\right\}$ $\left|\frac{3x-2}{5}\right|=7$ Q7. Sol: Given $\left|\frac{3x-2}{5}\right| = 7$ Then there are two possibilities Either or $\frac{3x-2}{5} = 7$ $\frac{3x-2}{5} = -7$ $3x - 2 = -7 \times 5$ $3x - 2 = 7 \times 5$ 3x - 2 = -353x - 2 = 353x = -35 + 23x = 35 + 23x = -333x = 33 $x = \frac{37}{3}$ $x = \frac{-33}{3} = -11$ $S.S = \left\{-11, \frac{37}{3}\right\}$ 4|5x-2|+3=11Q8. Sol: Given 4|5x-2|+3=114|5x-2|=11-3M-Phil Applied $|5x-2| = \frac{8}{4} = 2$ Then there are two possibilities Either or 5x - 2 = -25x - 2 = 25x = -2 + 25x = 2 + 25x = 05x = 4 $x = \frac{0}{5}$ $x = \frac{4}{5}$ x = 0 $S.S = \left\{0, \frac{4}{5}\right\}$ Q9. $\frac{2}{5}|4x-3|-9=-1$ Sol: Given $\frac{2}{5}|4x-3|-9=-1$ $\frac{2}{5}\left|4x-3\right|=-1+9$ $\frac{2}{5}|4x-3|=8$

 $\left|4x-3\right|=8\times\frac{5}{2}$

4x-3 = 20	
Then there are two poss	sibilities
Either $4x - 3 = -20$	or $4x - 3 = 20$
4x = -20 + 3	4x = 20 + 3
4x = -17	4x = 23
-17	23
$x = \frac{1}{4}$	$x = \frac{1}{4}$
$S.S = \left\{\frac{-17}{4}, \frac{23}{4}\right\}$	
Linear inequality in one	variable
A linear inequality in on inequality in one of the	e variable say x is an following forms can be
converted into the follo	wing forms:
ax + b > c	ax + b < c
$ax + b \ge c$	$ax + b \leq c$
Where a , b , c are any r	eal numbers with $a \neq 0$
and \boldsymbol{X} is also a real vari	lable.
Example 11: Show $-2 < $	x < 5 on a number line.
-4 -3 -2 -1 0 1	2 3 4 5 6
Properties of inequal	ity of Real numbers:
1. Trichotomy Proper	rty
For any $a, b \in R$ either	a < b or $a = b$ or $b < a$
Either $a < b$ is also w	vritten as $b > a$
2. Transitive propert	γ
For all $a,b,c \in R$, $a < d < d$	$< b$ and $b < c \Rightarrow a < c$
For all $a, b, c \in R$, $a > b$ and $b > c \Longrightarrow a > c$	
4. Additive property	
(1). For all $a, b, c \in R$, $a < b \Rightarrow a + c < b + c$
For all $a, b, c \in R$,	$a < b \Rightarrow c + a < c + b$
(2).For all $a,b,c \in R$	$a > b \Rightarrow a + c > b + c$
$\forall a,b,c \in R, a >$	$>b$ and $\Rightarrow c+a>c+b$
5.Multiplicative Prop	berty
(1). $\forall a, b, c \in R, c > 0$	$0, a < b \Rightarrow a.c < b.c$
For all $a, b, c \in R$, $c >$	$0, a > b \Longrightarrow a.c > b.c$
(2) $\forall a, b, c \in R, c < $	0, $a < b \Rightarrow a.c > b.c$
For all $a, b, c \in R$, $c <$	$a 0, a > b \Rightarrow a.c < b.c$
Example 12: write the n	ame of properties used in
i). $21 < 31$	\Rightarrow 31 < 41
Additive property	
ii). $15 > 8 \equiv$	>22>15
Additive property	\rightarrow 20 < 60
multiplicative property	→ JU < UU
iv) 12 > - 15	⇒ 24 < 30
multiplicative property	
v). if $x > 4 \& 4 > z$ the multiplicative property	1en x > z
manuplicative property	

Chapter 7	
Example 13: you are checking a bag at an airport.	$7x - 5 \le 15 + 2x$
Bags can weight no more than 50 kg. your bag	$7x - 2x \le 15 + 5$
weight 16.8 kg. Find the possible weight w that	5r < 20
you can add to the bag.	$3x \leq 20$
Sol; Form the set of fact W_{eight} is the set of fact W_{eight}	$x \leq \frac{20}{\pi}$
weight of bag + weight you can add \geq weight limit 16.8 + w \leq 50	5
$W \leq 50 - 16.8$	$x \leq 4$
$W \leq 33.2$	< ───────────────────────
You can add no more than 33.2 kg	-3 -2 -1 0 1 2 3 4 5
Example 14:i). solve the inequality	$S.S = \{x : x \in R, x \le 4\}$
$2\left(\frac{x}{4}+1\right) < \frac{3}{2}$ where x is a natural number	Example 16: Solve the inequality $\frac{x+3}{x-5} < \frac{x-5}{x-5}$
(4) 2	where $r \in R$
Sol: We have $2\left(\frac{\pi}{4}+1\right) < \frac{\pi}{2}$	where $x \in K$ r+3 $r-5$
(Ŧ) 2 x 2	Sol: Given $\frac{x+3}{2} \le \frac{x-3}{2}$ multiply by 6
$\frac{x}{2} + 2 < \frac{5}{2}$ Multiply by 2	$\begin{pmatrix} 2 & 3 \\ (1 + 2) & (1 - 5) \end{pmatrix}$
	$6\left(\frac{x+3}{2}\right) \le 6\left(\frac{x-3}{2}\right)$
<i>x</i> +4<3	
x < -1	$3(x+3) \le 2(x-5)$
There is no natural number which is less than -1	$3x + 9 \le 2x - 10$
$S.S = \{ \}$	2x - 2x < 10 = 0
Example 14:ii). solve the inequality	$5x - 2x \le -10 - 9$
$2\begin{pmatrix} x \\ 1 \end{pmatrix} \leq 3$ where y is a real number	$x \leq -19$
$2\binom{-+1}{4} < \frac{-}{2}$ where x is a real number	$S.S = \{x : x \in R, x \le -19\}$
(x) 3	< • • • • AA
Sol: We have $2\left(\frac{\pi}{4}+1\right) < \frac{\pi}{2}$	-20 -19
x 3 Merging mar	Evercice 7.4
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2	EXERCISE 7.4
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 x + 4 < 3	Q1: Show the following inequalities on number
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 x + 4 < 3 by	Q1: Show the following inequalities on number line. i) $r > 0$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S. (compared by the point of the p	Q1: Show the following inequalities on number line. i). $x > 0$
$\frac{x}{2} + 2 < \frac{3}{2}$ x + 4 < 3 x < -1 $S.S = \{x : x \in R_{\wedge}x < -1\}$ Khalid Me	Q1: Show the following inequalities on number line. i). $x > 0$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 x + 4 < 3 x < -1 $S.S = \{x : x \in R, x < -1\}$ Khalid Me	Q1: Show the following inequalities on number line. i). $x > 0$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R_{\wedge}x < -1\}$ Multiply by 2 $x = \{x : x \in R_{\wedge}x < -1\}$ Multiply by 2 $x = \{x : x \in R_{\wedge}x < -1\}$ Multiply by 2 $x = \{x : x \in R_{\wedge}x < -1\}$ Multiply by 2 $x = \{x : x \in R_{\wedge}x < -1\}$ Multiply by 2 $x = \{x : x \in R_{\wedge}x < -1\}$ Multiply by 2 $x = \{x : x \in R_{\wedge}x < -1\}$	Q1: Show the following inequalities on number line. i). $x > 0$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = { $x : x \in R_{A}x < -1$ } Multiply by 2 $x = \frac{1}{3}$ Multiply by 2 Multiply by 2 $x = \frac{1}{3}$ Multiply by 2 $x = \frac{1}{3$	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ $\overline{}$ ii). $x < 0$ iii). The $x < 0$ compared to $x < 0$ c
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $x - 1$ $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x \in R, x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 $S = \{x : x < -1\}$ Multiply by 2 S =	Q1: Show the following inequalities on number line. i). $x > 0$ $\frac{1}{10}$ $\frac{1}{10}$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $x - \frac{1}{5}$ $x < -1$ Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $x = \frac{1}{5}$ $x < -1$ Multiply by 2 $x = \frac{1}{5}$ $x < -1$ Multiply by 2 $y = \frac{1}{5}$ $x < -1$ $y = \frac{1}{5}$ $x < -1$ Multiply by 2 $y = \frac{1}{5}$ $x < -1$ Multiply by 2 x < -1 Multiply by 2	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ x > 0 ii). $x < 0$ iii). $x < 0$ x < 0 x < 3 x = -1
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = {x : x \in R, x < -1} Multiply by 2 $\frac{x - 1}{5}$ Fixed and a set of the set	Q1: Show the following inequalities on number line. i). $x > 0$ $\frac{1}{10}$ $\frac{1}{10}$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = {x : x \in R, x < -1} Multiply by 2 $\frac{x - 1}{5} = \frac{15 + 2x}{7}$ Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ $\overline{} = 0$ $\overline{} = 0$ ii). $x < 0$ iii). $x < 0$ $\overline{} = \frac{x-3}{2} \le -1$ Sol: given $\frac{x-3}{2} \le -1$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = {x : x \in R, x < -1} Multiply by 2 $\frac{x - 1}{5}$ Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$	Q1: Show the following inequalities on number line. i). $x > 0$ $-\frac{1}{10}$ $\frac{1}{10}$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = {x : x \in R_x < -1} Multiply by 2 $\frac{x - 1}{5} = \frac{15 + 2x}{7}$ Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ $\overline{ > 0}$ $\overline{ > 0}$ ii). $x < 0$ $\overline{ > 0}$ $\overline{ > 0}$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = {x : x \in R, x < -1} Multiply by 2 $\frac{x - 1}{5}$ Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ 20	Q1: Show the following inequalities on number line. i). $x > 0$ $\frac{1}{10}$ $\frac{1}{10}$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = {x : x \in R_x < -1} Multiply by 2 $x = \frac{x : x \in R_x < -1}{x = x - 1}$ Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 10 1
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Malid Multiply by 2 $S.S = \{x : x \in R, x < -1\}$ Multiply by 7 $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 4 > 0 ii). $x < 0$ 4 > 0 iii). $x < 0$ 5 Sol: given $\frac{x-3}{2} \le -1$ $x - 3 \le -2$ $x \le -2 + 3$ $x \le 1$ 4 > 0 x = 1 x = 1
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ S.S = {x : x \in R_x < -1} Multiply by 2 $x = \frac{5}{7} \le \frac{15 + 2x}{7}$ Where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 3 > 0 3 > 0 3 > 0 ii). If $x < 0$ iii). $x < 0$ 3 > 0 3 > 0
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Khalid $\underbrace{x - 1}_{5} = \{x : x \in R, x < -1\}$ Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$ $S.S = \{1, 2, 3, 4\}$	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 10^{-10} 10^{-14} 12^{-14} 10^{-14} 10^{-14} ii). $x < 0$ 10^{-16} 10^{-14} 12^{-14} 10^{-14} 10^{-14} iii). $x < 0$ 10^{-16} 10^{-14} 12^{-14} 10^{-14} 10^{-14} iii). $\frac{x-3}{2} \le -1$ Sol: given $\frac{x-3}{2} \le -1$ $x-3 \le -2$ $x \le -2+3$ $x \le 1$ iv). $x \le -5$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$ $S.S = \{1, 2, 3, 4\}$ Example 15ii): Solve the inequality	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 3 > 0 3 > 0 3 > 0 ii). $x < 0$ iii). $x < 0$ 3 > 0 3 > 0
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$ $S.S = \{1, 2, 3, 4\}$ Example 15ii): Solve the inequality $x - \frac{5}{5} \le \frac{15 + 2x}{7}$ where x is an real number	EXERCISE 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 4 > 0 ii). $x < 0$ iii). $x < 0$ iii). $x < 0$ iii). $\frac{x-3}{2} \le -1$ Sol: given $\frac{x-3}{2} \le -1$ $x - 3 \le -2$ $x \le -2 + 3$ $x \le 1$ iv). $x \le -5$ v). $x \ge -3$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Multiply by 2 $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$ $S.S = \{1, 2, 3, 4\}$ Example 15ii): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an real number	EXERCISE 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 3 > 0 3
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Khalid x < -1 Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$ $S.S = \{1, 2, 3, 4\}$ Example 15ii): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an real number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 3x - 2 $5Q1: Show the following inequalities on numberline.ii). x > 03x - 2$ $5Q1: Show the following inequalities on numberx > 03x - 2$ $5Q1: Show the following inequalities on numberx > 0x - 3 \le -2x \le -2 + 3x \le 1x = -3x = -3x = -3x = -3x = -2x = -3x = -2x = -3x = -2x = -3x = -3x = -2x = -3x = -3x = -2x = -2x = -3x = -3$
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Khalid Final Methods x < -1 Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$ $S.S = \{1, 2, 3, 4\}$ Example 15ii): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an real number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 3x > 0 $3x - 3 \le -1$ Sol: given $\frac{x - 3}{2} \le -1$ $x - 3 \le -2$ $x \le -2 + 3$ $x \le 1$ 5x - 5 5x - 5x - 5 5x - 5x -
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R, x < -1\}$ Khalid $\underbrace{x - 5}_{7} \leq \frac{15 + 2x}{7}$ Where x is an natural number Sol: Given $x - \frac{5}{7} \leq \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \leq 15 + 2x$ $7x - 5 \leq 15 + 2x$ $7x - 2x \leq 15 + 5$ $5x \leq 20$ $x \leq \frac{20}{5}$ $x \leq 4$ $S.S = \{1, 2, 3, 4\}$ Example 15ii): Solve the inequality $x - \frac{5}{7} \leq \frac{15 + 2x}{7}$ where x is an real number Sol: Given $x - \frac{5}{7} \leq \frac{15 + 2x}{7}$ Multiply by 7	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 4 - 3 - 3 - 2 - 1 Sol: given $\frac{x-3}{2} \le -1$ $x - 3 \le -2$ $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le 1$ 4 - 3 - 2 $x \le -2 + 3$ $x \le -2 - 3$ 4 - 3 - 3 - 3 4 - 3 - 3 - 3 - 3 4 - 3 - 3 - 3 - 3 4 - 3 - 3 - 3 - 3 - 3 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
$\frac{x}{2} + 2 < \frac{3}{2}$ Multiply by 2 $x + 4 < 3$ $x < -1$ $S.S = \{x : x \in R_{A}x < -1\}$ Khalid Multiply by 2 Example 15i): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an natural number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7 $7x - 5 \le 15 + 2x$ $7x - 2x \le 15 + 5$ $5x \le 20$ $x \le \frac{20}{5}$ $x \le 4$ $S.S = \{1, 2, 3, 4\}$ Example 15ii): Solve the inequality $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ where x is an real number Sol: Given $x - \frac{5}{7} \le \frac{15 + 2x}{7}$ Multiply by 7	Exercise 7.4 Q1: Show the following inequalities on number line. i). $x > 0$ 3x - 2 v). $x \ge -3$ $x \ge -3$

Chapter 7

$$\frac{1}{6\left(\frac{x-8}{3}\right)+6\left(\frac{x-3}{2}\right)=6\times0$$
ii). $-1<\frac{x-4}{5}<0$
Sol: Given $-1<\frac{x-4}{5}$
S

Q3. Solve the following inequalities and graph the solution on the number line.

i).
$$-1 < \frac{x-3}{2} < 0$$

Sol: Given $-1 < \frac{x-3}{2} < 0$ Multiply by 2
 $2(-1) < 2\left(\frac{x-3}{2}\right) < 2(0)$
 $-2 < x-3 < 0$
 $-2+3 < x < 3$
 $1 < x < 3$
 $5.S = \{x : x \in R, 1 < x < 3\}$