
4.2 Addition and Subtraction (Continued)
4.2.6 Flags Affected by Addition and

Subtraction
4.2.7 Example Program (AddSubTest)

4.3 Data-Related Operators and Directives
4.3.1 OFFSET Operator
4.3.2 ALIGN Directive
4.3.3 PTR Operator
4.3.4 TYPE Operator
4.3.5 LENGTHOF Operator
4.3.6 SIZEOF Operator
4.3.7 LABEL Directive

Lecture No.9

Lecture Outlines

1

4.2.6 Flags Affected by Addition and Subtraction

When executing arithmetic instructions, we often want to know something about the result. Is it neg-
ative, positive, or zero? Is it too large or too small to fit into the destination operand? Answers to
such questions can help us detect calculation errors that might otherwise cause erratic program
behavior. We use the values of CPU status flags to check the outcome of arithmetic operations.
We also use status flag values to activate conditional branching instructions, the basic tools of
program logic. Here’s a quick overview of the status flags.

• The Carry flag indicates unsigned integer overflow. For example, if an instruction has an 8-bit
destination operand but the instruction generates a result larger than 11111111 binary, the
Carry flag is set.

• The Overflow flag indicates signed integer overflow. For example, if an instruction has a 16-
bit destination operand but it generates a negative result smaller than �32,768 decimal, the
Overflow flag is set.

• The Zero flag indicates that an operation produced zero. For example, if an operand is sub-
tracted from another of equal value, the Zero flag is set.

• The Sign flag indicates that an operation produced a negative result. If the most significant bit
(MSB) of the destination operand is set, the Sign flag is set.

• The Parity flag indicates whether or not an even number of 1 bits occurs in the least signifi-
cant byte of the destination operand, immediately after an arithmetic or boolean instruction
has executed.

• The Auxiliary Carry flag is set when a 1 bit carries out of position 3 in the least significant
byte of the destination operand.

To display CPU status flag values when debugging, open the Registers window, right-click in the
window, and select Flags.

4.2 Addition and Subtraction (Continued)

Unsigned Operations: Zero, Carry, and Auxiliary Carry
The Zero flag is set when the result of an arithmetic operation equals zero. The following exam-
ples show the state of the destination register and Zero flag after executing the SUB, INC, and
DEC instructions:

2

mov ecx,1
sub ecx,1 ; ECX = 0, ZF = 1
mov eax,0FFFFFFFFh
inc eax ; EAX = 0, ZF = 1
inc eax ; EAX = 1, ZF = 0
dec eax ; EAX = 0, ZF = 1

Addition and the Carry Flag The Carry flag’s operation is easiest to explain if we consider
addition and subtraction separately. When adding two unsigned integers, the Carry flag is a copy of
the carry out of the most significant bit of the destination operand. Intuitively, we can say CF � 1
when the sum exceeds the storage size of its destination operand. In the next example, ADD sets
the Carry flag because the sum (100h) is too large for AL:

mov al,0FFh
add al,1 ; AL = 00, CF = 1

Figure 4-3 shows what happens at the bit level when 1 is added to 0FFh. The carry out of the
highest bit position of AL is copied into the Carry flag.

Figure 4–3 Adding 1 to 0FFh sets the Carry flag.

On the other hand, if 1 is added to 00FFh in AX, the sum easily fits into 16 bits and the Carry
flag is clear:

mov ax,00FFh
add ax,1 ; AX = 0100h, CF = 0

But adding 1 to FFFFh in the AX register generates a Carry out of the high bit position of AX:

mov ax,0FFFFh
add ax,1 ; AX = 0000, CF = 1

Subtraction and the Carry Flag A subtract operation sets the Carry flag when a larger
unsigned integer is subtracted from a smaller one. Figure 4-4 shows what happens when we sub-
tract 2 from 1, using 8-bit operands. Here is the corresponding assembly code:

mov al,1
sub al,2 ; AL = FFh, CF = 1

0 0 0 0 0 0�

0 0 0 0 0 0

1

0

1 1 1111

0

01CF

1

1 1 1 1 1 1 11

3

Figure 4–4 Subtracting 2 from 1 sets the Carry flag.

Auxiliary Carry The Auxiliary Carry (AC) flag indicates a carry or borrow out of bit 3 in the
destination operand. It is primarily used in binary coded decimal (BCD) arithmetic, but can be
used in other contexts. Suppose we add 1 to 0Fh. The sum (10h) contains a 1 in bit position 4
that was carried out of bit position 3:

mov al,0Fh
add al,1 ; AC = 1

Here is the arithmetic:

 0 0 0 0 1 1 1 1
+ 0 0 0 0 0 0 0 1

 0 0 0 1 0 0 0 0

Parity The Parity flag (PF) is set when the least significant byte of the destination has an even
number of 1 bits. The following ADD and SUB instructions alter the parity of AL:

mov al,10001100b
add al,00000010b ; AL = 10001110, PF = 1
sub al,10000000b ; AL = 00001110, PF = 0

After the ADD instruction executes, AL contains binary 10001110 (four 0 bits and four 1 bits),
and PF � 1. After the SUB instruction executes, AL contains an odd number of 1 bits, so the
Parity flag equals 0.

Signed Operations: Sign and Overflow Flags

Sign Flag The Sign flag is set when the result of a signed arithmetic operation is negative. The
next example subtracts a larger integer (5) from a smaller one (4):

mov eax,4
sub eax,5 ; EAX = -1, SF = 1

From a mechanical point of view, the Sign flag is a copy of the destination operand’s high bit.
The next example shows the hexadecimal values of BL when a negative result is generated:

mov bl,1 ; BL = 01h
sub bl,2 ; BL = FFh (-1), SF = 1

Tip: The INC and DEC instructions do not affect the Carry flag. Applying the NEG instruction to
a nonzero operand always sets the Carry flag.

1 1 1 1 1 1

0 0 0 0 0 0

�

1 1 1 1 1 1

0

1

1

1

0

1

(1)

(�2)

(FFh)1CF

4

Overflow Flag The Overflow flag is set when the result of a signed arithmetic operation over-
flows or underflows the destination operand. For example, from Chapter 1 we know that the
largest possible integer signed byte value is �127; adding 1 to it causes overflow:

mov al,+127
add al,1 ; OF = 1

Similarly, the smallest possible negative integer byte value is �128. Subtracting 1 from it causes
underflow. The destination operand value does not hold a valid arithmetic result, and the Over-
flow flag is set:

mov al,-128
sub al,1 ; OF = 1

The Addition Test There is a very easy way to tell whether signed overflow has occurred
when adding two operands. Overflow occurs when:

• Adding two positive operands generates a negative sum
• Adding two negative operands generates a positive sum

Overflow never occurs when the signs of two addition operands are different.

How the Hardware Detects Overflow The CPU uses an interesting mechanism to determine
the state of the Overflow flag after an addition or subtraction operation. The value that carries out of the
highest bit position is exclusive ORed with the carry into the high bit of the result. The resulting value
is placed in the Overflow flag. In Figure 4-5, we show that adding the 8-bit binary integers 10000000
and 11111110 produces CF = 1, with carryIn(bit7) = 0. In other words, 1 XOR 0 produces OF = 1.

Figure 4–5 Demonstration of how the Overflow flag is set.

NEG Instruction The NEG instruction produces an invalid result if the destination operand can-
not be stored correctly. For example, if we move �128 to AL and try to negate it, the correct value
(�128) will not fit into AL. The Overflow flag is set, indicating that AL contains an invalid value:

mov al,-128 ; AL = 10000000b
neg al ; AL = 10000000b, OF = 1

On the other hand, if �127 is negated, the result is valid and the Overflow flag is clear:

mov al,+127 ; AL = 01111111b
neg al ; AL = 10000001b, OF = 0

How does the CPU know whether an arithmetic operation is signed or unsigned? We can only give
what seems a dumb answer: It doesn’t! The CPU sets all status flags after an arithmetic operation
using a set of boolean rules, regardless of which flags are relevant. You (the programmer) decide
which flags to interpret and which to ignore, based on your knowledge of the type of operation
performed.

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

�

1CF

5

4.2.7 Example Program (AddSubTest)
The AddSubTest program shown below implements various arithmetic expressions using the
ADD, SUB, INC, DEC, and NEG instructions, and shows how certain status flags are affected:

; Addition and Subtraction (AddSubTest.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword
.data
Rval SDWORD ?
Xval SDWORD 26
Yval SDWORD 30
Zval SDWORD 40

.code
main PROC

; INC and DEC
mov ax,1000h
inc ax ; 1001h
dec ax ; 1000h

; Expression: Rval = -Xval + (Yval - Zval)
mov eax,Xval
neg eax ; -26
mov ebx,Yval
sub ebx,Zval ; -10
add eax,ebx
mov Rval,eax ; -36

; Zero flag example:
mov cx,1
sub cx,1 ; ZF = 1
mov ax,0FFFFh
inc ax ; ZF = 1

; Sign flag example:
mov cx,0
sub cx,1 ; SF = 1
mov ax,7FFFh
add ax,2 ; SF = 1

; Carry flag example:
mov al,0FFh
add al,1 ; CF = 1, AL = 00

; Overflow flag example:
mov al,+127
add al,1 ; OF = 1
mov al,-128
sub al,1 ; OF = 1

INVOKE ExitProcess,0
main ENDP
END main

6

4.3 Data-Related Operators and Directives
Operators and directives are not executable instructions; instead, they are interpreted by the
assembler. You can use a number of assembly language directives to get information about the
addresses and size characteristics of data:

• The OFFSET operator returns the distance of a variable from the beginning of its enclosing
segment.

• The PTR operator lets you override an operand’s default size.
• The TYPE operator returns the size (in bytes) of an operand or of each element in an

array.
• The LENGTHOF operator returns the number of elements in an array.
• The SIZEOF operator returns the number of bytes used by an array initializer.

In addition, the LABEL directive provides a way to redefine the same variable with different
size attributes. The operators and directives in this chapter represent only a small subset of the
operators supported by MASM. You may want to view the complete list in Appendix D.

4.3.1 OFFSET Operator
The OFFSET operator returns the offset of a data label. The offset represents the distance, in
bytes, of the label from the beginning of the data segment. To illustrate, Figure 4-6 shows a vari-
able named myByte inside the data segment.

Figure 4–6 A variable named myByte.

OFFSET Examples
In the next example, we declare three different types of variables:

.data
bVal BYTE ?
wVal WORD ?
dVal DWORD ?
dVal2 DWORD ?

If bVal were located at offset 00404000 (hexadecimal), the OFFSET operator would return the
following values:

mov esi,OFFSET bVal
mov esi,OFFSET wVal
mov esi,OFFSET dVal
mov esi,OFFSET dVal2

; ESI = 00404000h
; ESI = 00404001h
; ESI = 00404003h
; ESI = 00404007h

Offset

myByte

Data segment:

7

OFFSET can also be applied to a direct-offset operand. Suppose myArray contains five
16-bit words. The following MOV instruction obtains the offset of myArray, adds 4, and
moves the resulting address to ESI. We can say that ESI points to the third integer in the array:

.data
myArray WORD 1,2,3,4,5
.code
mov esi,OFFSET myArray + 4

You can initialize a doubleword variable with the offset of another variable, effectively creating
a pointer. In the following example, pArray points to the beginning of bigArray:

.data
bigArray DWORD 500 DUP(?)
pArray DWORD bigArray

The following statement loads the pointer’s value into ESI, so the register can point to the begin-
ning of the array:

mov esi,pArray

4.3.2 ALIGN Directive
The ALIGN directive aligns a variable on a byte, word, doubleword, or paragraph boundary. The
syntax is

ALIGN bound

Bound can be 1, 2, 4, 8, or 16. A value of 1 aligns the next variable on a 1-byte boundary (the
default). If bound is 2, the next variable is aligned on an even-numbered address. If bound is 4,
the next address is a multiple of 4. If bound is 16, the next address is a multiple of 16, a
paragraph boundary. The assembler can insert one or more empty bytes before the variable to fix
the alignment. Why bother aligning data? Because the CPU can process data stored at even-
numbered addresses more quickly than those at odd-numbered addresses.

In the following example, bVal is arbitrarily located at offset 00404000. Inserting the
ALIGN 2 directive before wVal causes it to be assigned an even-numbered offset:

; 00404000h

; 00404002h
; 00404004h

; 00404008h

bVal BYTE ?
ALIGN 2
wVal WORD ?
bVal2 BYTE ?
ALIGN 4
dVal DWORD ?
dVal2 DWORD ? ; 0040400Ch

Note that dVal would have been at offset 00404005, but the ALIGN 4 directive bumped it up to
offset 00404008.

8

4.3.3 PTR Operator
You can use the PTR operator to override the declared size of an operand. This is only necessary
when you’re trying to access the operand using a size attribute that is different from the one
assumed by the assembler.

Suppose, for example, that you would like to move the lower 16 bits of a doubleword variable
named myDouble into AX. The assembler will not permit the following move because the oper-
and sizes do not match:

.data
myDouble DWORD 12345678h
.code
mov ax,myDouble ; error

But the WORD PTR operator makes it possible to move the low-order word (5678h) to AX:

mov ax,WORD PTR myDouble

Why wasn’t 1234h moved into AX? x86 processors use the little endian storage format
(Section 3.4.9), in which the low-order byte is stored at the variable’s starting address. In
Figure 4-7, the memory layout of myDouble is shown three ways: first as a doubleword, then as
two words (5678h, 1234h), and finally as four bytes (78h, 56h, 34h, 12h).

We can access memory in any of these three ways, independent of the way a variable was
defined. For example, if myDouble begins at offset 0000, the 16-bit value stored at that address
is 5678h. We could also retrieve 1234h, the word at location myDouble�2, using the following
statement:

mov ax,WORD PTR [myDouble+2] ; 1234h

Figure 4–7 Memory layout of myDouble.

Similarly, we could use the BYTE PTR operator to move a single byte from myDouble to BL:

 bl,BYTE PTR myDoublemov ; 78h

Note that PTR must be used in combination with one of the standard assembler data types,
BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, FWORD, QWORD, or TBYTE.

12345678 5678 78

56

1234 34

12

Doubleword Word Byte Offset

0000 myDouble

0001 myDouble � 1

0002 myDouble � 2

0003 myDouble � 3

Moving Smaller Values into Larger Destinations We might want to move two smaller val-
ues from memory to a larger destination operand. In the next example, the first word is copied to
the lower half of EAX and the second word is copied to the upper half. The DWORD PTR oper-
ator makes this possible:

9

.data
wordList WORD 5678h,1234h
.code
mov eax,DWORD PTR wordList ; EAX = 12345678h

4.3.4 TYPE Operator
The TYPE operator returns the size, in bytes, of a single element of a variable. For example, the
TYPE of a byte equals 1, the TYPE of a word equals 2, the TYPE of a doubleword is 4, and the
TYPE of a quadword is 8. Here are examples of each:

.data
var1 BYTE ?
var2 WORD ?
var3 DWORD ?
var4 QWORD ?

The following table shows the value of each TYPE expression.

Expression Value
TYPE var1 1

TYPE var2 2

TYPE var3 4

TYPE var4 8

4.3.5 LENGTHOF Operator
The LENGTHOF operator counts the number of elements in an array, defined by the values
appearing on the same line as its label. We will use the following data as an example:

.data
1 BYTE 10,byte1byte

array1arr
array2arr
array3arr

ay1 WORD 30 DUP(
ay2 WORD 5 DUP(3 D
ay3 DWORD 1

digitStr BYTE "12345678",0

When nested DUP operators are used in an array definition, LENGTHOF returns the prod-
uct of the two counters. The following table lists the values returned by each LENGTHOF
expression:

Value
3

30 � 2

5 * 3

4

Expression
LENGTHOF byte1

LENGTHOF array1

LENGTHOF array2

LENGTHOF array3

LENGTHOF digitStr 9

10

If you declare an array that spans multiple program lines, LENGTHOF only regards the data
from the first line as part of the array. Given the following data, LENGTHOF myArray would
return the value 5:

myArray BYTE 10,20,30,40,50
BYTE 60,70,80,90,100

Alternatively, you can end the first line with a comma and continue the list of initializers onto
the next line. Given the following data, LENGTHOF myArray would return the value 10:

myArray BYTE 10,20,30,40,50,
60,70,80,90,100

4.3.6 SIZEOF Operator
The SIZEOF operator returns a value that is equivalent to multiplying LENGTHOF by TYPE. In
the following example, intArray has TYPE � 2 and LENGTHOF � 32. Therefore, SIZEOF
intArray equals 64:

.data
intArray WORD 32 DUP(0)
.code
mov eax,SIZEOF intArray ; EAX = 64

4.3.7 LABEL Directive
The LABEL directive lets you insert a label and give it a size attribute without allocating any
storage. All standard size attributes can be used with LABEL, such as BYTE, WORD, DWORD,
QWORD or TBYTE. A common use of LABEL is to provide an alternative name and size
attribute for the variable declared next in the data segment. In the following example, we declare
a label just before val32 named val16 and give it a WORD attribute:

.data
val16 LABEL WORD
val32 DWORD 12345678h
.code
mov ax,val16
mov dx,[val16+2]

; AX = 5678h
; DX = 1234h

val16 is an alias for the same storage location as val32. The LABEL directive itself allocates no
storage.

Sometimes we need to construct a larger integer from two smaller integers. In the next
example, a 32-bit value is loaded into EAX from two 16-bit variables:

.data
LongValue LABEL DWORD
val1 WORD 5678h
val2 WORD 1234h
.code
mov eax,LongValue ; EAX = 12345678h

