
1

	
Cache Addresses Cache
Size
Mapping Function

Lecture No.9

Lecture Outlines

4.3 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some typi-
cal results. We occasionally refer to the use of caches in high- performance computing
(HPC). HPC deals with supercomputers and their software, especially for scientific
applications that involve large amounts of data, vector and matrix computation, and the
use of parallel algorithms. Cache design for HPC is quite different than for other hard-
ware platforms and applications. Indeed, many researchers have found that HPC
appli-cations perform poorly on computer architectures that employ caches. Other
researchers have since shown that a cache hierarchy can be useful in improving
perfor-mance if the application software is tuned to exploit the cache.

Although there are a large number of cache implementations, there are a few
basic design elements that serve to classify and differentiate cache architectures.
Table 4.2 lists key elements.

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support vir-
tual memory, a concept discussed in Chapter 8. In essence, virtual memory is a facil-
ity that allows programs to address memory from a logical point of view, without
regard to the amount of main memory physically available. When virtual memory is
used, the address fields of machine instructions contain virtual addresses. For reads

to and writes from main memory, a hardware memory management unit (MMU)
translates each virtual address into a physical address in main memory.

When virtual addresses are used, the system designer may choose to place the
cache between the processor and the MMU or between the MMU and main mem-
ory (Figure 4.7). A logical cache, also known as a virtual cache, stores data using

2
Table 4.2 Elements of Cache Design

Cache Addresses
   Logical
   Physical
Cache Size
Mapping Function
   Direct
   Associative
   Set associative
Replacement Algorithm

Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)

   Random

Write Policy
   Write through
   Write back
Line Size
Number of Caches

Single or two level
Unified or split

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(a) Logical cache

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(b) Physical cache

Figure 4.7 Logical and Physical Caches

virtual addresses. The processor accesses the cache directly, without going through
the MMU. A physical cache stores data using main memory physical addresses.

One obvious advantage of the logical cache is that cache access speed is faster
than for a physical cache, because the cache can respond before the MMU performs
an address translation. The disadvantage has to do with the fact that most virtual
memory systems supply each application with the same virtual memory address
space. That is, each application sees a virtual memory that starts at address 0. Thus,
identify which virtual address space this address refers to.

3

The subject of logical versus physical cache is a complex one, and beyond the
scope of this book. For a more in-​depth discussion, see [CEKL97] and [JACO08].

Cache Size

The second item in Table 4.2, cache size, has already been discussed. We would
like the size of the cache to be small enough so that the overall average cost per
bit is close to that of main memory alone and large enough so that the overall
average access time is close to that of the cache alone. There are several other
motivations for minimizing cache size. The larger the cache, the larger the num-
ber of gates involved in addressing the cache. The result is that large caches tend
to be slightly slower than small ones— even when built with the same integrated
circuit technology and put in the same place on chip and circuit board. The avail-
able chip and board area also limits cache size. Because the performance of the
cache is very sensitive to the nature of the workload, it is impossible to arrive
at a single “optimum” cache size.

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is
needed for mapping main memory blocks into cache lines. Further, a means is
needed for determining which main memory block currently occupies a cache
line. The choice of the mapping function dictates how the cache is organized.
Three techniques can be used: direct, associative, and set-associative. We examine
each of these in turn. In each case, we look at the general structure and then a
specific example.

■■ The cache can hold 64 kB.
■■ Data are transferred between main memory and the cache in blocks of 4 bytes

each. This means that the cache is organized as 16K = 214 lines of 4 bytes each.
■■ The main memory consists of 16 MB, with each byte directly addressable by a

24-bit address (224 = 16M). Thus, for mapping purposes, we can consider main
memory to consist of 4M blocks of 4 bytes each.

 EXAMPLE 4.2 For all three cases, the example includes the following elements:

direct mapping The simplest technique, known as direct mapping, maps each
block of main memory into only one possible cache line. The mapping is expressed as

i = j modulo m

where

i = cache line number

j = main memory block number

m = number of lines in the cache

Figure 4.8a shows the mapping for the first m blocks of main memory. Each
block of main memory maps into one unique line of the cache. The next m blocks

4

of main memory map into the cache in the same fashion; that is, block Bm of main
memory maps into line L0 of cache, block Bm+1 maps into line L1, and so on.

The mapping function is easily implemented using the main memory address.
Figure 4.9 illustrates the general mechanism. For purposes of cache access, each
main memory address can be viewed as consisting of three fields. The least signifi-
cant w bits identify a unique word or byte within a block of main memory; in most
contemporary machines, the address is at the byte level. The remaining s bits specify
one of the 2s blocks of main memory. The cache logic interprets these s bits as a tag
of s - r bits (most significant portion) and a line field of r bits. This latter field iden-
tifies one of the m = 2r lines of the cache. To summarize,

■■ Address length = (s + w) bits
■■ Number of addressable units = 2s+w words or bytes
■■ Block size = line size = 2w words or bytes

■■ Number of blocks in main memory =
2s + w

2w = 2s

■■ Number of lines in cache = m = 2r

■■ Size of cache = 2r+w words or bytes
■■ Size of tag = (s - r) bits

(a) Direct mapping

First m blocks of
main memory

(equal to size of cache)

b

L0

Lm–1

L0

Lm–1

Bm–1

B0

b = length of block in bits
t = length of tag in bits

Cache memory

m
 li

ne
s

b

bt

bt

(b) Associative mapping

One block of
main memory

Cache memory

Figure 4.8 Mapping from Main Memory to Cache: Direct and Associative

5

Cache Line Starting Memory Address of Block

0 000000, 010000, …, FF0000

1 000004, 010004, …, FF0004

f f

214 - 1 00FFFC, 01FFFC, …, FFFFFC

Note that no two blocks that map into the same line number have the same tag number. Thus,
blocks with starting addresses 000000, 010000, …, FF0000 have tag numbers 00, 01, …, FF, respectively.

Referring back to Figure 4.5, a read operation works as follows. The cache system is presented
with a 24-bit address. The 14-bit line number is used as an index into the cache to access a particular
line. If the 8-bit tag number matches the tag number currently stored in that line, then the 2-bit word
number is used to select one of the 4 bytes in that line. Otherwise, the 22-bit tag-​plus-​line field is
used to fetch a block from main memory. The actual address that is used for the fetch is the 22-bit
tag-​plus-​line concatenated with two 0 bits, so that 4 bytes are fetched starting on a block boundary.

WordLineTag
W0
W1
W2
W3

Compare

1 if match
0 if no match

0 if match

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data
Cache

L0

Li

Memory address

(Hit in cache)

w

s – r

wr

s + w

Main memory

Bj

B0

s

w

Lm–1

s – r

1 if no match (Miss in cache)

Figure 4.9 Direct- Mapping Cache Organization

 EXAMPLE 4.2a Figure 4.10 shows our example system using direct mapping. In the example,
m = 16K = 214 and i = j modulo 214. The mapping becomes

6

The effect of this mapping is that blocks of main memory are assigned to lines
of the cache as follows:

Cache line Main memory blocks assigned

0 0, m, 2m, c , 2s - m

1 1, m + 1, 2m + 1, c , 2s - m + 1

f f

m - 1 m - 1, 2m - 1, 3m - 1, c , 2s - 1

Thus, the use of a portion of the address as a line number provides a unique
mapping of each block of main memory into the cache. When a block is actually

111111111111111111111100
111111111111111111111000

111111110000000000000000

000101101111111111111100

000101100011001110011100

111111110000000000000100

000101100000000000000100
000101100000000000000000

000000001111111111111100

000000000000000000000000
000000000000000000000100

000000001111111111111000

00
00

FF
FF

FF
FF

16

16

16
16

00
00

13579246

TagTag
(hex)

Main memory address (binary)

Tag Data

32 bits

16K line cache

8 bits

2 bits

Tag

Main memory address =

Line Word

Line
number

Line + Word
Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

1357924600
16

FF
16

16

0000
0001

0CE7

3FFE
3FFF

11235813

FEDCBA98

11223344
12345678

14 bits

32 bits

16-Mb main memory

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

8 bits

Figure 4.10 Direct Mapping Example

7

read into its assigned line, it is necessary to tag the data to distinguish it from other
blocks that can fit into that line. The most significant s - r bits serve this purpose.

The direct mapping technique is simple and inexpensive to implement. Its
main disadvantage is that there is a fixed cache location for any given block. Thus,
if a program happens to reference words repeatedly from two different blocks that
map into the same line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low (a phenomenon known as thrashing).

One approach to lower the miss penalty is to remember what was discarded in
case it is needed again. Since the discarded data has already been fetched, it can be
used again at a small cost. Such recycling is possible using a victim cache. Victim cache
was originally proposed as an approach to reduce the conflict misses of direct mapped
caches without affecting its fast access time. Victim cache is a fully associative cache,
whose size is typically 4 to 16 cache lines, residing between a direct mapped L1 cache
and the next level of memory.

associative mapping Associative mapping overcomes the disadvantage of
direct mapping by permitting each main memory block to be loaded into any line
of the cache (Figure 4.8b). In this case, the cache control logic interprets a memory
address simply as a Tag and a Word field. The Tag field uniquely identifies a block
of main memory. To determine whether a block is in the cache, the cache control
logic must simultaneously examine every line’s tag for a match. Figure 4.11
illustrates the logic.

Tag Word
W0
W1
W2
W3

Compare

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data
Cache

Memory address

(Hit in cache)

w

w

s

s+w

Main memory

s

w

s
1 if match
0 if no match

0 if match

L0

Lj

B0

Bj

Lm–1

1 if no match(Miss in cache)

Figure 4.11 Fully Associative Cache Organization

8

111111111111111111111100
111111111111111111111000
111111111111111111110100

000101100011001110011000
000101100011001110011100
000101100011001110100000

000000000000000000000100
000000000000000000000000 13579246

FEDCBA98

Tag Data

32 bits

16K line cache

22 bits

Tag

Main memory address =

Word

Line
number

Data

24682468
11223344
33333333

112233443FFFFE
058CE7

000000
3FFFFF

0000
0001

3FFE
3FFF

FEDCBA98

13579246
3FFFFD 3FFD33333333

24682468

32 bits

16-Mb main memory

2 bits22 bits

000000
000001

Tag (hex)

058CE7
058CE8

058CE6

3FFFFE
3FFFFD

3FFFFF

Tag

Main memory address (binary)

Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

Figure 4.12 Associative Mapping Example

Memory address	 0001 0110 0011 0011 1001 1100 (binary)

1 6 3 3 9 C (hex)

Tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary)	

0 5 8 C E 7 (hex)

 EXAMPLE 4.2b Figure 4.12 shows our example using associative mapping. A main
memory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must be
stored with the 32-bit block of data for each line in the cache. Note that it is the leftmost
(most significant) 22 bits of the address that form the tag. Thus, the 24-bit hexadecimal
address 16339C has the 22-bit tag 058CE7. This is easily seen in binary notation:

9

Note that no field in the address corresponds to the line number, so that the number
of lines in the cache is not determined by the address format. To summarize,

■ Address length = (s + w) bits
■ Number of addressable units = 2s+w words or bytes
■ Block size = line size = 2w words or bytes

■■ Number of blocks in main memory =
2s + w

2w = 2s

■■ Number of lines in cache = undetermined
■■ Size of tag = s bits

With associative mapping, there is flexibility as to which block to replace when
a new block is read into the cache. Replacement algorithms, discussed later in this
section, are designed to maximize the hit ratio. The principal disadvantage of asso-
ciative mapping is the complex circuitry required to examine the tags of all cache
lines in parallel.

 set-associative mapping Set- associative mapping is a compromise
that exhibits the strengths of both the direct and associative approaches while
reducing their disadvantages.

In this case, the cache consists of number sets, each of which consists of a num-
ber of lines. The relationships are

m = v * k

i = j modulo v

where

   i = cache set number

   j = main memory block number

m = number of lines in the cache

    v = number of sets

k = number of lines in each set

This is referred to as k-​way set-​associative mapping. With set-​associative map-
ping, block Bj can be mapped into any of the lines of set j. Figure 4.13a illustrates
this mapping for the first v blocks of main memory. As with associative mapping,
each word maps into multiple cache lines. For set-​associative mapping, each word
maps into all the cache lines in a specific set, so that main memory block B0 maps
into set 0, and so on. Thus, the set-​associative cache can be physically implemented
as v associative caches. It is also possible to implement the set-​associative cache as
k direct mapping caches, as shown in Figure 4.13b. Each direct-​mapped cache is
referred to as a way, consisting of v lines. The first v lines of main memory are direct
mapped into the v lines of each way; the next group of v lines of main memory are
similarly mapped, and so on. The direct-​mapped implementation is typically used

10

for small degrees of associativity (small values of k) while the associative-​mapped
implementation is typically used for higher degrees of associativity [JACO08].

For set-​associative mapping, the cache control logic interprets a memory
address as three fields: Tag, Set, and Word. The d set bits specify one of v = 2d sets.
The s bits of the Tag and Set fields specify one of the 2s blocks of main memory.
Figure 4.14 illustrates the cache control logic. With fully associative mapping, the
tag in a memory address is quite large and must be compared to the tag of every line
in the cache. With k-​way set-​associative mapping, the tag in a memory address is
much smaller and is only compared to the k tags within a single set. To summarize,

■■ Address length = (s + w) bits
■■ Number of addressable units = 2s+w words or bytes

First v blocks of
main memory

(equal to number of sets)

Cache memory—way 1 Cache memory—way k

One
set

v
lin

es

Bv–1

B0 L0

L v–1

(a) v associative–mapped caches

First v blocks of
main memory

(equal to number of sets)

Cache memory–set 0

Cache memory–set v–1

k
lin

es

Bv–1

B0 L0

Lk–1

(b) k direct–mapped caches

Figure 4.13 Mapping from Main Memory to Cache: k- Way Set Associative

11

■■ Block size = line size = 2w words or bytes

■■ Number of blocks in main memory =
2s + w

2w = 2s

■■ Number of lines in set = k
■■ Number of sets = v = 2d

■■ Number of lines in cache = m = kv = k * 2d

■■ Size of cache = k * 2d + w words or bytes
■■ Size of tag = (s - d) bits

WordSetTag

Compare

Tag Data
Cache

F0

Memory address

(Hit in cache)

s – d

wds – d

s + w

Main memory

s + w

F1

Fk–1

Fk

Fk+i

F2k–1

Set 0

Set 1

B1

B0

Bj

1 if match
0 if no match

0 if match
1 if no match

(Miss in cache)

Figure 4.14 k- Way Set-Associative Cache Organization

 EXAMPLE 4.2c Figure 4.15 shows our example using set- associative mapping
with two lines in each set, referred to as two- way set- associative. The 13-bit set
number iden-tifies a unique set of two lines within the cache. It also gives the number
of the block in main memory, modulo 213. This determines the mapping of blocks into
lines. Thus, blocks 000000, 008000, …, FF8000 of main memory map into cache set 0. Any
of those blocks can be loaded into either of the two lines in the set. Note that no two
blocks that map into the same cache set have the same tag number. For a read operation,
the 13-bit set number is used to determine which set of two lines is to be examined. Both
lines in the set are exam-ined for a match with the tag number of the address to be
accessed.

000101100111111111111100

111111111111111111111000

111111111000000000000000

000101100011001110011100

000101100000000000000000

000000001111111111111000

000000000000000000000000 13579246000
000

000
000

Tag
(hex)

Tag Data

32 bits
16K line cache

9 bits

Tag

Main memory address =

Set Word

Tag Data
Set

number

Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

02C
02C

02C

02C

1FF
1FF

1FF
1FF

7777777713579246000
02C

1FF
02C

02C

0000
0001

0CE7

1FFE
1FFF

02C

246824681FF

11235813

11223344
12345678

32 bits

16–Mb main memory

32 bits9 bits

FEDCBA98

2 bits13 bits9 bits

111111111111111111111100

111111111000000000000100

000101100000000000000100

000000001111111111111100

000000000000000000000100

Tag

Main memory address (binary)

Set + Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

Figure 4.15 Two- Way Set- Associative Mapping Example

12

13

In the extreme case of v = m, k = 1, the set-​associative technique reduces to
direct mapping, and for v = 1, k = m, it reduces to associative mapping. The use of
two lines per set (v = m/2, k = 2) is the most common set-​associative organization.
It significantly improves the hit ratio over direct mapping. Four-​way set associative
(v = m/4, k = 4) makes a modest additional improvement for a relatively small
additional cost [MAYB84, HILL89]. Further increases in the number of lines per
set have little effect.

Figure 4.16 shows the results of one simulation study of set-​associative cache
performance as a function of cache size [GENU04]. The difference in performance
between direct and two-​way set associative is significant up to at least a cache size of
64 kB. Note also that the difference between two-​way and four-​way at 4 kB is much
less than the difference in going from for 4 kB to 8 kB in cache size. The complexity
of the cache increases in proportion to the associativity, and in this case would not
be justifiable against increasing cache size to 8 or even 16 kB. A final point to note
is that beyond about 32 kB, increase in cache size brings no significant increase in
performance.

The results of Figure 4.16 are based on simulating the execution of a GCC
compiler. Different applications may yield different results. For example, [CANT01]
reports on the results for cache performance using many of the CPU2000 SPEC
benchmarks. The results of [CANT01] in comparing hit ratio to cache size follow
the same pattern as Figure 4.16, but the specific values are somewhat different.

0.0
1k

H
it

 r
at

io

2k 4k 8k 16k

Cache size (bytes)

Direct
Two-way
Four-way
Eight-way
Sixteen-way

32k 64k 128k 256k 512k 1M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.16 Varying Associativity over Cache Size

